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Abstract: This paper presents a numerical analysis of the transient heat transfer problem arising
when a functionally graded material is subjected to a fixed temperature difference. Varying the
gradation of the system, the thermal performance of the material is assessed both in time-dependent
and steady-state conditions by means of temperature profiles and entropy production. One of the
main contributions of this paper is the analysis of the system in the transient, from which it is found
that the entropy production has a non-monotonic behaviour since maximum and minimum values of
this physical quantity could be identified by varying the grading profile of the material. The latter
allows to propose an optimization criterion for functionally graded materials which consists of the
identification of spatial regions where temperature gradients are large and find thermal conductivity
profiles that attenuate those gradients, thus reducing the thermal stresses present inside the material.

Keywords: functionally graded materials; transient heat transfer; entropy production

1. Introduction

Layered materials exhibit discontinuities of thermal and mechanical properties at interfaces due
to the bonding of different discrete materials. In particular, at these locations a stress concentration
is present which usually leads to delamination, matrix cracking, and adhesive bond separation [1].
The stresses at the interfaces appear from the difference of the thermal expansion coefficients of
contiguous layers and the residual stresses due to material processing itself. To solve this problem,
materials known as graded materials were conceived [2]. Such materials are formed of two or more
constituent phases with a continuously variable composition. It is well known that graded materials
possess a number of advantages that make them attractive over conventional layered materials [3]:
A potential reduction of in-plane and transverse through-the-thickness stresses, an improved residual
stress distribution, enhanced thermal properties, a higher fracture toughness, and reduced stress
intensity factors.

Even though one of the main advantages of graded materials is the elimination of stresses at the
discontinuites due to the elimination of the interfaces, they do not avoid the appearance of thermal
gradients during the transient stage which, in turn, induce thermo-mechanical stresses. Transient and
steady state temperature profiles for different graded materials are well studied as evidenced by the
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many investigations carried out in the last fifteen years [4–14]. Hamza-Cherif et al. [4] analysed the
use of the so-called h-p version of the finite element method to find the temperature distribution in
functionally graded materials. The 2D heat conduction problem was studied and good agreement with
analytical solutions was found. The same problem was solved by Sakurai [5] through the use of the
moving-particle, semi-implicit method. In this case, the solutions were validated by comparison with
finite element solutions, besides analytical solutions, in exponentially and trigonometrically graded
systems. A different solution approach based on the Fourier transform was used by Ma and Chen [6]
to find theoretical temperature distributions in an exponentially graded material sandwiched between
two half planes. A remarkable result indicates how to handle the heat conductivity distribution in
the interfaces in order to prevent interfacial fracture problems. Another study by Zhao et al. [7] on
2D heat transport in graded materials was also based on functional transforms (Laplace transform in
this case). The authors showed that the method is suitable for finding the temperature distributions of
quadratically and trigonometrically, besides exponentially, graded plates. In contradistinction to the
previous works, the approach of Rahideh et al. [8] is based on a non-Fourier heat transport equation.
Conveniently justified, the model was used to study the effects of the finite speed of wave-like heat
transport in multi-layered functional graded materials. Kahn and Aziz [9] characterised the heat
transfer from a linear, quadratic, and exponential graded fin through analytical solutions of the heat
transport equation of the Fourier type. The shape of the fin cross-section was rectangular, circular,
and elliptical. All these cases showed a similar thermal performance. A time non-local description
was proposed by Akbarzadeh and Chen in [11] to deal with 1D and 2D heat transport problems in
power-law graded systems in different geometries. The formalism was based on the dual phase lag
heat conduction, which is another type of the non-Fourier model. It describes in a more suitable
way, the causality relations between thermodynamic forces and fluxes. This allows the study of the
effects of time delay on the system’s global response. The authors combined Laplace transform and
analytical solutions to solve the transport equations. A novel numerical method based on the Lagrange
series interpolation was used by Li and Wen [12] to describe temperature distribution in a 2D graded
material with heat conductivities depending linearly on spatial variables. The method was properly
validated with analytical solutions of the transport equations and its advantages over other methods
were discussed. The work by Li et al. [13] focused on solving the transport equations for quadratically
and exponentially graded materials through the use of the multiple reciprocity boundary face method.
The solutions quickly showed the convergence properties and were validated by comparison with
analytical and finite element method solutions. Another research based on the dual phase lag model
was performed by Yang et al. [14] on a power-law graded wall. The effects of the magnitude of
time delays on the speed of wave-like heat transport through the wall were studied. It was found
that big delay times decreases the speed of the thermal wave and that small delay times increases
it. This, of course, brings up practical consequences on the construction of furnaces, for instance.
Heat waves propagation in graded material also has a great interest in phononics. For instance, it has
been shown that rectification of low frequency thermal waves can be achieved in properly graded
Si–Ge alloys [15–17]. Finally, a recently published review on the development of the research on heat
transport problems in functionally graded materials was reported by Swaminathan and Sangeetha [18]
with emphasis on numerical solutions methods. In issue 8 of the suggested research, the authors
pointed out that:

“Evaluations of most appropriate temperature distribution, for the development of analytical
models have to be studied precisely for accurate evaluation of plate deformations.”

From the above discussion, and as far as the present authors know, it can be said that the
research on functionally graded materials has mainly focused on the development of reliable
numerical solution methods on 2D and 3D systems with linearly, quadratically, trigonometrically,
and exponentially grading, and not so on power-law grading, and mostly considered time relaxing
processes. The periodically varying operation conditions of many modern technological devices
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have scarcely been considered. The purposes pursued by the researchers have covered a wide
range of applications but have left aside the relationship between irreversibility, inhomogeneity, and
performance. This relation is deeply founded on the behaviour of the entropy production in the system
which drives the study of the irreversible processes from the point of view of minimum-entropy
production principles. As it is known, this condition not only describes fundamental processes in heat
transport problems but it serves as an optimisation criterion to reduce thermal stresses, degradation of
materials, etc.

Therefore, this work concentrates on the transient analysis of the heat transfer problem in
functionally graded materials from the point of view of local and global entropy production in
the system. The local analysis will serve as a mean of identifying high thermal gradients inside
the material and, consequently, those regions of possible degradation and fracturing of the material.
The global analysis, on the other hand, will be used as an optimisation criterion for the gradation of
the material in order to ensure an operating regime of minimum entropy production.

The paper starts with a brief introduction about graded materials. Next, the mathematical
modelling (governing equations, boundary conditions, grading profile, entropy production, and
numerical methodology) is presented. The numerical results and discussion are presented in Sections 3
and 4, respectively. Finally, the concluding remarks of the paper are presented in Section 5.

2. Mathematical Modeling

Consider a cylindrical-shaped, thermally-conducting material subjected to a temperature
difference ∆T = Th − Tc through its ends, where Th > Tc . The lateral wall is thermally insulated and
the thermal conductivity of the material k(z) varies continuously along the z direction between two
finite values, ku and kl . The total length of the material is L and no heat generation occurs inside the
material. Figure 1 shows a sketch of the problem at hand.

Figure 1. Vertical cross section of a graded cylinder subjected to a temperature difference.

Application of the energy conservation to the system of interest results in the heat conduction
equation [19] which, in dimensionless form reads:

∂θ

∂t
= ∇·(kz(z)∇θ) , (1)

where the axial coordinate z and time t are normalised by L and τ = L2/α0, respectively, and the
dimensionless temperature θ is defined as:

θ (z, t) =
T (z, t)− Tc

∆T
. (2)

The thermal diffusivity is denoted by α0 = k0/ρcp, where ρ is the mass density, cp is the heat
capacity at a constant pressure, and k0 = ku is a reference thermal conductivity. Note that, the thermal
conductivity kz(z) depends on the axial position due to the grading of the material.
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2.1. Initial and Boundary Conditions

It was considered that the graded material is initially at equilibrium with the surroundings and
has a uniform distribution of temperature. The assumed initial constant value of temperature is the
high temperature in the left side of the graded material, Th. The temperature in the right side is
suddenly lowered to Tc and the transient goes on. The non-dimensional initial condition is written as:

θ (z, 0) = 1. (3)

The Dirichlet condition:
θ (0, t) = 1, θ (1, t) = 0, (4)

constitutes the boundary condition. In practice, the boundary condition is imposed in several ways.
For instance, by applying a laser beam to produce a localised heat pulse or by putting the system
in contact with solid (liquid) materials on both sides. When this is made through a solid of finite
dimensions, which are comparable with those of the system, its temperature must be taken into
account and the boundary condition establishes the continuity of the heat flux flowing through the
interface, namely,

Cd
∂θs (0, t)

∂t
= κ (0)

∂θ (0, t)
∂z

, (5)

where C, d, and θs are the specific heat per unit volume, the thickness, and the temperature of the
solid. It is important to mention that in the case described, both temperatures (that of the system
and the solid) depend on time. Moreover, the interface acts as a thermal barrier and then there is a
discontinuity of temperature given by:

θs (0, t)− θ (0, t) = −κ (0) RK
∂θ (0, t)

∂z
, (6)

where RK is the Kapitza resistance [20–22]. If the graded material is in contact with a liquid, a convection
term should be added to the left-hand side in Equation (5). Equations (1), (5), and (6), together with
boundary condition Equation (4), are the complete set of equations to solve the heat transport problem.
Experiments where the effective heat conductivity of graded materials is measured through time
domain thermo-reflectance, have been addressed with Equations (4)–(6) [23,24]. The thermal resistance
in solid–solid and solid–water interfaces has also been studied from the microscopic point of view
with nonequilibrium molecular dynamics techniques [25,26].

2.2. Grading of the Material

Experimental observations [27,28] and other modeling efforts [29,30] have demonstrated that the
variation of the properties in graded materials can be approximated as a continuous function varying
according to a power law of the volume fraction, which, in dimensionless terms is written as:

Vf (z) = zN , (7)

where N is the exponent of the power law. The analysed material will be graded for two different cases:

1. Using a low thermal conductivity (kl) matrix to be graded with a high thermal conductivity
(ku) material

kz(z) = ku(1−Vf ) + klVf . (8)

2. Using a high thermal conductivity matrix to be graded with a low thermal conductivity material

kz(z) = kuVf + kl(1−Vf ). (9)
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Figure 2 shows the dimensionless heat conductivity profiles for the aforementioned case 1 (C1) and
case 2 (C2) as a function of the axial position for different values of N. Notice that N = 0 corresponds
to a homogeneous material with low or high heat conductivity, depending on the case. Starting from
N = 0, increasing the value of N implies that the original material is being gradually replaced by the
other one. In the limit N → ∞, the original base material has been totally replaced.
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Figure 2. Dimensionless heat conductivity profile as a function of z for different values of N.
Continuous lines, case 1 (C1), see Equation (8). Dashed lines, case 2 (C2), see Equation (9). In both cases
ku is used for normalisation.

2.3. Entropy Calculation

Solving Equation (1) yields the temperature as function of position and time, from which different
important quantities such as the time elapsed until reaching steady state tS, temperature profiles T(z),
entropy generation as function of time and space ṡ(z, t), and global entropy production Ṡg can be
obtained. For the entropy generation, the following equation [31] was used:

ṡ(z, t) = k(z)
(∇T)2

T2 , (10)

which, in dimensionless terms, can be rewritten as:

Ṡ(z, t) = kz(z)
(∇θ)2[
1

Tr − 1
+ θ

]2 , (11)

where Tr = Th/Tc and Ṡ = ṡ L2/k0, k0 = ku is a reference thermal conductivity. Once the entropy
is obtained, it can be integrated in space to yield the average entropy as function of time, and then
integrated in time to yield the global entropy production:

Ṡm(t) =
1
L

∫ L

0
Ṡ(z, t)dz, ⇒ Ṡg =

1
tm

∫ tm

0
Ṡm(t)dt, (12)

where tm is the time interval of interest.

2.4. Numerical Methodology

In order to capture the physics of the system in the most precise way possible, the equation
was solved for the one- and three-dimensional time-dependent cases. The numerical methodology
used for the one-dimensional case was the finite volume method as described in [32], whereas
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for the three-dimensional case, a mixed Fourier Galerkin-Finite Volume method, as proposed by
Núñez et al. [33], was used. For both cases, the numerical solutions were found using an in-house
FORTRAN numerical code. The govering equation (Equation (1)) is subjected to Dirichlet boundary
conditions, the hot and cold ends of the system are denoted by θ |z=0= 1 and θ |z=1= 0, respectively.
The lateral wall is thermally insulated, that is, ∂θ/∂r |r=a= 0, where a is the radius of the cylinder. For
the three-dimensional case, at the singularity (r = 0), the implemented boundary condition consisted
of a Neumann-type condition to solve the linear equations and the averaging value of the adjacent
cells (sweeping the whole angular direction) was assigned to the temperature θ |r=0. For this particular
study, the fact that the lateral walls are thermally insulated and that the Dirichlet boundary conditions
do not depend on neither the radial nor on the azimuthal coordinate, it is expected that the heat transfer
will occur solely in the axial direction, even in the three-dimensional case. The latter was corroborated
since there was no appreciable difference between the two models, thus only one-dimensional results
are shown hereafter. For all the presented results, the initial condition was taken as a constant, high
temperature in the whole system, that is, θ |t=0= 1. The time integration of the governing heat
conduction equation was performed with a second-order Crank–Nicholson time discretisation scheme
using a dimensionless time step ∆t = 1×10−4 and a spatial resolution of nz = 201 discrete points.
The calculation of the global entropy production (Equation (12)) was carried out using the 4-point
Newton–Cotes quadrature formula.

3. Numerical Results

3.1. Validation of the Numerical Code

Alipour et al. [34] studied functionally graded materials in the form of multilayered systems
considering space- and temperature-dependent thermomechanical properties of the system and
different kinds of boundary conditions, however their research is more focused on the mechanical
behaviour of the material (deflection, thermal load, induced axial force, etc.) rather than in the entropy
production and its link to material degradation. Despite the study in [34] pointing to a different
direction than the present work, some of their results can be used to validate the numerical finite
volume code implemented in this paper. Figure 3 shows a comparison between the numerical code used
in this work and the generalised differential quadrature methodology followed by Alipour et al. [34],
for the temperature at the center of the graded material for two different gradation profiles, namely,
N = 0 and N = 2. It can be seen that there is a good agreement between the two studies for these
particular cases and the little differences for N = 2 can be explained by the fact that the present work
has not considered temperature-dependent properties for the graded material.

300

350

400

450

500

0 0.5 1 1.5 2 2.5 3

T
[K

]

t(s)

This work, N = 0
Alipour et al. (2015), N = 0

This work, N = 2
Alipour et al. (2015), N = 2

Figure 3. Dimensional temperature at the center of the material as a function of time for two different
grading profiles used for validation. Solid lines correspond to the present work whereas the symbols
were extracted from Alipour et al. [34].



Entropy 2019, 21, 463 7 of 14

3.2. Numerical Results for the Present Case

Given the physical setting previously described, imposing the temperature difference through
the ends of the material will produce a heat flow from the hot end to the cold one, thus the original
distribution of temperature will evolve with time until it reaches steady state conditions. Since the
material has a spatial-dependent thermal conductivity and there is no heat generation inside the
system, the temperature gradient will depend on the axial coordinate, thus giving rise to different
temperature profiles according to the gradation of the material.

Figure 4 shows the steady temperature profiles as function of position for different values of N
for case 1 (C1). The solid lines represent the configuration with boundary conditions described by
Equation (4). For the dashed lines, the boundary conditions have been inverted (CI

1). The case when
N = 0 corresponds to a homogeneous material with constant thermal conductivity for which the
steady temperature profile is a straight line, shows that inverting the thermal conductivity profiles
results in lower temperatures than for the homogeneous case. Also note that the higher temperature
gradients are located near the cold side of the sample. This implies that the higher mechanical stresses
are present near the cold side as well. A further comment related with the entropy production in that
region during the transient will be made below.
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Figure 4. Steady state dimensionless temperature profiles for different values of N for case C1,
see Equation (8). Dashed lines represent the profiles of case 1 with inverted boundary conditions (CI

1).

Figure 5 shows the same as the previous figure but for case 2. Similarly, the variation of the
thermal conductivity profile results in different temperatures than for the homogeneous material,
hence, the thermal conductivity profile has a strong influence on the entropy production (Equation (10)).
This behaviour can be explained from the fact that, in the absence of heat sources, the heat flux must
be constant, but since the thermal conductivity varies as function of position, the temperature gradient
must adjust accordingly to meet this condition. Inverting the thermal conductivity profiles results in
temperatures that are higher than the homogeneous case.
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Figure 5. Steady state dimensionless temperature profiles for different values of N for case C2,
see Equation (9). Dashed lines represent the profiles of case 2 with inverted boundary conditions (CI

2).

Figure 6 shows the transient behaviour, that is, the temperature at the center of the material as
function of time for different values of N for case 2. The whole material starts at a high temperature
θ |t=0= 1, then one of the ends is cooled down so that the whole system decreases its temperature.
The numerical code starts by calculating the thermal conductivity profile according to Equation (8)
or (9), depending on the case. Then Equation (1) is integrated in order to determine the time needed
for the system to reach steady state tS (black dots). Since for N = 0, the material has a constant thermal
conductivity and the temperature profile is a straight line, the steady temperature at the center must
be exactly θ = 0.5. As N = 0 implies high thermal conductivity in homogeneous material, the time
needed to reach steady state is small (left-most black point). It can be seen that the grading of the
material increases the time interval needed to reach the steady state since the material has lower
thermal conductivity is some regions. Along with that, the temperature at the center decreases until
reaching a minimum value and then it starts increasing. Since higher values of N mean that the original
high thermal conductivity material has been replaced by the other lower thermal conductivity one,
it is expected that as N → ∞, the steady temperature at the center θ → 0.5. The behaviour is different
when inverting the boundary conditions, for instance, the temperature now has a maximum (instead
of a minimum) value and then starts approaching θ → 0.5 as N → ∞. Similar results can be found for
the other case.
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N = 0.50
N = 1.00
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Figure 6. Dimensionless temperature θ at the center of the graded material as a function of
dimensionless time for different values of N for case C2. The black points (•) mark the time needed to
reach the steady state tS and the corresponding temperature.
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Figure 7 shows the time needed to reach steady state for both cases (C1 and C2) and by inverting
the corresponding boundary conditions (CI

1 and CI
2). The latter conditions are interesting because many

applications in thermal systems, such as materials for construction, are operated under time-periodic
boundary conditions. The blue and green lines correspond to case 1, whereas the red and black lines
represent case 2. The arrows show the direction of increasing N. In both cases it can be observed that
the maximum (or minimum) values of the temperature at the center as well as the time interval to
reach steady state are not the same if the boundary conditions are inverted.

0.2

0.4

0.6

0.8

1 2 3 4 5 6

N

N

N

N

θ

t

C1

CI
1

C2

CI
2

Figure 7. Dimensionless time needed to reach steady state tS and corresponding dimensionless
temperature θ at the center for both cases. The superscript I means inverted boundary conditions.
Each symbol corresponds to a numerical experiment. The continuous lines are a guide to the eye.

Figure 8 shows entropy production as function of the axial coordinate once steady state is reached
for case 2. It can be seen that the entropy production is strongly dependent on the spatial position
and, thus, on the thermal conductivity profile of the material. If the material is homogeneous (N = 0),
the thermal conductivity profile is an almost straight line with a small slope, but when the material is
graded, the entropy production increases near the heated end where the thermal conductivity is lower,
whereas it decreases close to the other end. As a result, regions of high and low entropy production
can be identified.
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Figure 8. Dimensionless entropy production Ṡ profiles at steady state as a function of N for case C2.

From Figure 5 (solid lines) and Figure 8, it can be seen that the entropy production for steady
state conditions is strongly dependent on the temperature profile being higher in regions where the
temperature gradient is more pronounced (corresponding to regions where the thermal conductivity is
smaller). Similar results can be observed for both configurations by inverting the boundary conditions.

However, these entropy production regions are switched during the transient, as seen in Figure 9.
This figure shows entropy profiles for different time instants for case C2 where N = 2.5. It can be
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observed that at the beginning of the heat transfer process, the entropy profile close to the hot end
(low conductivity) is zero because the temperature is kept approximately constant, and the region of
highest entropy production lies near the cooled end (high conductivity). As time progresses, the region
of high entropy production shifts toward the center (t = 0.644) until the highest entropy production
lies near the heated extreme (low heat conductivity) when steady state is reached. Since the initial
condition is set to a constant, hot temperature, the initial entropy production is zero but, just after
imposing the cold temperature at one end of the system, a large temperature gradient arises near the
cooled end and this produces high entropy production, as can be observed for t = 0.032. It can be
seen that the maximum values for the entropy production are larger during the transient, and as time
passes, the entropy production becomes smaller very fast due to the fact that the temperature gradient
is smoothed out.

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

Ṡ

z

t = 0.032
t = 0.064
t = 0.128
t = 0.644

Steady

Figure 9. Dimensionless entropy production Ṡ profiles for different instants of time. Case C2 and
N = 2.5.

Figure 10 shows the global entropy production calculated with Equation (12) for the whole time
interval of the computation, for the range 0 6 N 6 10, for both cases and the inverted boundary
conditions. The blue and green lines correspond to the first case and the black and red lines to
case 2. One can observe that the larger the value of N, the greater the global entropy production for
case 1, whereas this behaviour is inverted for case 2. Regardless of the case, the more the material is
graded with high thermal conductivity, the greater the entropy production since, for case 1 the thermal
conductivity is increased with increasing N, whereas for case 2 the heat conductivity is higher for
smaller values of N. It is also noted that the inversion of the boundary conditions has an effect on Ṡg in
both cases. For the green and red lines, the extreme of the material subjected to the high temperature
condition has the lowest heat conductivity, whereas for the blue and black lines, the end with the
highest conductivity is held at a high temperature. It can be observed that the configurations for which
the global entropy production is greater, corresponds to the heating of the least conductive end of
the material.

Figure 11 shows the behaviour of the global entropy production, but for each value of N the time
integration was stopped once the steady state was reached. Blue and green lines correspond to case 1,
whereas the black and red lines represent case 2. It can be seen that for case 2 there are maximum and
minimum values, whereas for case 1 in one configuration there is only a maximum value and for the
inverted boundary conditions there is a minimum and possibly a maximum which is not clearly seen
because of the plotting resolution. Comparing cases C1 and C2, the first case shows a lower global
entropy production Ṡg for N < 4, and higher Ṡg for N > 4. At N ≈ 4.2, both cases show the same
value for Ṡg. A similar behaviour can be seen if cases C1 and C2, with their corresponding inverted
boundary conditions, are compared.
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Figure 10. Dimensionless global entropy production for the whole computation time as function
of N. The superscript I means inverted boundary conditions. Each symbol corresponds to a
numerical experiment.
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Figure 11. Dimensionless global entropy production until reaching steady conditions as a function
of N. Each symbol corresponds to a numerical experiment.

For transient conditions, the entropy production is different if the calculation is stopped once
steady state is reached as can be noted by comparing Figures 10 and 11. The first one shows the
global entropy production for a fixed time interval which is the same for all cases, whereas for the
other figure, the entropy was calculated only for the time interval the transient behaviour lasts, which
differs for every conductivity gradient. On the one hand, it can be noted that the global entropy has a
monotonous behaviour as the grading of the material increases, but for the transient, the behaviour is
non-monotonous since there are maximum and minimum values of entropy production. This points
out to the idea that there are optimal heat conductivity profiles for materials that are subjected to
time-dependent boundary conditions, like construction materials used for buildings and housing or
thermoelectric materials.

4. Discussion

The one- and thee-dimensional models agree qualitatively and quantitatively due to the symmetry
of the problem, which somehow validates the numerical results, and thus the problem can be
analysed as one-dimensional. Moreover, our numerical code was tested satisfactorily with numerical
transient results from the heat transfer problem in a multilayered system previously analysed [34],
which validates our transient analysis.

In our problem case, it was found that the duration of the transient is dependent on the grading
profile so that the more the material is graded with low heat conductivity, the more time was needed
to reach steady state. It was also found that the temperature gradient was strongly dependent on
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the spatial coordinate and this has a repercussion on the entropy production, for instance, regions
of high and low entropy production arise and thus, the region where entropy production was larger
corresponded to low heat conductivity of the material. Surprisingly, the low and high entropy
production regions were switched during the transient. It was demonstrated that the analysis of
the transient heat transfer was very important since the behaviour of the entropy production was
non-monotonous, having maximum and minimum values of these physical quantity depending
on the grading profile. On the contrary, when the time interval was the same for all the different
grading profiles, then entropy production had a monotonic behaviour but was affected if the boundary
conditions were inverted.

It was interesting to calculate the ratio R of the global entropy produced till the steady state was
reached (ṠT

g ) to the global entropy produced in whole computational time (Ṡg). Table 1 shows the
result for the cases where there exist a minimum or a maximum for certain values of N accordingly
with Figure 11. The second column of the table indicates if the extreme is a minimum or a maximum.
The corresponding value of N can be seen in the third column. The fourth column shows the value
of the global entropy produced till the steady state is reached. The following column contains the
corresponding global entropy produced during the whole computational time and, finally, the last
column shows the ratio of these two values.

Several comments can follow from Table 1. Starting with the assumption that the system operates
in a stationary state, the entropy produced in the whole process is a minimum. Therefore it should be
desirable to use those materials with big values of ratio R. As seen from the fifth column of Table 1,
the materials showing a minimum in the total global entropy production are C1 (N = 0.6), C2 (N = 5),
and CI

2 (N = 2.5). From them, material C2 (N = 5) should be selected (R = 0.7). On the other
hand, if the system operates in the transient, the material C1 (N = 0.6) should be used (R = 0.32).
It is worth comparing the functioning of this last material with material CI

2 (N = 0.3) which has a
total global entropy production of 0.062 (dimensionless units) from which 0.0093 is produced during
the transient state and 0.0527 in the stationary state. On the other hand, material C1 (N = 0.6)
produces a total of 0.025 from which 0.008 are produced during the transient and 0.017 during the
stationary state. Operating in the transient state, both of materials had a similar thermal performance.
In contradistinction, when in the stationary state, material C1 (N = 0.6) is preferable to material CI

2
(N = 0.3) since the former produced about 32% of that of the second one.s

Table 1. Numerical results for maximum and minimum values of entropy production during the
transient and for the whole time interval.

Material Min/Max N Ṡg ṠT
g R = Ṡg /ṠT

g

C1 Min 0.6 0.008 0.025 0.32
CI

1 Max 5.5 0.013 0.069 0.19
C2 Max 0.6 0.0122 0.053 0.23
C2 Min 5 0.0098 0.014 0.7
CI

2 Max 0.3 0.0095 0.062 0.15
CI

2 Min 2.5 0.0067 0.017 0.39

5. Concluding Remarks

A numerical study of the thermal behaviour of functionally graded materials using different
thermal conductivity profiles and inverting the imposed boundary conditions was performed. Even
though there exist studies about the improvement of thermal efficiency using functionally graded
materials in the past fifteen years, e.g., [35], an analysis relating it with entropy production in transient
state has not been published, to the best of our knowledge. Several physical aspects were discussed,
namely, (i) time needed to reach the steady state, (ii) temporary entropy production profiles, (iii) total
entropy produced in the transient, and (iv) global entropy production.
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Since entropy production can be linked with the degradation of the material, the main conclusions
refer to the relationship of volume fraction-entropy production that allowed to identify volume
fractions distributions involving smaller global entropy and found the optimal grading profile for
particular applications where the heat transport was time dependent i.e., materials for buildings and
housing or thermoelectrics where the thermal systems are operated with time-dependent (periodic)
boundary conditions.

Author Contributions: Conceptualisation, J.P.-B., A.F., and F.V.; Formal analysis, J.P.-B., A.F., and F.V.;
Methodology, J.P.-B. and A.F.; Software, J.P.-B. and A.F.; Writing—original draft, J.P.-B., A.F., and F.V.;
Writing—review & editing, J.P.-B.

Funding: This research was supported by CONACYT, México, under project 258623. James Pérez-Barrera is
grateful for the financial support given by PROMEP via post-doctoral fellowship during his stay at Centro de
investigación en Ciencias. Aldo Figueroa acknowledges the financial support from the Cátedras CONACYT
program. Federico Vázquez is grateful for the financial support from the Tempus Public Foundation (Hungary)
and CONACYT (México).

Acknowledgments: Federico Vázquez acknowledges the hospitality given by the Energy Engineering Department
of Budapest University of Technology and Economics during his sabbatical stay.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Thai, H.T.; Kim, S.E. A review of theories for the modeling and analysis of functionally graded plates and
shells. Compos. Struct. 2015, 128, 70–86. [CrossRef]

2. D‘Ans, P.; Degrez, M. How to minimise thermal fatigue in surface multi-treatments and coatings?
Comput. Mater. Sci. 2012, 62, 276–281. [CrossRef]

3. Birman, V.; Byrd, L.W. Modeling and Analysis of Functionally Graded Materials and Structures.
Appl. Mech. Rev. 2007, 60, 195–216. [CrossRef]

4. Hamza-Cherif, S.M.; Houmat, A.; Hadjoui, A. Transient heat conduction in functionally graded materials.
Int. J. Comput. Methods 2007, 4, 603–619. [CrossRef]

5. Sakurai, H. Transient and steady-state heat conduction analysis of two-dimensional functionally graded
materials using particle method. WIT Trans. Eng. Sci. 2009, 64, 45–54. [CrossRef]

6. Ma, C.C.; Chen, Y.T. Theoretical analysis of heat conduction problems of nonhomogeneous functionally
graded materials for a layer sandwiched between two half-planes. Acta Mech. 2011, 221, 223–237. [CrossRef]

7. Zhao, N.; Cao, L.; Guo, H. Transient heat conduction in functionally graded materials by LT-MFS.
Adv. Mater. Res. 2011, 189, 1664–1669. [CrossRef]

8. Rahideh, H.; Malekzadeh, P.; Haghighi, M.G. Heat conduction analysis of multi-layered FGMs considering
the finite heat wave speed. Energy Convers. Manag. 2012, 55, 14–19. [CrossRef]

9. Khan, W.A.; Aziz, A. Transient heat transfer in a functionally graded convecting longitudinal fin. Heat Mass
Transf. 2012, 48, 1745–1753. [CrossRef]

10. Zajas, J.; Heiselberg, P. Determination of the local thermal conductivity of functionally graded materials by a
laser flash method. Int. J. Heat Mass Transf. 2013, 60, 542–548. [CrossRef]

11. Akbarzadeh, A.H.; Chen, Z.T. Dual phase lag heat conduction in functionally graded hollow spheres. Int. J.
Appl. Mech. 2014, 6, 1450002. [CrossRef]

12. Li, M.; Wen, P.H. Finite block method for transient heat conduction analysis in functionally graded media.
Int. J. Numer. Methods Eng. 2014, 99, 372–390. [CrossRef]

13. Li, G.; Guo, S.; Zhang, J.; Li, Y.; Han, L. Transient heat conduction analysis of functionally graded materials
by a multiple reciprocity boundary face method. Eng. Anal. Bound. Elem. 2015, 60, 81–88. [CrossRef]

14. Yang, Y.C.; Wang, S.; Lin, S.C. Dual-phase-lag heat conduction in a furnace wall made of functionally graded
materials. Int. Commun. Heat Mass Transf. 2016, 74, 76–81. [CrossRef]

15. Cimmelli, V.A.; Jou, D.; Sellito, A. Heat transport equations with phonons and electrons. Acta Appl. Math.
2012, 122, 117–126. [CrossRef]

16. Jou, D.; Carlomagno, I.; Cimmelli, V.A. A thermodynamic model for heat transport and thermal wave
propagation in graded systems. Phys. E Low-Dimens. Syst. Nanostruct. 2015, 73, 242–249. [CrossRef]

http://dx.doi.org/10.1016/j.compstruct.2015.03.010
http://dx.doi.org/10.1016/j.commatsci.2012.05.010
http://dx.doi.org/10.1115/1.2777164
http://dx.doi.org/10.1142/S0219876207001254
http://dx.doi.org/10.2495/MC090051
http://dx.doi.org/10.1007/s00707-011-0498-7
http://dx.doi.org/10.4028/www.scientific.net/AMR.189-193.1664
http://dx.doi.org/10.1016/j.enconman.2011.09.020
http://dx.doi.org/10.1007/s00231-012-1020-z
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.01.030
http://dx.doi.org/10.1142/S1758825114500021
http://dx.doi.org/10.1002/nme.4693
http://dx.doi.org/10.1016/j.enganabound.2015.03.006
http://dx.doi.org/10.1016/j.icheatmasstransfer.2016.03.005
http://dx.doi.org/10.1007/s10440-012-9731-1
http://dx.doi.org/10.1016/j.physe.2015.05.026


Entropy 2019, 21, 463 14 of 14

17. Jou, D.; CarIomagno, I.; Cimmelli, V.A. Rectification of low-frequency thermal wave in graded SicGe1−c.
Phys. Lett. A 2016, 380, 1824–1829. [CrossRef]

18. Swaminathan, K.; Sangeetha, D. Thermal analysis of FGM plates—A critical review of various modelling
techniques and solution methods. Compos. Struct. 2017, 160, 43–60. [CrossRef]

19. Hahn, D.W.; Özisik, M.N. Heat Conduction; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.
20. Dettori, R.; Melis, C.; Cartoixà, X.; Rurali, R.; Colombo, L. Thermal boundary resistance in semiconductors

by non-equilibrium thermodynamics. Adv. Phys. X 2016, 1, 246–261. [CrossRef]
21. Machrafi, H.; Lebon, G.; Jou, D. Thermal rectifier efficiency of various bulk-nanoporous silicon devices. Int. J.

Heat Mass Transf. 2016, 97, 603–610. [CrossRef]
22. Tamura, S.; Ogawa, K. Thermal rectificatioin in nonmetalic solid junctions: Effect of Kapitza resistance.

Solid State Commun. 2012, 152, 1906–1911. [CrossRef]
23. Saha, B.; Koh, Y.K.; Feser, J.P.; Sadasivam, S.; Fisher, T.S.; Shakouri, A.; Sands, T.D. Phonon wave effects in

the thermal transport of epitaxial TiN/(Al, Sc)N metal/semiconductor superlattices. J. Appl. Phys. 2017,
121, 015109. [CrossRef]

24. Ezzahri, Y.; Dilhaire, S.; Grauby, S.; Rampnoux, J.M.; Claeys, W. Study of thermomechanical properties
of Si/SiGe superlattices using femtosecond transient thermoreflectance technique. Appl. Phys. Lett. 2005,
87, 103506. [CrossRef]

25. Vo, T.Q.; Barisik, M.; Kim, B.H. Atomic density effects on temperature characteristics and thermal transport
at grain boundaries through a proper bin size selection. J. Chem. Phys. 2016, 144, 194707. [CrossRef]

26. Gonzalez-Valle, C.U.; Ramos-Alvarado, B. Spectral mapping of thermal transport across SiC−water
interfaces. Int. J. Heat Mass Transf. 2018, 131, 645–653. [CrossRef]

27. Zhang, Y.; Ma, L. Optimization of ceramic strength using elastic gradients. Acta Mater. 2009, 57, 2721–2729.
[CrossRef] [PubMed]

28. Zhang, Y.; Sun, M.J.; ; Zhang, D. Designing functionally graded materials with superior load-bearing
properties. Acta Biomater. 2012, 8, 1101–1108. [CrossRef]

29. Shen, H.S. Functionally Graded Materials Nonlinear Analysis of Plates and Shells; Taylor & Francis: Abingdon,
UK, 2009.

30. Carrera, E.; Fazzolari, F.A.; Cinefra, M. Thermal Stress Analysis of Composite Beams, Plates and Shells:
Computational Modelling and Applications; Academic Press, Elsevier: Amsterdam, The Netherlands, 2017.

31. Kreuzer, H.J. Nonequilibrium Thermodynamics and Its Statistical Foundations; Clarendon Press: Oxford,
UK, 1981.

32. Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method;
Longman Scientific & Technical: Harlow, UK, 1995.

33. Núñez, J.; Ramos, E.; Lopez, J.M. A mixed Fourier–Galerkin–finite-volume method to solve the fluid dynamics
equations in cylindrical geometries. Fluid Dyn. Res. 2012, 44, 031414. [CrossRef]

34. Alipour, S.M.; Kiani, Y.; Eslami, M.R. Rapid heating of FGM rectangular plates. Acta Mech. 2015, 227, 421–436.
[CrossRef]

35. Hassanzadeh, R.; Bilgili, M. Improvement of thermal efficiency in computer heat sink using functionally
graded materials. Commun. Adv. Comput. Sci. Appl. 2014, 2014, cacsa-00018. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.physleta.2016.03.030
http://dx.doi.org/10.1016/j.compstruct.2016.10.047
http://dx.doi.org/10.1080/23746149.2016.1175317
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.02.048
http://dx.doi.org/10.1016/j.ssc.2012.06.024
http://dx.doi.org/10.1063/1.4973681
http://dx.doi.org/10.1063/1.2009069
http://dx.doi.org/10.1063/1.4949763
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.11.101
http://dx.doi.org/10.1016/j.actamat.2009.02.037
http://www.ncbi.nlm.nih.gov/pubmed/20161019
http://dx.doi.org/10.1016/j.actbio.2011.11.033
http://dx.doi.org/10.1088/0169-5983/44/3/031414
http://dx.doi.org/10.1007/s00707-015-1461-9
http://dx.doi.org/10.5899/2014/cacsa-00018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mathematical Modeling
	Initial and Boundary Conditions
	Grading of the Material
	 Entropy Calculation
	 Numerical Methodology

	 Numerical Results
	Validation of the Numerical Code
	Numerical Results for the Present Case

	 Discussion
	 Concluding Remarks
	References

