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Abstract: In this paper, we propose a new theoretical security model for Shannon cipher systems
under side-channel attacks, where the adversary is not only allowed to collect ciphertexts by
eavesdropping the public communication channel but is also allowed to collect the physical
information leaked by the devices where the cipher system is implemented on, such as running
time, power consumption, electromagnetic radiation, etc. Our model is very robust as it does not
depend on the kind of physical information leaked by the devices. We also prove that in the case of
one-time pad encryption, we can strengthen the secrecy/security of the cipher system by using an
appropriate affine encoder. More precisely, we prove that for any distribution of the secret keys and
any measurement device used for collecting the physical information, we can derive an achievable
rate region for reliability and security such that if we compress the ciphertext using an affine encoder
with a rate within the achievable rate region, then: (1) anyone with a secret key will be able to decrypt
and decode the ciphertext correctly, but (2) any adversary who obtains the ciphertext and also the
side physical information will not be able to obtain any information about the hidden source as long
as the leaked physical information is encoded with a rate within the rate region. We derive our result
by adapting the framework of the one helper source coding problem posed and investigated by
Ahlswede and Körner (1975) and Wyner (1975). For reliability and security, we obtain our result by
combining the result of Csizár (1982) on universal coding for a single source using linear codes and
the exponential strong converse theorem of Oohama (2015) for the one helper source coding problem.

Keywords: information theoretic security; side-channel attacks; Shannon cipher system; one helper
source coding problem; strong converse theorem

1. Introduction

In most of theoretical security models for encryption schemes, the adversary only obtains
information from the public communication channel. In such models, an adversary is often treated as
an entity that tries to obtain information about the hidden source only from the ciphertexts that are
sent through the public communication channel. However, in the real world, the encryption schemes
are implemented on physical electronic devices, and it is widely known that any process executed in
an electronic circuit will generate a certain kind of correlated physical phenomena as “side” effects,
according to the type of process. For example, differences in inputs to a process in an electronic circuit
can induce differences in the heat, power consumption, and electromagnetic radiation generated as
byproducts by the devices. Therefore, we may consider that an adversary who has a certain degree
of physical access to the devices may obtain some information on very sensitive hidden data, such
as the keys used for the encryption, just by measuring the generated physical phenomena using
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appropriate measurement devices. More precisely, an adversary may deduce the value of the bits of
the key by measuring the differences in the timing of the process of encryption or the differences in
the power consumption, electromagnetic radiation, and other physical phenomena. This information
channel where the adversary obtains data in the form of physical phenomena is called the side-channel,
and attacks using the side-channel are known as side-channel attacks.

In the literature, there have been many works showing that adversaries have succeeded in
breaking the security of cryptographic systems by exploiting side-channel information such as running
time, power consumption, and electromagnetic radiation in the real physical world [1–5].

1.1. Our Contributions

1.1.1. Security Model for Side-Channel Attacks

In this paper, we propose a security model where the adversary attempts to obtain information
about the hidden source by collecting data from (1) the public communication channel in the form of
ciphertexts, and (2) the side-channel in the form of some physical data related to the encryption keys.
Our proposed security model is illustrated in Figure 1.

Figure 1. Illustration of side-channel attacks.

Based on the security model illustrated above, we formulate a security problem of strengthening
the security of Shannon cipher system where the encryption is implemented on a physical encryption
device and the adversary attempts to obtain some information on the hidden source by collecting
ciphertexts and performing side-channel attacks.

We describe our security model in a more formal way as follows. The source X is encrypted using
an encryption device with secret key K installed. The result of the encryption, i.e., ciphertext C, is sent
through a public communication channel to a data center where C is decrypted back into the source X
using the same key K. The adversary A is allowed to obtain C from the public communication channel
and is also equipped with an encoding device ϕA that encodes and processes the noisy large alphabet
data Z, i.e., the measurement result of the physical information obtained from the side-channel, into the
appropriate binary data MA. It should be noted that in our model, we do not put any limitation on
the kind of physical information measured by the adversary. Hence, any theoretical result based on
this model automatically applies to any kind of side-channel attack, including timing analysis, power
analysis, and electromagnetic (EM) analysis. In addition, the measurement device may just be a simple
analog-to-digital converter that converts the analog data representing physical information leaked
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from the device into “noisy” digital data Z. In our model, we represent the measurement process as a
communication channel W.

1.1.2. Main Result

As the main theoretical result, we show that we can strengthen the secrecy/security of the
Shannon cipher implemented on a physical device against an adversary who collects the ciphertexts
and launches side-channel attacks by a simple method of compressing the ciphertext C from a Shannon
cipher using an affine encoder ϕ into C̃ before releasing it into the public communication channel.

We prove that in the case of one-time pad encryption, we can strengthen the secrecy/security
of the cipher system by using an appropriate affine encoder. More precisely, we prove that for any
distribution of the secret key K and any measurement device (used to convert the physical information
from a side-channel into the noisy large alphabet data Z), we can derive an achievable rate region
for (RA, R) such that if we compress the ciphertext C into C̃ using the affine encoder ϕ, which has
an encoding rate R inside the achievable region, then we can achieve reliability and security in the
following sense:

• anyone with secret key K can construct an appropriate decoder that decrypts and encodes C̃ with
exponentially decaying error probability, but

• the amount of information gained by any adversary A who obtains the compressed ciphertext C̃
and encoded physical information MA is exponentially decaying to zero as long as the encoding
device ϕA encodes the side physical information into MA with a rate RA within the achievable
rate region.

By utilizing the homomorphic property of one-time-pad and affine encoding, we are able to
separate the theoretical analysis of reliability and security such that we can deal with each issue
independently. For reliability, we mainly obtain our result by using the result of Csizár [6] on the
universal coding for a single source using linear codes. For the security analysis, we derive our
result by adapting the framework of the one helper source coding problem posed and investigated by
Ahlswede, Körner [7] and Wyner [8]. Specifically, in order to derive the secrecy exponent, we utilize
the exponential strong converse theorem of Oohama [9] for the one helper source coding problem. In
[10], Watanabe and Oohama deal with a similar source coding problem, but their result is insufficient
for deriving the lower bound of the secrecy exponent. We will explain the relation between our method
and previous related works in more detail in Section 4.

1.2. Comparison to Existing Models of Side-Channel Attacks

The most important feature of our model is that we do not make any assumption about the type or
characteristics of the physical information that is measured by the adversary. Several theoretical models
analyzing the security of a cryptographic system against side-channel attacks have been proposed in
the literature. However, most of the existing works are applicable only for specific characteristics of
the leaked physical information. For example, Brier et al. [1] and Coron et al. [11] propose a statistical
model for side-channel attacks using the information from power consumption and the running time,
whereas Agrawal et al. [5] propose a statistical model for side-channel attacks using electromagnetic
(EM) radiations. A more general model for side-channel attacks is proposed by Köpf et al. [12] and
Backes et al. [13], but they are heavily dependent upon implementation on certain specific devices.
Micali et al. [14] propose a very general security model to capture the side-channel attacks, but they
fail to offer any hint of how to build a concrete countermeasure against the side-channel attacks. The
closest existing model to ours is the general framework for analyzing side-channel attacks proposed
by Standaert et al. [15]. The authors of [15] propose a countermeasure against side-channel attacks
that is different from ours, i.e., noise insertion on implementation. It should be noted that the noise
insertion countermeasure proposed by [15] is dependent on the characteristics of the leaked physical
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information. On the other hand, our countermeasure, i.e., compression using an affine encoder, is
independent of the characteristics of the leaked physical information.

1.3. Comparison to Encoding before Encryption

In this paper, our proposed solution is to perform additional encoding in the form of compression
after the encryption process. Our aim is that by compressing the ciphertext, we compress the key
“indirectly” and increase the “flatness” of the key used in the compressed ciphertext (C̃) such that the
adversary will not get much additional information from eavesdropping on the compressed ciphertext
(C̃). Instead of performing the encoding after encryption, one may consider performing the encoding
before encryption, i.e., encoding the source and the key “directly” before performing the encryption.
However, since we need to apply two separate encodings on the source and the key, we can expect
that the implementation cost is more expensive than our proposed solution, i.e., approximately double
the cost of applying our proposed solution. Moreover, it is not completely clear whether our security
analysis still applies for this case. For example, if the adversary performs the side-channel attacks
on the key after it is encoded (before encryption), we need a complete remodeling of the security
problem.

1.4. Organization of this Paper

This paper is structured as follows. In Section 2, we show the basic notations and definitions
that we use throughout this paper, and we also describe the formal formulations of our model and
the security problem. In Section 3, we explain the idea and the formulation of our proposed solution.
In Section 4, we explain the relation between our formulation and previous related works. Based on
this, we explain the theoretical challenge which we have to overcome to prove that our proposed
solution is sound. In Section 5, we state our main theorem on the reliability and security of our solution.
In Section 6, we show the proof of our main theorem. We put the proofs of other related propositions,
lemmas, and theorems in the appendix.

2. Problem Formulation

In this section, we will introduce the general notations used throughout this paper and provide
a description of the basic problem we are focusing on, i.e., side-channel attacks on Shannon cipher
systems. We also explain the basic framework of the solution that we consider to solve the problem.
Finally, we state the formulation of the reliability and security problem that we consider and aim to
solve in this paper.

2.1. Preliminaries

In this subsection, we show the basic notations and related consensus used in this paper.

Random Source of Information and Key: Let X be a random variable from a finite set X . Let {Xt}∞
t=1 be

a stationary discrete memoryless source (DMS) such that for each t = 1, 2, . . ., Xt takes values in the
finite set X and obeys the same distribution as that of X denoted by pX = {pX(x)}x∈X . The stationary
DMS {Xt}∞

t=1 is specified with pX . In addition, let K be a random variable taken from the same finite
set X and representing the key used for encryption. Similarly, let {Kt}∞

t=1 be a stationary discrete
memoryless source such that for each t = 1, 2, . . ., Kt takes values in the finite set X and obeys the
same distribution as that of K denoted by pK = {pK(k)}k∈X . The stationary DMS {Kt}∞

t=1 is specified
with pK. In this paper, we assume that pK is the uniform distribution over X .

Random Variables and Sequences: We write the sequence of random variables with length n from the
information source as follows: Xn := X1X2 · · ·Xn. Similarly, strings with length n of X n are written as
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xn := x1x2 · · · xn ∈ X n. For xn ∈ X n, pXn(xn) stands for the probability of the occurrence of xn. When
the information source is memoryless, specified with pX , the following equation holds:

pXn(xn) =
n

∏
t=1

pX(xt).

In this case, we write pXn(xn) as pn
X(xn). Similar notations are used for other random variables

and sequences.

Consensus and Notations: Without loss of generality, throughout this paper, we assume that X is a finite
field. The notation ⊕ is used to denote the field addition operation, while the notation 	 is used to
denote the field subtraction operation, i.e., a	 b = a⊕ (−b), for any elements a, b ∈ X . Throughout
this paper, all logarithms are taken to the natural basis.

2.2. Basic System Description

In this subsection, we explain the basic system setting and the basic adversarial model we consider
in this paper. First, let the information source and the key be generated independently by different
parties Sgen and Kgen, respectively. In our setting, we assume the following:

• The random key Kn is generated by Kgen from a uniform distribution.
• The source is generated by Sgen and is independent of the key.

Next, let the random source Xn from Sgen be sent to the node L, and let the random key Kn from
Kgen also be sent to L. Further settings of our system are described as follows and are also shown in
Figure 2.

1. Source Processing: At the node L, Xn is encrypted with the key Kn using the encryption function
Enc. The ciphertext Cn of Xn is given by

Cn := Enc(Xn) = Xn ⊕ Kn.

2. Transmission: Next, the ciphertext Cn is sent to the information processing center D through
a public communication channel. Meanwhile, the key Kn is sent to D through a private
communication channel.

3. Sink Node Processing: In D, we decrypt the ciphertext Cn using the key Kn through the
corresponding decryption procedure Dec defined by Dec(Cn) = Cn 	 Kn. It is obvious that
we can correctly reproduce the source output Xn from Cn and Kn with the decryption function
Dec.

Figure 2. Main problem: side-channel attacks on a Shannon cipher system.

Side-Channel Attacks by Eavesdropper Adversary: An (eavesdropper) adversary A eavesdrops on the
public communication channel in the system. The adversary A also uses side information obtained
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by side-channel attacks. In this paper, we introduce a new theoretical model of side-channel attacks
that is described as follows. Let Z be a finite set and let W : X → Z be a noisy channel. Let Z be a
channel output from W for the random input variable K. We consider the discrete memoryless channel
specified with W. Let Zn ∈ Zn be a random variable obtained as the channel output by connecting
Kn ∈ X n to the input channel. We write a conditional distribution on Zn given Kn as

Wn = {Wn(zn|kn)}(kn ,zn)∈Kn×Zn .

Since the channel is memoryless, we have

Wn(zn|kn) =
n

∏
t=1

W(zt|kt). (1)

On the above output Zn of Wn for the input Kn, we assume the following:

• The three random variables X, K, and Z satisfy X ⊥ (K, Z), which implies that Xn ⊥ (Kn, Zn).
• W is given in the system and the adversary A cannot control W.
• Through side-channel attacks, the adversary A can access Zn.

We next formulate the side information the adversary A obtains by side-channel attacks. For each
n = 1, 2, · · · , let ϕ

(n)
A : Zn →M(n)

A be an encoder function. Set ϕA := {ϕ
(n)
A }n=1,2,···. Let

R(n)
A :=

1
n

log ||ϕA|| =
1
n

log |M(n)
A |

be a rate of the encoder function ϕ
(n)
A . For RA > 0, we set

F (n)
A (RA) := {ϕ

(n)
A : R(n)

A ≤ RA}.

For the encoded side information the adversary A obtains, we assume the following.

• The adversary A, having accessed Zn, obtains the encoded additional information ϕ
(n)
A (Zn). For

each n = 1, 2, · · · , the adversary A can design ϕ
(n)
A .

• The sequence {R(n)
A }

∞
n=1 must be upper-bounded by a prescribed value. In other words,

the adversary A must use ϕ
(n)
A such that for some RA and for any sufficiently large n, ϕ

(n)
A ∈

F (n)
A (RA).

On the Scope of Our Theoretical Model: When the |Z| is not so large, the adversary A may directly
access Zn. In contrast, in a real situation of side-channel attacks, often the noisy version Zn of Kn can
be regarded as very close to an analog random signal. In this case, |Z| is sufficiently large and the
adversary A cannot obtain Zn in a lossless form. Our theoretical model can address such situations of
side-channel attacks.

2.3. Solution Framework

As the basic solution framework, we consider applying a post-encryption-compression coding
system. The application of this system is illustrated in Figure 3.
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Figure 3. Basic solution framework: post-encryption-compression coding system.

1. Encoding at Source node L: We first use ϕ(n) to encode the ciphertext Cn = Xn ⊕ Kn. The formal
definition of ϕ(n) is ϕ

(n)
i : X n →Xm. Let C̃m = ϕ(n)(Cn). Instead of sending Cn, we send C̃m to

the public communication channel.
2. Decoding at Sink Nodes D: D receives C̃m from the public communication channel. Using the

common key Kn and the decoder function Ψ(n) : Xm × X n → X n, D outputs an estimation
X̂n = Ψ(n)(C̃m, Kn) of Xn.

On Reliability and Security: From the description of our system in the previous section, the decoding
process in our system above is successful if X̂n = Xn holds. Combining this and (6), it is clear that the
decoding error probabilities pe are as follows:

pe =pe(ϕ(n), Ψ(n)|pn
X) := Pr[Ψ(n)(ϕ(n)(Xn)) 6= Xn].

Set M(n)
A = ϕ

(n)
A (Zn). The information leakage ∆(n) on Xn from (C̃m, M(n)

A ) is measured by the

mutual information between Xn and (C̃m, M(n)
A ). This quantity is formally defined by

∆(n) = ∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) := I(Xn; C̃m, M(n)
A ).

Reliable and Secure Framework:

Definition 1. A quantity R is achievable under RA > 0 for the system Sys if there exists a sequence {(ϕ(n),
Ψ(n))}n≥1 such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have

1
n

log |Xm| = m
n

log |X | ≤ R, pe(ϕ(n), Ψ(n)|pn
X) ≤ ε,

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA),

∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ ε.

Definition 2. [Reliable and Secure Rate Region] LetRSys(pX , pK, W) denote the set of all (RA, R) such that
R is achievable under RA. We callRSys(pX , pK, W) the reliable and secure rate region.

Definition 3. A triple (R, E, F) is achievable under RA > 0 for the system Sys if there exists a sequence {(ϕ(n),
ψ(n))}n≥1 such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have

1
n

log |Xm| = m
n

log |X | ≤ R, pe(φ
(n), ψ(n)|pn

X) ≤ e−n(E−ε),
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and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ e−n(F−ε).

Definition 4 (Rate, Reliability, and Security Region). Let DSys(pX, pK, W) denote the set of all
(RA, R, E, F) such that (R, E, F) is achievable under RA. We call DSys(pX, pK, W) the rate, reliability
and security region.

Our aim in this paper is to find the explicit inner bounds ofRSys(pX , pK, W) and DSys(pX , pK, W).

3. Proposed Idea: Affine Encoder as a Privacy Amplifier

In order to instantiate the basic solution framework mentioned in previous section, we propose
the use of an affine encoder as the compression function ϕ(n). We show in this section that we can
easily construct an affine encoder that is suitable for our solution framework based on a linear encoder.
The instantiation of the solution framework with an affine encoder is illustrated in Figure 4.

Construction of the Affine Encoder: For each n = 1, 2, · · · , let φ(n) : X n → Xm be a linear mapping. We

define the mapping φ(n) by
φ(n)(xn) = xn A for xn ∈ X n, (2)

where A is a matrix with n rows and m columns. Entries of A are from X . We fix bm ∈ Xm. Define the
mapping ϕ(n) : X n → Xm by

ϕ(n)(kn) :=φ(n)(kn)⊕ bm = kn A⊕ bm, for kn ∈ X n. (3)

The mapping ϕ(n) is called the affine mapping induced by the linear mapping φ(n) and constant
vector bm ∈ Xm. By the definition of ϕ(n) shown in (3), the following affine structure holds:

ϕ(n)(xn ⊕ kn) = (xn ⊕ kn)A⊕ bm = xn A⊕ (kn A⊕ bm) = φ(n)(xn)⊕ ϕ(n)(kn), for xn, kn ∈ X n. (4)

Next, let ψ(n) be the corresponding decoder for φ(n) such that ψ(n) : Xm → X n. Note that ψ(n)

does not have a linear structure in general.

Figure 4. Our proposed solution: affine encoders as privacy amplifiers.

Description of Proposed Procedure: We describe the procedure of our privacy amplified system as follows.

1. Encoding of Ciphertext: First, we use ϕ(n) to encode the ciphertext Cn = Xn ⊕ Kn. Let C̃m =

ϕ(n)(Cn). Then, instead of sending Cn, we send C̃m to the public communication channel. By the
affine structure of the encoder ϕ(n) (shown in (4)) we have

C̃m = ϕ(n)(Xn ⊕ Kn) = φ(n)(Xn)⊕ ϕ(n)(Kn) = X̃m ⊕ K̃m, (5)
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where we set X̃m := φ(n)(Xn), K̃m := ϕ(n)(Kn).
2. Decoding at Sink Node D: First, using the linear encoder ϕ(n), D encodes the key Kn received

through a private channel into K̃m =(ϕ(n)(Kn). Receiving C̃m from the public communication
channel, D computes X̃m in the following way. From (5), we have that the decoder D can obtain
X̃m = φ(n)(Xn) by subtracting K̃m = ϕ(n)(Kn) from C̃m. Finally, D outputs X̂n by applying the
decoder ψ(n) to X̃m as follows:

X̂n = ψ(n)(X̃m) = ψ(n)(φ(n)(Xn)). (6)

Our concrete privacy-amplified system described above is illustrated in Figure 4.

Splitting of Reliability and Security

By the affine structure of the encoder function ϕ(n), the proposed privacy amplified system can
be split into two coding problems. One is a source coding problem using a linear encoder φ(n). We
hereafter call this Problem 0. The other is a privacy amplification problem using the affine encoder
ϕ(n). We call this Problem 1. These two problems are shown in Figure 5.

Figure 5. Two split problems: Problem 0 (Reliability) and Problem 1 (Security).

On Reliability (Problem 0): From the description of our system in the previous section, the decoding
process in our system above is successful if X̂n = Xn holds. Combining this and (6), it is clear that the
decoding error probability pe is as follows:

pe =pe(ϕ(n), ψ(n)|pn
X) = Pr[ψ(n)(φ(n)(Xn)) 6= Xn].

In Problem 0, we discuss the minimum rate R such that ∃{(φ(n), ψ(n))}n≥1 such that ∀ε > 0,
∃n0 = n0(ε) ∈ N0, ∀n ≥ n0, we have

1
n

log |Xm| = m
n

log |X | ≤ R + ε, pe(φ
(n), ψ(n)|pn

X) ≤ ε.

It is well known that this minimum is equal to H(X) when {φ(n)}n≥ is a sequence of general
(nonlinear) encoders. Csiszár [6] proved the existence of a sequence of linear encoders and
nonlinear decoders {(φ(n), ψ(n))}n≥1 such that for any pX satisfying R > H(X), the error probability
pe(φ(n), ψ(n)|pn

X) decays exponentially as n→ ∞. His result is stated in the next section.
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On Security (Problem 1): We assume that the adversary A knows (A, bn) defining the affine encoder

ϕ(n). When ϕ(n) has the affine structure shown in (4), the information leakage ∆(n) measured by the
mutual information between Xn and (C̃m, M(n)

A ) has the following form:

∆(n) = ∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) = I(Xn; C̃m, M(n)
A ) = I(Xn; ϕ(n)(Xn ⊕ Kn), M(n)

A ),
(a)
= I(Xn; ϕ(n)(Xn)⊕ φ(n)(Kn), M(n)

A ) = I(Xn; X̃m ⊕ K̃m|M(n)
A ). (7)

Step (a) follows from Xn
1 ⊥ M(n)

A . Using (7), we upper bound ∆(n) = I(Xn; C̃m, M(n)
A ) to obtain

the following lemma.

Lemma 1.

∆(n) = I(Xn; C̃m, M(n)
A ) ≤D

(
p

K̃m |M(n)
A

∣∣∣∣∣∣∣∣ pVm

∣∣∣∣ p
M(n)
A

)
, (8)

where pVm represents the uniform distribution over Xm.

Proof. We have the following chain of inequalities:

∆(n) = I(Xn; C̃m, M(n)
A )

(a)
= I(Xn

1 ; X̃m + K̃m|M(n)
A ) ≤ log |Xm| − H(X̃m + K̃m|Xn, M(n)

A )

(b)
= log |Xm| − H(K̃m|Xn, M(n)

A )
(c)
= log |Xm| − H(K̃m|M(n)

A ) = D
(

p
K̃m |M(n)

A

∣∣∣∣∣∣∣∣ pVm

∣∣∣∣ p
M(n)
A

)
.

Step (a) follows from (7). Step (b) follows from X̃m = φ(n)(Xn). Step (c) follows from (K̃m, M(n)
A ) ⊥

Xn
1 .

We set

ξ
(n)
D = ξ

(n)
D (ϕ(n), RA|pn

K, Wn) := max
ϕ
(n)
A ∈F (n)(RA)

D
(

p
K̃m |M(n)

A

∣∣∣∣∣∣∣∣ pVm

∣∣∣∣ p
M(n)
A

)
.

Then we have the following lemma.

Lemma 2. For any affine encoder ϕ(n) : X n → Xm, we have

∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ ξ
(n)
D (ϕ(n), RA|pn

K, Wn).

The quantity ξ
(n)
D (ϕ(n), RA|pn

K, Wn) will play an important role in deriving an explicit upper

bound of ∆(n)(ϕ(n), ϕ
(n)
A |p

n
X, pn

K, Wn). In Problem 1, we consider the privacy amplification problem

using the quantity ξ
(n)
D (ϕ(n), RA|pn

K, Wn) as a security criterion. In this problem, we study an explicit
characterization of the region denoted by RP1(pK, W), which consists of all pairs (R, RA) such that
∃{ϕ(n)}n≥1 such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0,

1
n

log ||ϕ(n)|| = m
n

log |X | ≥ R− ε and ξ
(n)
D (ϕ(n), RA|pn

K, Wn) ≤ ε.

In the next section, we discuss two previous works related to Problem 1.

4. Previous Related Works

In this section, we introduce approaches from previous existing work related to Problem 0
(reliability) and Problem 1 (security). Our goal is that by showing these previous approaches, it will
be easier to understand our approach to analyzing reliability and security. In particular, for Problem
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1 (security), we explain approaches used in similar problems in previous works and highlight their
differences from Problem 1.

We first state a previous result related to Problem 0. Let ϕ(n) be an affine encoder and φ(n) be
a linear encoder induced by ϕ(n). We define a function related to an exponential upper bound of
pe(φ(n), ψ(n)|pn

X). Let X be an arbitrary random variable over X that has a probability distribution pX .
Let P(X ) denote the set of all probability distributions on X . For R ≥ 0 and pX ∈ P(X ), we define
the following function:

E(R|pX) : = min
pX∈P(X )

{[R− H(X)]+ + D(pX ||pX)}.

By simple computation, we can prove that E(R|pX) takes positive values if and only if R > H(X).
We have the following result.

Theorem 1 (Csiszár [6]). There exists a sequence {(φ(n), ψ(n)}n≥1 such that for any pX , we have

1
n

log |Xm| = m
n

log |X | ≤ R, pe(φ
(n), ψ(n)|pn

X) ≤ e−n[E(R|pX)−δn ], (9)

where δn is defined by

δn :=
1
n

log
[
e(n + 1)3|X |

]
.

Note that δn → 0 as n→ ∞.

It follows from Theorem 1 that if R > H(X), then the error probability of decoding
pe(φ(n), ψ(n)|pn

X) decays exponentially, and its exponent is lower bounded by the quantity E(R|pX).
Furthermore, the code {(φ(n), ψ(n))}n≥1 is a universal code that depends only on the rate R and not on
the value of pX ∈ P(X ).

We next state two coding problems related to Problem 1. One is a problem on the privacy
amplification for the bounded storage eavesdropper posed and investigated by Watanabe and
Oohama [10]. The other is the one helper source coding problem posed and investigated by Ashlswede
and Körner [7] and Wyner [16]. We hereafter call the former and latter problems, respectively, Problem
2 and Problem 3. Problems 1–3 are shown in Figure 6. As we can see from this figure, these three
problems are based on the same communication scheme. The classes of encoder functions and the
security criteria on A are different between these three problems. In Problem 1, the sequence of
encoding functions {ϕ(n)}n≥1 is restricted to the class of affine encoders to satisfy the homomorphic
property. On the other hand, in Problems 2 and 3, we have no such restriction on the class of encoder
functions. In descriptions of Problems 2 and 3, we state the difference in security criteria between
Problems 1, 2, and 3. A comparison of three problems in terms of {ϕ(n)}n≥1 and security criteria is
summarized in Table 1.

In Problem 2, Alice and Bob share a random variable Kn of block length n, and an eavesdropper
adversary A has a random variable Zn that is correlated to Kn. In such a situation, Alice and Bob try to
distill a secret key as long as possible. In [10], they considered a situation such that the adversary’s
random variable Zn is stored in a storage that is obtained as a function value of Zn, and the rate of
the storage size is bounded. This situation makes sense when the alphabet size of the adversary’s
observation Zn is too huge to be stored directly in a storage. In such a situation, Watanabe and
Oohama [10] obtained an explicit characterization of the regionRWO(pK, W) indicating the trade-off
between the key rate R = (m/n) log |X | and the rate RA = (1/n) log |M(n)

A of the storage size.
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In Problem 2, the variational distance d(pVm × p
M(n)
A

, p
K̃m M(n)

A
) between pVm × p

M(n)
A

and p
K̃m M(n)

A
) is

used as a security criterion instead of D(p
K̃m |M(n)

A
||pVm |p

M(n)
A
) in Problem 1. Define

ξ
(n)
d = ξ

(n)
d (ϕ(n), RA|pn

K, Wn) := max
ϕ
(n)
A ∈F (n)(RA)

d(pVm × p
M(n)
A

, p
K̃m M(n)

A
).

Then the formal definition of the regionRWO(pK, W) is given by the following:

RWO(pK, W) := {(RA, R) : ∃{ϕ(n)}n≥1 such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0,

(m/n) log |X | ≥ R− ε and ξ
(n)
d (ϕ(n), RA|pn

K, Wn) ≤ ε}.

Figure 6. Three related coding problems.

Table 1. Differences between Problems 1, 2, and 3 in terms of {ϕ(n)}n≥1 and security criteria.

Problem 1 Problem 2 Problem 3

ϕ(n) affine encoders general general

Security Criteria D(p
K̃m |M(n)

A
||pVm |p

M(n)
A
) d(pVm × p

M(n)
A

, p
K̃m M(n)

A
) p(n)c,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K , Wn

)

In Problem 3, the adversary outputs an estimation K̂n of Kn from K̃m = ϕ(n)(Kn) and M(n)
A =

ϕ
(n)
A (Zn). Let ψ

(n)
A : M(n) ×Xm be a decoder function of the adversary. Then K̂n is given by K̂n =

ψ
(n)
A (ϕ

(n)
A (Zn), K̃m = ϕ(n)(Kn). Let

p(n)e,A = p(n)e,A

(
ϕ(n), ϕ

(n)
A ψ

(n)
A

∣∣∣pn
K, Wn

)
:= Pr

{
Kn 6= ψ

(n)
A (ϕ

(n)
A (Zn), ϕ(n)(Kn))

}
be the error probability of decoding for Problem 3. The quantity M(n)

A serves as a helper for the
decoding of Kn from K̃m. In Problem 3, Ahlswede and Körner [7] and Wyner [16] investigated an
explicit characterization of the rate regionRAKW(pK, W) indicating the trade-off between RA and R
under the condition that p(n)e,A = Pr{Kn 6= K̂n} vanishes asymptotically. The region RAKW(pK, W) is
formally defined by

RAKW(pK, W) :=
{
(RA, R) : ∃{(ϕ(n), ϕ

(n)
A , ψ

(n)
A }n≥1 such that

∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0,

(m/n) log |X | ≤ R + ε, ϕ
(n)
A ∈ FA(R + ε),

and p(n)e,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
≤ ε
}

.
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The regionRAKW(pK, W) was determined by Ashlswede and Körner [7] and Wyner [16]. To state
their result, we define several quantities. Let U be an auxiliary random variable taking values in a
finite set U . We assume that the joint distribution of (U, Z, K) is

pUZK(u, z, k) = pU(u)pZ|U(z|u)pK|Z(k|z).

The above condition is equivalent to U ↔ Z ↔ K. Define the set of probability distribution
p = pUZK by

P(pK, W) := {pUZK : |U | ≤ |Z|+ 1, U ↔ Z ↔ K}.

Set

R(p) := {(RA, R) : RA, R ≥ 0, RA ≥ I(Z; U), R ≥ H(K|U)},
R(pK, W) :=

⋃
p∈P(pK ,W)

R(p).

We can show that the regionR(pK, W) satisfies the following property.

Property 1.

(a) The regionR(pK, W) is a closed convex subset of R2
+ := {RA ≥ 0, R ≥ 0}.

(b) For any (pK, W), we have
min

(RA ,R)∈R(pK ,W)
(RA + R) = H(K). (10)

The minimum is attained by (RA, R) = (0, H(K)). This result implies that

R(pK, W) ⊆{(RA, R) : RA + R ≥ H(K)} ∩R2
+.

Furthermore, the point (0, H(K)) always belongs toR(pK, W).

Property 1 part (a) is a well-known property. Proof of Property 1 part (b) is easy. Proofs of Property
1 parts (a) and (b) are omitted. Typical shape of the regionR(pK, W) is shown in Figure 7.

Figure 7. Shape of the regionR(pK , W).

The rate region RAKW(pK, W) was determined by Ahlswede and Körner [7] and Wyner [16].
Their result is the following.

Theorem 2 (Ahlswede, Körner [7] and Wyner [16]).

RAKW(pK, W) = R(pK, W).
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Watanabe and Oohama [10] investigated an explicit form ofRWO(pK, W) to show that it is equal
toRc(pK, W), that is, we have the following result.

Theorem 3 (Watanabe and Oohama [10]).

RWO(pK, W) = Rc
AKW(pK, W) = Rc(pK, W).

In the remaining part of this section, we investigate a relationship between Problems 2 and 3 to
give an outline of the proof of this theorem. Let

p(n)c,A = p(n)c,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
:= Pr

{
Kn = ψ

(n)
A (ϕ

(n)
A (Zn), ϕ(n)(Kn))

}
be the correct probability of decoding for Problem 3. The following lemma provides an important
inequality to examine a relationship between these two problems.

Lemma 3. For any (ϕ(n), ϕ
(n)
A , ψ

(n)
A ), we have the following:

p(n)c,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
≤ 1
|X |m + d

(
pVm × p

M(n)
A

, p
K̃m M(n)

A

)
.

Proof of this lemma is given in Appendix A. Using Lemma 3, we can easily prove the inclusion
RWO(pK, W) ⊆ RAKW(pK, W), which corresponds to the converse part of Theorem 3.

Proof ofRWO(pK, W) ⊆ Rc
AKW(pK, W): We assume that (RA, R) ∈ RAKW(pK, W). Then there exists

{(ϕ(n), ϕ
(n)
A , ψ

(n)
A }n≥1 such that ∀ε > 0, ∃n0 = n0(ε) ∈ N0, ∀n ≥ n0,

m
n

log |X | ≤ R + ε, ϕ
(n)
A ∈ F

(n)
A (R + ε), (11)

and p(n)e,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
≤ ε. (12)

From the above sequence {(ϕ(n), ϕ
(n)
A , ψ

(n)
A )}n≥1, we can construct the sequence

{(ϕ̂(n), ϕ
(n)
A , ψ

(n)
A }n≥1 such that

R + ε ≥ 1
n

log ||ϕ̂(n)|| = m̂
n

log |X | ≥ max
{

R− ε,
m
n

log |X |
}

, ϕ
(n)
A ∈ F

(n)
A (R + ε), (13)

p(n)e,A

(
ϕ̂(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
≤ p(n)e,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
≤ ε. (14)

Set K̃m̂ := ϕ̂(n)(Kn). Then from (14) and Lemma 3, we have

d
(

pVm̂ × p
M(n)
A

, p
K̃m̂ M(n)

A

)
≥ 1− ε− 1

|X |m̂ ,

from which we have

d
(

pVm̂ × p
M(n)
A

, p
K̃m̂ M(n)

A

)
≥ 1− 2ε, (15)

for sufficiently large n. From (13), (15), and the definition ofRWO(pK, W), we can see that (RA+ ε, R) /∈
RWO(pK, W), or equivalent to

(RA + ε, R) ∈ Rc
WO(pK, W)⇔ (RA, R) ∈ Rc

WO(pK, W)− ε(1, 0), (16)
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where we set R− (a, b) := {(u, v) : (u + a, v + b) ∈ R}. Since (RA, R) ∈ RAKW(pK, W) is arbitrary,
we have that

RAKW(pK, W) ⊆ Rc
WO(pK, W)− ε(1, 0)⇔ RAKW(pK, W) + ε(1, 0) ⊆ Rc

WO(pK, W)

⇔ RWO(pK, W) ⊆ Rc
AKW(pK, W) + ε(1, 0)⇔ RWO(pK, W) ⊆ Rc(pK, W) + ε(1, 0). (17)

By letting ε → 0 in (17) and considering that Rc(pK, W) is an open set, we have that
RWO(pK, W) ⊆ Rc(pK, W).

To prove RWO(pK, W) ⊇ Rc
AKW, we examine an upper bound of ξ

(n)
d (ϕ(n), RA|pn

K, Wn). For
η > 0, we define

℘
(n)
η = ℘

(n)
η (R|pn

K, Wn) := p
M(n)
A ZnKn

{
R ≥ 1

n
log

1

p
Kn |M(n)

A
(Kn|M(n)

A )
− η

}
,

Φ(n)
d,η (RA, R|pn

KWn) := max
ϕ
(n)
A ∈F (n)(RA)

{
℘
(n)
η (R|pn

K, Wn) +
√

e−nη
}

.

According to Watanabe and Oohama [10], we have the following two propositions.

Proposition 1 (Watanabe and Oohama [10]). Fix any positive η > 0. ∃ϕ(n) : X n → Xm satisfying
(m/n) log |X | ≥ R− 2η, we have

ξ
(n)
d (ϕ(n), RA|pn

K, Wn) ≤ Φ(n)
d,η (RA, R|pn

KWn).

Proposition 2 (Watanabe and Oohama [10]). If (RA, R) /∈ R(pK, W), then for any η > 0 and any
ϕ
(n)
A ∈ F

(n)
A (RA), we have

lim
n→∞

℘
(n)
η (R|pn

K, W) = 0,

which implies that
lim

n→∞
Φ(n)

d,η (RA, R|pn
KWn) = 0.

The inclusionRWO(pK, W) ⊇ Rc
AKW immediately follows from Propositions 1 and 2.

5. Reliability and Security Analysis

In this section, we state our main results. We use the affine encoder ϕ(n) defined in the previous
section. We upper bound pe = pe(ϕ(n), ψ(n)|pn

X) and ∆(n) = ∆(n)(ϕ(n), ϕ
(n)
A |p

n
X, pn

K, Wn) to obtain
inner bounds ofRSys(pX , pK, W) and DSys(pX , pK, W).

Let

Φ(n)
D,η(RA, R|pn

KWn) := max
ϕ
(n)
A ∈F (n)(RA)

{
nR℘(n)

η (R|pn
K, Wn) + e−nη

}
,

Φ(n)
D (RA, R|pn

KWn) := inf
η>0

ΦD,η(RA, R|pn
KWn).

Then we have the following proposition.



Entropy 2019, 21, 469 16 of 33

Proposition 3. For any RA, R > 0 and any (pK, W), there exists a sequence of mappings {(ϕ(n), ψ(n))}∞
n=1

such that for any pX ∈ P(X ), we have

R− 1
n
≤ 1

n
log |Xm| = m

n
log |X | ≤ R,

pe(φ
(n), ψ(n)|pn

X) ≤ e(n + 1)2|X |{(n + 1)|X | + 1}e−nE(R|pX), (18)

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ {(n + 1)|X | + 1}Φ(n)
D (RA, R|pn

KWn). (19)

This proposition can be proved by several tools developed by previous works. The detail of
the proof is given in the next section. As we stated in Proposition 2, Watanabe and Oohama [10]
proved that if (RA, R) /∈ R(pK, W), then the quantity for any η > 0 and any ϕ

(n)
A ∈ F (n)

A (RA), the

quantity ℘
(n)
η (R|pn

K, W). Their method can not be applied to the analysis of Φ(n)
D (RA, R|pn

KWn) since

the quantity nR is multiplied with the quantity ℘
(n)
η (R|pn

K, W) in the definition of Φ(n)
D (RA, R|pn

KWn).

In this paper, we derive an upper bound of Φ(n)
D (RA, R|pn

KWn) that decays exponentially as n→ ∞ if
(RA, R) /∈ R(pK, W). To derive the upper bound, we use a new method that is developed by Oohama
to prove strong converse theorems in multi-terminal source or channel networks [9,17–20].

We define several functions and sets to describe the upper bound of Φ(n)
D (RA, R|pn

KWn). Set

Q(pK|Z) :={q = qUZK : |U | ≤ |Z|, U ↔ Z ↔ K, pK|Z = qK|Z}.

For (µ, α) ∈ [0, 1]2 and for q = qUZK ∈ Q(pK|Z), define

ω
(µ,α)
q|pZ

(z, k|u) := ᾱ log
qZ(z)
pZ(z)

+ α

[
µ log

qZ|U(z|u)
pZ(z)

+µ̄ log
1

qK|U(k|u)

]
,

Ω(µ,α)(q|pZ) := − log Eq

[
exp

{
−ω

(µ,α)
q|pZ

(Z, K|U)
}]

, Ω(µ,α)(pK, W) := min
q∈Q(pK|Z)

Ω(µ,α)(q|pZ),

F(µ,α)(µRA + µ̄R|pK, W) :=
Ω(µ,α)(pK, W)− α(µRA + µ̄R)

2 + αµ̄
,

F(RA, R|pK, W) := sup
(µ,α)∈[0,1]2

F(µ,α)(µRA + µ̄R|pK, W).

We next define a function serving as a lower bound of F(RA, R|pK, W). For each pUZK ∈
Psh(pK, W), define

ω̃
(µ)
p (z, k|u) := µ log

pZ|U(z|u)
pZ(z)

+ µ̄ log
1

pK|U(K|U)
,

Ω̃(µ,λ)(p) := − log Ep

[
exp

{
−λω̃

(µ)
p (Z, K|U)

}]
, Ω̃(µ,λ)(pK, W) := min

p∈Psh(pK ,W)
Ω̃(µ,λ)(p).

Furthermore, set

F̃(µ,λ)(µRA + µ̄R|pK, W) :=
Ω̃(µ,λ)(pK, W)− λ(µRA + R)

2 + λ(5− µ)
,

F̃(RA, R|pK, W) := sup
λ≥0,

µ∈[0,1]

F̃(µ,λ)(µRA + µ̄R|pK, W).

We can show that the above functions satisfy the following property.
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Property 2.

(a) The cardinality bound |U | ≤ |Z| in Q(pK|Z) is sufficient to describe the quantity Ω(µ,β,α)(pK, W).
Furthermore, the cardinality bound |U | ≤ |Z| in Psh(pK, W) is sufficient to describe the quantity
Ω̃(µ,λ)(pK, W).

(b) For any RA, R ≥ 0, we have

F(RA, R|pK, W) ≥ F̃(RA, R|pK, W).

(c) For any p = pUZK ∈ Psh(pZ, W) and any (µ, λ) ∈ [0, 1]2, we have

0 ≤ Ω̃(µ,λ)(p) ≤ µ log |Z|+ µ̄ log |K|. (20)

(d) Fix any p = pUZK ∈ Psh(pK, W) and µ ∈ [0, 1]. For λ ∈ [0, 1], we define a probability distribution
p(λ) = p(λ)UZK by

p(λ)(u, z, k) :=
p(u, z, k) exp

{
−λω̃

(µ)
p (z, k|u)

}
Ep

[
exp

{
−λω̃

(µ)
p (Z, K|U)

}] .

Then for λ ∈ [0, 1/2], Ω̃(µ,λ)(p) is twice differentiable. Furthermore, for λ ∈ [0, 1/2], we have

d
dλ

Ω̃(µ,λ)(p) = Ep(λ)

[
ω̃
(µ)
p (Z, K|U)

]
,

d2

dλ2 Ω̃(µ,λ)(p) = −Varp(λ)

[
ω̃
(µ)
p (Z, K|U)

]
.

The second equality implies that Ω̃(µ,λ)(p|pK, W) is a concave function of λ ≥ 0.
(e) For (µ, λ) ∈ [0, 1]× [0, 1/2], define

ρ(µ,λ)(pK, W) := max
(ν,p)∈[0,λ]×Psh(pK ,W):
Ω̃(µ,λ)(p)=Ω̃(µ,λ)(pK ,W)

Varp(ν)

[
ω̃
(µ)
p (Z, K|U)

]
,

and set

ρ = ρ(pK, W) := max
(µ,λ)∈[0,1]×[0,1/2]

ρ(µ,λ)(pK, W).

Then we have ρ(pK, W) < ∞. Furthermore, for any (µ, λ) ∈ [0, 1]× [0, 1/2], we have

Ω̃(µ,λ)(pK, W) ≥ λR(µ)(pK, W)− λ2

2
ρ(pK, W).

(f) For every τ ∈ (0, (1/2)ρ(pK, W)), the condition (RA, R + τ) /∈ R(pK, W) implies

F̃(RA, R|pK, W) > ρ(pK ,W)
4 · g2

(
τ

ρ(pK ,W)

)
> 0,

where g is the inverse function of ϑ(a) := a + (5/4)a2, a ≥ 0.

Proof of this property is found in Oohama [9] (extended version). On the upper bound of
Φ(n)

D (RA, R|pn
KWn), we have the following:

Proposition 4. For any n ≥ 1/R, we have

Φ(n)
D (RA, R|pn

KWn) ≤ 5nRe−nF(RA ,R|pK ,W). (21)
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Proof of this proposition is given in the next section. Proposition 4 has a close connection with
the one helper source coding problem, which is explained as Problem 3 in the previous section. In
fact, for the proof we use the result Oohama [9] obtained for an explicit lower bound of the optimal

exponent on the exponential decay of p(n)c,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
for (RA, R) /∈ RAKW(pK, W). By

Propositions 3 and 4, we obtain our main result shown below.

Theorem 4. For any RA, R > 0 and any (pK, W), there exists a sequence of mappings {(ϕ(n), ψ(n))}∞
n=1

such that for any pX ∈ P(X ), we have

1
n
− R ≤ 1

n
log |Xm| = m

n
log |X | ≤ R,

pe(φ
(n), ψ(n)|pn

X) ≤ e−n[E(R|pX)−δ1,n ] (22)

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ e−n[F(RA ,R|pK ,W)−δ2,n ], (23)

where δi,n, i = 1, 2 are defined by

δ1,n :=
1
n

log
[
e(n + 1)2|X |{(n + 1)|X | + 1}

]
,

δ2,n :=
1
n

log
[
5nR{(n + 1)|X | + 1}

]
.

Note that for i = 1, 2, δi,n → 0 as n→ ∞.

The functions E(R|pX) and F(RA, R|pK, W) take positive values if and only if (RA, R) belongs to
the set

{R > H(X)} ∩Rc(pK, W) := R(in)
Sys (pX , pK, W).

Thus, by Theorem 4, under (RA, R) ∈ R(in)
Sys (pX , pK, W), we have the following::

• In terms of reliability, pe(φ(n), ψ(n)|pn
X) goes to zero exponentially as n tends to infinity, and its

exponent is lower bounded by the function E(R|pX).

• In terms of security, for any ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), the information leakage ∆(n)(ϕ(n), ϕ

(n)
A

|pn
X, pn

K, Wn) on Xn goes to zero exponentially as n tends to infinity, and its exponent is lower
bounded by the function F(RA, R|pK, W).

• The code that attains the exponent functions E( R|pX) is the universal code that depends only on
R and not on the value of the distribution pX .

Define

D(in)
Sys (pX , pK, W) := {(R1, R2, E(R|pX), F(RA, R|pK)) : (R1, R2) ∈ R

(in)
Sys (pX , pK, W)}.

From Theorem 4, we immediately obtain the following corollary.

Corollary 1.

R(in)
Sys (pX , pK, W) ⊆ RSys(pX , pK, W),D(in)

Sys (pX , pK, W) ⊆ DSys(pX , pK, W).

A typical shape of {R > H(X)} ∩Rc(pK, W) is shown in Figure 8.
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Figure 8. The inner boundR(in)
Sys (pX , pK , W) of the reliable and secure rate regionRSys(pX , pK W).

6. Proofs of the Results

In this section, we prove our main theorem, i.e., Theorem 4.

6.1. Types of Sequences and Their Properties

In this subsection, we present basic results on the types. These results are basic tools for our
analysis of several bounds related to the error provability of decoding or security.

Definition 5. For any n-sequence xn = x1x2 · · · xn ∈ X n, n(x|xn) denotes the number of t such
that xt = x. The relative frequency {n(x|xn)/n}x∈X of the components of xn is called the type
of xn denoted by Pxn . The set that consists of all the types on X is denoted by Pn(X ). Let X
denote an arbitrary random variable whose distribution PX belongs to Pn(X ). For pX ∈ Pn(X ), set
Tn

X
:=
{

xn : Pxn = pX
}

.

For sets of types and joint types, the following lemma holds. For details of the proof, see Csiszár
and Körner [21].

Lemma 4.

(a) |Pn(X )| ≤ (n + 1)|X |.
(b) For PX ∈ Pn(X ),

(n + 1)−|X |enH(X) ≤ |Tn
X | ≤ enH(X).

(c) For xn ∈ Tn
X

,

pn
X(xn) = e−n[H(X)+D(pX ||pX)].

By Lemma 4 parts (b) and (c), we immediately obtain the following lemma:

Lemma 5. For pX ∈ Pn(X ),

pn
X(T

n
X) ≤ e−nD(pX ||pX).

6.2. Upper Bounds of p e(φ(n), ψ(n)|pn
X), and ∆n(ϕ(n), ϕ

(n)
A |p

n
X , pn

K, Wn)

In this subsection, we evaluate upper bounds of pe( φ(n), ψ(n)|pn
X) and ∆n(ϕ(n), ϕ

(n)
A |p

n
X , pn

K, Wn).
For pe(φ(n) , ψ(n)|pn

X), we derive an upper bound that can be characterized with a quantity depending
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on (φ(n), ψ(n)) and type Pxn of sequences xn ∈ X n. We first evaluate pe(φ(n), ψ(n)|pn
X). For xn ∈ X n

and pX ∈ Pn(X ), we define the following functions:

Ξxn(φ(n), ψ(n)) :=

{
1 if ψ(n)(φ(n)(xn)

)
6= xn,

0 otherwise,

ΞX(φ
(n), ψ(n)) :=

1
|Tn

X
| ∑

xn∈Tn
X

Ξxn(φ(n), ψ(n)).

Then we have the following lemma.

Lemma 6. In the proposed system, for any pair of (φ(n), ψ(n)), we have

pe(φ
(n), ψ(n)|pn

X) ≤ ∑
pX∈Pn(X )

ΞX(φ
(n), ψ(n))e−nD(pX ||pX). (24)

Proof. We have the following chain of inequalities:

pe(φ
(n), ψ(n)|pn

X)
(a)
= ∑

pX∈Pn(X )
∑

xn∈Tn
X

Ξxn(φ(n), ψ(n))pn
X(xn)

= ∑
pX∈Pn(X )

1
|Tn

X
| ∑

xn∈Tn
X

Ξxn(φ(n), ψ(n))|Tn
X |p

n
X(xn)

(b)
= ∑

pX∈Pn(X )

1
|Tn

X
| ∑

xn∈Tn
X

Ξxn(φ(n), ψ(n))pn
X(T

n
X)

(c)
= ∑

pX∈Pn(X )

ΞX(φ
(n), ψ(n))pn

X(T
n
X)

(d)
≤ ∑

pX∈Pn(X )

ΞX(φ
(n), ψ(n))e−nD(pX ||pX).

Step (a) follows from the definition of Ξxn(φ(n), ψ(n)). Step (b) follows from the probabilities
pn

X(xn) for xn ∈ Tn
X

taking an identical value. Step (c) follows from the definition of ΞX(φ
(n), ψ(n)).

Step (d) follows from Lemma 5.

6.3. Random Coding Arguments

We construct a pair of affine encoders ϕ(n) = (ϕ
(n)
1 , ϕ

(n)
e ) using the random coding method.

For the joint decoder ψ(n), we propose the minimum entropy decoder used in Csiszár [6] and Oohama
and Han [22].

Random Construction of Affine Encoders: We first choose m such that

m :=
⌊

nR
log |X |

⌋
,

where bac stands for the integer part of a. It is obvious that

R− 1
n
≤ m

n
log |X | ≤ R.

By definition (2) of φ(n), we have that for xn ∈ X n,

φ(n)(xn) = xn A,
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where A is a matrix with n rows and m columns. By definition (3) of ϕ(n), we have that for kn ∈ X n,

ϕ(n)(kn) = kn A + bm,

where bm is a vector with m columns. Entries of A and bm are from the field of X . These
entries are selected at random, independently of each other, and with a uniform distribution.
Randomly constructed linear encoder φ(n) and affine encoder ϕ(n) have three properties shown
in the following lemma.

Lemma 7 (Properties of Linear/Affine Encoders).

(a) For any xn, vn ∈ X n with xn 6= vn, we have

Pr[φ(n)(xn) = φ(n)(vn)] = Pr[(xn 	 vn)A = 0m] = |X |−m. (25)

(b) For any sn ∈ X n and for any s̃m ∈ Xm, we have

Pr[ϕ(n)(sn) = s̃m] = Pr[sn A⊕ bm = s̃m] = |X |−m. (26)

(c) For any sn, tn ∈ X n with sn 6= tn, and for any s̃m ∈ Xm, we have

Pr[ϕ(n)(sn) = ϕ(n)(tn) = s̃m] = Pr[sn A⊕ bm = tn A⊕ bm = s̃m] = |X |−2m. (27)

Proof of this lemma is given in Appendix B. We next define the decoder function ψ(n) : Xm → X n.
To this end, we define the following quantities.

Definition 6. For xn ∈ X n, we denote the entropy calculated from the type Pxn by H(xn). In other
words, for a type PX ∈ Pn(X ) such that PX = Pxn , we define H(xn) = H(X).

Minimum Entropy Decoder: For φ(n)(xn) = x̃m, we define the decoder function ψ(n) : Xm → X n as
follows:

ψ(n)(x̃m) :=



x̂n if φ(n)(x̂n) = x̃m,
and H(x̂n) < H(x̌n)

for all x̌n such that
φ(n)(x̌n) = x̃m,
and x̌n 6= x̂n,

arbitrary if there is no such x̂n ∈ X n.

Error Probability Bound: In the following arguments, we let expectations based on the random choice

of the affine encoder ϕ(n) be denoted by E[·]. Define

ΛX(R) := e−n[R−H(X)]+ .

Then we have the following lemma.

Lemma 8. For any n and for any PX ∈ Pn(X ),

E
[
ΞX(φ

(n), ψ(n))
]
≤ e(n + 1)|X |ΛX(R).

Proof of this lemma is given in Appendix C.
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Estimation of Approximation Error: Define

Θ(R, ϕ
(n)
A |pKn , Wn) := ∑

(a,kn)∈M(n)
A ×X n

p
M(n)
A Kn(a, kn) log

[
1 + (enR − 1)p

Kn |M(n)
A
(kn|a)

]
.

Then we have the following lemma.

Lemma 9. For any n, m satisfying (m/n) log |X | ≤ R, we have

E
[

D
(

p
K̃m |M(n)

A

∣∣∣∣∣∣∣∣ pVm

∣∣∣∣ p
M(n)
A

)]
≤ Θ(R, ϕ

(n)
A |pKn , Wn). (28)

Proof of this lemma is given in Appendix D. From the bound (28) in Lemma (9), we know that
the quantity Θ(R, ϕ

(n)
A |pKn , Wn) serves as an upper bound of the ensemble average of the conditional

divergence D(p
K̃m |M(n)

A
||pVm |p

M(n)
A
). Hayashi [23] obtained the same upper bound of the ensemble

average of the conditional divergence for an ensemble of universal2 functions. In this paper, we prove
the bound (28) for an ensemble of affine encoders. To derive this bound, we need to use Lemma 7 parts
(b) and (c), the two important properties that a class of random affine encoders satisfies. From Lemmas
1 and 9, we have the following corollary.

Corollary 2.

E
[
∆n(ϕ(n), ϕ

(n)
A |p

n
X , pn

K, Wn)
]
≤ Θ(R, ϕ

(n)
A |p

n
K, Wn).

Existence of Good Universal Code (ϕ(n), ψ(n)):
From Lemma 8 and Corollary 2, we have the following lemma stating the existence of a good

universal code (ϕ(n), ψ(n)).

Lemma 10. There exists at least one deterministic code (ϕ(n), ψ(n)) satisfying (m/n) log |X | ≤ R, such that
for any pX ∈ Pn(X ),

ΞX(φ
(n), ψ(n)) ≤ e(n + 1)|X |{(n + 1)|X | + 1}ΛX(R).

Furthermore, for any ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆n(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ {(n + 1)|X | + 1}Θ(R, ϕ
(n)
A |p

n
K, Wn).

Proof. We have the following chain of inequalities:

E

 ∑
pX∈Pn(X )

ΞX(φ
(n), ψ(n))

e(n + 1)|X |ΛX(R)
+

∆n(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn)

Θ(R, ϕ
(n)
A |pn

K, Wn)


= ∑

pX∈Pn(X )

E
[
ΞX(φ

(n), ψ(n))
]

e(n + 1)|X |ΛX(R)
+

E
[
∆n(ϕ(n), ϕ

(n)
A |p

n
X , pn

K, Wn)
]

Θ(R, ϕ
(n)
A |pn

K, Wn)

(a)
≤ ∑

pX∈Pn(X )

1 + 1 = |Pn(X )|+ 1
(b)
≤ (n + 1)|X | + 1.
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Step (a) follows from Lemma 8 and Corollary 2. Step (b) follows from Lemma 4 part (a). Hence,
there exists at least one deterministic code (ϕ(n), ψ(n)) such that

∑
pX∈Pn(X )

ΞX(φ
(n), ψ(n))

e(n + 1)|X |ΛX(R)
+

∆n(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn)

Θ(R, ϕ
(n)
A |pn

K, Wn)
≤ (n + 1)|X | + 1,

from which we have that

ΞX(φ
(n), ψ(n))

e(n + 1)|X |ΛX(R)
≤ (n + 1)|X | + 1,

for any pX ∈ Pn(X ). Furthermore, we have that for any ϕ
(n)
A ∈ F

(n)
A (RA),

∆n(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn)

Θ(R, ϕ
(n)
A |pn

K, Wn)
≤ (n + 1)|X | + 1,

completing the proof.

Proposition 5. For any RA, R > 0 and any (pK, W), there exists a sequence of mappings {(ϕ(n), ψ(n))}∞
n=1

such that for any pX ∈ P(X ), we have

R− 1
n
≤ 1

n
log |Xm| = m

n
log |X | ≤ R,

pe(φ
(n), ψ(n)|pn

X) ≤ e(n + 1)2|X |{(n + 1)|X | + 1}e−n[E(R|pX)] (29)

and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

∆(n)(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ {(n + 1)|X | + 1}Θ(R, ϕ
(n)
A |p

n
K, Wn). (30)

Proof. By Lemma 10, there exists (ϕ(n), ψ(n)) satisfying (m/n) log |X | ≤ R such that for any pX
∈ Pn(X ),

ΞX(φ
(n), ψ(n)) ≤ e(n + 1)|X |{(n + 1)|X | + 1}ΛX(R). (31)

Furthermore, for any ϕ
(n)
A ∈ F

(n)
A (RA),

∆n(ϕ(n), ϕ
(n)
A |p

n
X , pn

K, Wn) ≤ {(n + 1)|X | + 1}Θ(R, ϕ
(n)
A |p

n
K, Wn). (32)

The bound (30) in Proposition 5 has already been proven in (32). Hence, it suffices to prove the
bound (29) in Proposition 5 to complete the proof. On an upper bound of pe(φ(n), ψ(n)|pn

X), we have
the following chain of inequalities:

pe(φ
(n), ψ(n)|pn

X)
(a)
≤ e(n + 1)|X |{(n + 1)|X | + 1} ∑

pX∈Pn(X )

ΛX(R)e−nD(pX ||pX)

≤ e(n + 1)|X |{(n + 1)|X | + 1}|Pn(X )|e−n[E(R|pX)]
(c)
≤ e(n + 1)2|X |{(n + 1)|X | + 1}e−nE(R|pX).

Step (a) follows from Lemma 6 and (31). Step (b) follows from Lemma 4 part (a).
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6.4. Explicit Upper Bound of Θ(R1, R2, ϕ
(n)
A |p

n
ZK1K2

)

In this subsection, we derive an explicit upper bound of Θ(R, ϕ
(n)
A |p

n
K, Wn) that holds for any

eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA). Here we recall the following definitions:

℘
(n)
η = ℘

(n)
η (R|pn

K, Wn) := p
M(n)
A ZnKn

{
R ≥ 1

n
log

1

p
Kn |M(n)

A
(Kn|M(n)

A )
− η

 ,

Φ(n)
D,η(RA, R|pn

KWn) := max
ϕ
(n)
A ∈F (n)(RA)

{
nR℘(n)

η (R|pn
K, Wn) + e−nη

}
,

Φ(n)
D (RA, R|pn

KWn) := inf
η>0

Φ(n)
D,η(RA, R|pn

KWn).

Then we have the following lemma.

Lemma 11. For any η > 0 and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F

(n)
A (RA), we have

Θ(R, ϕ
(n)
A |p

n
K, Wn) ≤ Φ(n)

D,η(RA, R|pn
KWn), (33)

which implies that

Θ(R, ϕ
(n)
A |p

n
K, Wn) ≤ Φ(n)

D (RA, R|pn
KWn). (34)

Proof. We first observe that

Θ(R, ϕ
(n)
A |p

n
K, Wn) = E

[
log
{

1 + (enR − 1)p
Kn |M(n)

A
(Kn|M(n)

A )

}]
. (35)

We further observe the following:

R <
1
n

log
1

p
Kn |M(n)

A
(Kn|M(n)

A )
− η ⇔ enR p

Kn |M(n)
A
(Kn|M(n)

A ) < e−nη

⇒ log
{

1 + enR p
Kn |M(n)

A
(Kn|M(n)

A )

}
≤ log

(
1 + e−nη

)
(a)⇒ log

{
1 + enR p

Kn |M(n)
A
(Kn|M(n)

A )

}
≤ e−nη

⇒ log
{

1 + (enR − 1)p
Kn |M(n)

A
(Kn|M(n)

A )

}
≤ e−nη . (36)

Step (a) follows from log(1 + a) ≤ a. We also note that

log
{

1 + (enR − 1)p
Kn |M(n)

A
(Kn|M(n)

A )

}
≤ log[enR] = nR. (37)

From (35), (36), and (37) we have the bound (33) in Lemma 11.

Proof of Proposition 3: This proposition immediately follows from Proposition 5 and Lemma 11.

For the upper bound of ℘(n)
η , we have the following lemma.
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Lemma 12. For any η > 0 and for any eavesdropper A with ϕA satisfying ϕ
(n)
A ∈ F (n)

A (RA), we have

℘
(n)
η ≤ ℘̃

(n)
η + 3e−nη , where

℘̃
(n)
η := p

M(n)
A ZnKn

{

0 ≥ 1
n

log
q̂

M(n)
A ZnKn(M(n)

A , Zn, Kn)

p
M(n)
A ZnKn(M(n)

A , Zn, Kn)
− η, (38)

0 ≥ 1
n

log
qZn(Zn)

pZn(Zn)
− η, (39)

RA ≥
1
n

log
p

Zn |M(n)
A
(Zn|M(n)

A )

pZn(Zn)
− η,

R ≥ 1
n

log
1

p
Kn |M(n)

A
(Kn|M(n)

A )
− η

}
. (40)

The probability distributions appearing in the two inequalities (38) and (39) in the right members of (40)
have a property that we can select them arbitrarily. In (38), we can choose any probability distribution q̂

M(n)
A ZnKn

onM(n)
A ×Z

n×X n. In (39), we can choose any distribution qZn on Zn.

Proof of this lemma is given in Appendix E.

Proof of Proposition 4: The claim of Proposition 4 is that for n ≥ 1/R,

Φ(n)
D (RA, R|pn

KWn) ≤ 5nRe−nF(RA ,R|pK ,W). (41)

By Lemma 12 and the definition of Φ(n)
D,η(RA, R|pn

KWn), we have that for n ≥ 1/R,

Φ(n)
D,η(RA, R|pn

KWn) ≤ nR(℘̃(n)
η + 4e−nη). (42)

The quantity ℘̃
(n)
η + 4e−nη is the same as the upper bound on the correct probability of decoding for

one helper source coding problem in Lemma 1 in Oohama [9] (extended version). In a manner similar
to the derivation of the exponential upper bound of the correct probability of decoding for one helper
source coding problem, we can prove that for any ϕ

(n)
A ∈ F

(n)
A (RA) and for some η∗ = η∗(n, RA, R),

we have

℘̃
(n)
η∗ + 4e−nη∗ ≤ 5e−nF(RA ,R|pK ,W). (43)

From (42), (43), and the definition of Φ(n)
D (RA, R|pn

KWn), we have (41).

7. Conclusions

In this paper, we have proposed a novel security model for analyzing the security of Shannon
cipher systems against an adversary that is not only eavesdropping the public communication channel
to obtain ciphertexts but is also obtaining some physical information leaked by the device implementing
the cipher system through side-channel attacks. We have also presented a countermeasure against
such an adversary in the case of one-time pad encryption by using an affine encoder with certain
properties. The main distinguishing feature of our countermeasure is that it is independent of the
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characteristics or the types of physical information leaked from the devices on which the cipher system
is implemented.
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Appendix A. Correct Probability of Decoding and Variational Distance

In this appendix, we prove Lemma 3.
For a ∈ M(n)

A , we set

D(a) =
{

k̃m : k̃m = ϕ(n)(kn) and ψ
(n)
A (k̃m, a) = kn for some kn ∈ X n

}
.

Then we have the following chain of inequalities:

d
(

pVm × p
M(n)
A

, p
K̃m M(n)

A

)
= ∑

a∈M(n)
A

p
M(n)
A
(a) ∑

k̃m∈Xm

∣∣∣∣pK̃m |M(n)
A
(k̃m|a)− 1

|X |m

∣∣∣∣
≥ ∑

a∈M(n)
A

p
M(n)
A
(a)
{

p
K̃m |M(n)

A
(D(a)|a)− |D(a)|

|X |m

}
= ∑

a∈M(n)
A

p
M(n)
A
(a)
{

p
K̃m |M(n)

A
(D(a)|a)− 1

|X |m

}

= p(n)c,A

(
ϕ(n), ϕ

(n)
A , ψ

(n)
A

∣∣∣pn
K, Wn

)
− 1
|X |m ,

completing the proof.

Appendix B. Proof of Lemma 7

Let am
l be the l-th low vector of the matrix A. For each l = 1, 2, · · · , n, let Am

l ∈ X
m be a random

vector that represents the randomness of the choice of am
l ∈ X

m. Let Bm ∈ Xm be a random vector that
represents the randomness of the choice of bm ∈ Xm. We first prove part (a). Without loss of generality,
we may assume x1 6= v1. Under this assumption, we have the following:

(xn 	 vn)A = 0m ⇔
n

∑
l=1

(xl 	 vl)am
l = 0m ⇔ am

1 =
n

∑
l=2

vl 	 xl
x1 	 v1

am
l . (A1)

Computing Pr[φ(xn) = φ(vn)], we have the following chain of equalities:

Pr[φ(xn) = φ(vn)] = Pr[(yn 	 wn)A = 0m]
(a)
= Pr

[
am

1 =
n

∑
l=2

wl 	 yl
x1 	 v1

am
l

]
(b)
= ∑
{am

l }
n
l=2

∈X (n−1)m

n

∏
l=2

PAm
l
(am

l )PAm
1

(
n

∑
l=2

wl 	 xl
y1 	 v1

am
l

)
= |X |−m ∑

{am
l }

n
l=2

∈X (n−1)m

n

∏
l=2

PAm
l
(am

l ) = |X |
−m.
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Step (a) follows from (A1). Step (b) follows from that n random vectors Am
l , l = 1, 2, · · · , n are

independent. We next prove part b. We have the following:

sn A⊕ bm = s̃m ⇔ bm = s̃m 	
{

n

∑
l=1

slam
l

}
. (A2)

Computing Pr[sn A⊕ bm = s̃m], we have the following chain of equalities:

Pr[sn A⊕ bm = s̃m]
(a)
= Pr

[
bm = s̃m 	

{
n

∑
l=1

slam
l

}]
(b)
= ∑
{am

l }
n
l=1

∈X nm

n

∏
l=1

PAm
l
(am

l )PBm

(
s̃m 	

{
n

∑
l=1

slam
l

})

(c)
= |X |−m ∑

{am
l }

n
l=1

∈X nm

n

∏
l=1

PAm
l
(am

l ) = |X |
−m.

Step (a) follows from (A2). Step (b) follows from that n random vectors Am
l , l = 1, 2, · · · , n and

Bm are independent. We finally prove the part (c). We first observe that sn 6= tn ⇔ is equivalent to
si 6= ti for some i ∈ {1, 2, · · · , n}. Without loss of generality, we may assume that s1 6= t1. Under this
assumption, we have the following:

sn A⊕ bm = tn A⊕ bm = s̃m

⇔ (sn 	 tn)A = 0, bm = s̃m 	
{

n

∑
l=1

slam
l

}

⇔ am
1 =

n

∑
l=2

tl 	 sl
s1 	 t1

am
l , bm = s̃m 	

{
n

∑
l=1

slam
l

}

⇔ am
1 =

n

∑
l=2

tl 	 sl
s1 	 t1

am
l , bm = s̃m ⊕

n

∑
l=2

t1sl 	 s1tl
s1 	 t1

am
l . (A3)

Computing Pr[sn A⊕ bm = tn A⊕ bm = s̃m], we have the following chain of equalities:

Pr[sn A⊕ bm = tn A⊕ bm = s̃m]

(a)
= Pr

[
am

1 =
n

∑
l=2

tl 	 sl
s1 	 t1

am
l ∧bm = s̃m ⊕

n

∑
l=2

t1sl 	 s1tl
s1 	 t1

am
l

]
(b)
= ∑
{am

l }
n
l=2

∈X (n−1)m

[
n

∏
l=2

PAm
l
(am

l )

]
PAm

1

(
n

∑
l=2

tl 	 sl
s1 	 t1

am
l

)
PBm

(
s̃m ⊕

n

∑
l=2

t1sl 	 s1tl
s1 	 t1

am
l

)

= |X |−2m ∑
{am

l }
n
l=2

∈X (n−1)m

n

∏
l=2

PAm
l
(am

l ) = |X |
−2m.

Step (a) follows from (A3). Step (b) follows from the independent property on Am
l , l = 1, 2, · · · , n

and Bm.

Appendix C. Proof of Lemma 8

In this appendix, we provide the proof of Lemma 8.
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For simplicity of notation, we write M = |X |m. For xn ∈ X n we set

B(xn) =
{
(x̌n) : H(x̌n) ≤ H(xn) , Px̌n = Pxn

}
,

Using parts (a) and (b) of Lemma 4, we have following inequalities:

|B(xn)| ≤ (n + 1)|X |enH(xn), (A4)

On an upper bound of E[Ξxn(φ(n), ψ(n))], we have the following chain of inequalities:

E[Ξxn(φ(n), ψ(n))] ≤ ∑
x̌n∈B(xn),

x̌n 6=xn

Pr
{

φ(n)(x̌n) = φ(n)(xn)
}

(a)
≤ ∑

x̌n∈B(xn)

1
M

=
|B(xn)|

M

(b)
≤ e(n + 1)|X |e−n[R−H(xn)].

Step (a) follows from Lemma 7 part (a) and independent random constructions of linear encoders
φ
(n)
1 and φ

(n)
e . Step (b) follows from (A4) and M ≥ enR−1, i = 1, 2. On the other hand we have the

obvious bound E[Ξxn(φ(n), ψ(n))] ≤ 1. Hence we have

E[Ξxn(φ(n), ψ(n))] ≤ e(n + 1)|X |
{

e−n[R−H(xn)]+
}

.

Hence we have

E[ΞX1X2
(φ(n), ψ(n))] = E

 1
|Tn

X
| ∑

xn∈Tn
X

Ξxn(φ(n), ψ(n))

 =
1
|Tn

X
| ∑

xn∈Tn
X

E[Ξxn(φ(n), ψ(n))]

≤ e(n + 1)|X |
{

e−n[R−H(X)]+
}

,

completing the proof.

Appendix D. Proof of Lemma 9

In this appendix, we prove Lemma 9. This lemma immediately follows from the following lemma:

Lemma A1. For any n, m satisfying (m/n) log |X | ≤ R, we have

E
[

D
(

p
K̃m |M(n)

A

∣∣∣∣∣∣∣∣ pVm

∣∣∣∣ p
M(n)
A

)]
≤ ∑

(a,kn)∈M(n)
A ×X n

p
M(n)
A Kn(a, kn) log

[
1 + (|Xm| − 1)p

Kn |M(n)
A
(kn|a)

]
. (A5)

In fact, from |Xm| ≤ enR and (A5) in Lemma A1, we have the bound (28) in Lemma 9. Thus, we
prove Lemma A1 instead of proving Lemma 9.

In the following arguments, we use the following simplified notations:

kn, Kn ∈ X n =⇒ k, K ∈ K,

k̃m, K̃m ∈ Xm =⇒ l, L ∈ L,

ϕ(n) : X n → Xm =⇒ ϕ : K → L,
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ϕ(n)(kn) = kn A + bm =⇒ ϕ(k) = kA + b,

Vm ∈ Xm =⇒ V ∈ L,

M(n)
A ∈ M

(n)
A =⇒ M ∈ M.

We define

χϕ(k),l =

{
1, if ϕ(k) = l,
0, if ϕ(k) 6= l.

Then, the conditional distribution of the random variable L = Lϕ for given M = a ∈ M is

pL|M(l|a) = ∑
k∈K

pK|M(k|a)χϕ(k),l for l ∈ L.

Define

Υϕ(k),l := χϕ(k),l log

[
|L|
{

∑
k′∈K

pK|M(k′|a)χϕ(k′),l

}]
.

Then the conditional divergence between pL|M and pV for given M is given by

D
(

pL|M

∣∣∣∣∣∣ pV

∣∣∣ pM

)
= ∑

(a,k)∈M×K
∑
l∈L

pMK(a, k)Υϕ(k),l . (A6)

The quantity Υϕ(k),l has the following form:

Υϕ(k),l = χϕ(k),l log

{
|L|
(

pK|M(k|a)χϕ(k),l + ∑
k′∈{k}c

pK|M(k′|a)χϕ(k′),l

 . (A7)

The above form is useful for computing E[Υϕ(k),l ].

Proof of Lemma A1: Taking the expectation of both sides of (A7) with respect to the random choice of
the entry of the matrix A and the vector b representing the affine encoder ϕ, we have

E
[

D
(

pL|M

∣∣∣∣∣∣ pV

∣∣∣ pM

)]
= ∑

(a,k)∈M×K
∑
l∈L

pMK(a, k)E
[
Υϕ(k),l

]
. (A8)

To compute the expectation E
[
Υϕ(k),l

]
, we introduce an expectation operator useful for the

computation. Let Eϕ(k)=lk [·] be an expectation operator based on the conditional probability measures

Pr(·|ϕ(k) = lk). Using this expectation operator, the quantity E
[
Υϕ(k),l

]
can be written as

E
[
Υϕ(k),l

]
= ∑

lk∈L
Pr (ϕ(k) = lk)Eϕ(k)=lk

[
Υlk ,l

]
. (A9)

Note that

Υlk ,l =

{
1, if lk = l,
0, otherwise.

(A10)

From (A9) and (A10), we have

E
[
Υϕ(k),l

]
= Pr (ϕ(k) = l)Eϕ(k)=l [Υl,l ] =

1
|L|Eϕ(k)=l [Υl,l ] . (A11)
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Using (A7), the expectation Eϕ(k)=l [Υl,l ] can be written as

Eϕ(k)=l [Υl,l ] = Eϕ(k)=l

[
log

{
|L|
(

pK|M(k|a) + ∑
k′∈{k}c

pK|M(k′|a)χϕ(k′),l


 . (A12)

Applying Jensen’s inequality to the right member of (A12), we obtain the following upper bound
of Eϕ(k)=l [Υl,l ]:

Eϕ(k)=l [Υl,l ] ≤ log

{
|L|
(

pK|M(k|a) + ∑
k′∈{k}c

pK|M(k′|a)Eϕ(k)=l

[
χϕ(k′),l

]
(a)
= log

{
|L|
(

pK|M(k|a) + ∑
k′∈{k}c

pK|M(k′|a) 1
|L|

)}
= log

{
1 + (|L| − 1)pK|M(k|a)

}
. (A13)

Step (a) follows from that by Lemma 7 parts (b) and (c),

Eϕ(k)=l

[
χϕ(k′),l

]
= Pr(ϕ(k′) = l|ϕ(k) = l) =

1
|L| .

From (A8), (A11), and (A13), we have the bound (A5) in Lemma A1.

Appendix E. Proof of Lemma 12

To prove Lemma 12, we prepare a lemma. For simplicity of notation, set |M(n)
A | = MA. Define

Bn :=

(a, zn, kn) :
1
n

log
p

M(n)
A ZnKn(a, zn, kn)

q̂
M(n)
A ZnKn(a, zn, kn)

≥ −η

 .

Furthermore, define

C̃n :=
{

zn :
1
n

log
pZn(zn)

qZn(zn)
≥ −η

}
,

Cn := C̃n ×M(n)
A ×X

n, Cc
n := C̃c

n ×M
(n)
A ×X

n,

D̃n := {(a, zn) : a = ϕ
(n)
A (zn), p

Zn |M(n)
A
(zn|a) ≤ MAenη pZn(zn)},

Dn := D̃n ×X n,Dc
n := D̃c

n ×X n,

En := {(a, zn, kn) : a = ϕ
(n)
A (zn), p

Kn |M(n)
A
(kn|a) ≥ e−n(R+η)}.

Then we have the following lemma.

Lemma A2.

p
M(n)
A ZnKn (B

c
n) ≤ e−nη ,

p
M(n)
A ZnKn (C

c
n) ≤ e−nη ,

p
M(n)
A ZnKn (D

c
n) ≤ e−nη .
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Proof. We first prove the first inequality.

p
M(n)
A ZnKn(B

c
n) = ∑

(a,zn ,kn)∈Bc
n

p
M(n)
A ZnKn(a, zn, kn)

(a)
≤ ∑

(a,zn ,kn)∈Bc
n

e−nη q̂
M(n)
A ZnKn(a, zn, kn)

= e−nηq
M(n)
A ZnKn (B

c
n) ≤ e−nη .

Step (a) follows from the definition of Bn. For the second inequality we have

p
M(n)
A ZnKn(C

c
n) = pZn(C̃c

n) = ∑
xn∈C̃c

n

pZn(z
n)

(a)
≤ ∑

xn∈C̃c
n

e−nηqZn(zn) = e−nηqZn
(
C̃c

n
)
≤ e−nη .

Step (a) follows from the definition of Cn. We finally prove the third inequality.

p
M(n)
A ZnKn(D

c
n) = p

M(n)
A Zn(D̃

c
n) = ∑

a∈M(n)
A

∑
zn :ϕ(n)

A (zn)=a
pZn (zn)≤(e−nη/MA)

×p
Zn |M(n)

A
(zn |a)

pZn(zn)

≤ e−nη

MA
∑

a∈M(n)
A

∑
zn :ϕ(n)

A (zn)=a
pZn (zn)≤(e−nη/MA)

×p
Zn |M(n)

A
(zn |a)

p
Zn |M(n)

A
(zn|a)

≤ e−nη

MA
|M(n)

A | = e−nη .

This completes the proof of Lemma A2.

Proof of Lemma 12: By definition, we have

p
M(n)
A ZnKn (Bn ∩ Cn ∩Dn ∩ En)

=p
M(n)
A ZnKn

 1
n

log
p

M(n)
A ZnKn(M(n)

A , Zn, Kn)

q̂
M(n)
A ZnKn(M(n)

A , Zn, Kn)
≥ −η,

0 ≥ 1
n

log
qZn(Zn)

pZn(Zn)
− η,

1
n

log MA ≥
1
n

log
p

Zn |M(n)
A
(Zn|M(n)

A )

pZn(Zn)
− η,

R ≥ 1
n

log
1

p
Kn |M(n)

A
(Kn|M(n)

A )
− η

 .
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Then for any ϕ
(n)
A satisfying (1/n) log ||ϕ(n)

A || ≤ RA, we have

p
M(n)
A ZnKn (Bn ∩ Cn ∩Dn ∩ En)

≤p
M(n)
A ZnKn

 1
n

log
p

M(n)
A ZnKn(M(n)

A , Zn, Kn)

q̂
M(n)
A ZnKn(M(n)

A , Zn, Kn)
≥ −η,

0 ≥ 1
n

log
qZn(Zn)

pZn(Zn)
− η,

RA ≥
1
n

log
p

Zn |M(n)
A
(Zn|M(n)

A )

pZn(Zn)
− η,

R ≥ 1
n

log
1

p
Kn |M(n)

A
(Kn|M(n)

A )
− η

 .

Hence, it suffices to show

℘
(n)
η ≤ p

M(n)
A ZnKn (Bn ∩ Cn ∩Dn ∩ En) + 3e−nη

to prove Lemma 12. We have the following chain of inequalities:

℘
(a)
= p

M(n)
A ZnKn (En)

= p
M(n)
A ZnKn (Bn ∩ Cn ∩Dn ∩ En) + p

M(n)
A ZnKn

(
[Bn ∩ Cn ∩Dn]

c ∩ En
)

≤ p
M(n)
A ZnKn (Bn ∩ Cn ∩Dn ∩ En) + p

M(n)
A ZnKn (B

c
n) + p

M(n)
A ZnKn (C

c
n) + p

M(n)
A ZnKn (D

c
n)

(b)
≤ p

M(n)
A ZnKn (Bn ∩ Cn ∩Dn ∩ En) + 3e−nη = ℘̃.

Step (a) follows from the defintion of ℘. Step (b) follows from Lemma A2.
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