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Abstract: Fractal geometry provides a powerful tool for scale-free spatial analysis of cities, but the 
fractal dimension calculation results always depend on methods and scopes of the study area. This 
phenomenon has been puzzling many researchers. This paper is devoted to discussing the problem 
of uncertainty of fractal dimension estimation and the potential solutions to it. Using regular 
fractals as archetypes, we can reveal the causes and effects of the diversity of fractal dimension 
estimation results by analogy. The main factors influencing fractal dimension values of cities 
include prefractal structure, multi-scaling fractal patterns, and self-affine fractal growth. The 
solution to the problem is to substitute the real fractal dimension values with comparable fractal 
dimensions. The main measures are as follows. First, select a proper method for a special fractal 
study. Second, define a proper study area for a city according to a study aim, or define comparable 
study areas for different cities. These suggestions may be helpful for the students who take interest 
in or have already participated in the studies of fractal cities. 

Keywords: Fractal; prefractal; multifractals; self-affine fractals; fractal cities; fractal dimension 
measurement 

 

1. Introduction 

A scientific research is involved with two processes: description and understanding. A study 
often proceeds first by describing how a system works and then by understanding why [1]. 
Scientific description relies heavily on measurement and mathematical modeling, and scientific 
explanation is mainly to use observation, experience, and experiment [2]. Mathematical reasoning 
and systematic controlled experiment represent two bases of great achievements in the 
development of Western science [3]. The basic method of description is measurement, which forms 
a link between mathematical modeling and empirical studies [4]. The precondition of effective 
description by measurement and mathematical modeling is to find a characteristic scale, which 
always takes on a 1-dimension measure and is termed characteristic length [5–9]. However, for 
complex systems such as cities or systems of cities, it is difficult or even impossible to find a 
characteristic scale to make mathematical models or quantitative analyses. In this case, it is an 
advisable selection to replace characteristic scale with scaling notion. 

Fractal geometry provides a powerful tool of scaling analysis for complex systems, and it is 
useful in both theoretical and empirical researches on cities. A number of studies on fractal cities 
have verified the effect and power of fractal methods and fractal parameters [10–25]. Unfortunately, 
new problems have arisen in recent years, that is, the results of fractal dimension estimation for 
urban form depend on scope of study area and methods of fractal dimension measurement and 
calculation [11–16,26]. This puzzles many scholars who take interest in fractal cities for a long time. 
What is the root of this kind of problems? Opinions differ in the academic circle, and different 
scholars have different viewpoints. This paper is devoted to revealing the possible reasons for the 
diversity of fractal dimension calculation results in the fractal studies on cities. As a preparation, six 
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concepts are explained in advance as follows: (1) embedding space: the Euclidean space in which a 
fractal exists; (2) scaling range: the middle straight line segments in log–log plots reflect the 
relationships between the linear scales of measurement and the corresponding measures, and the 
slopes of the segments indicate fractal dimension; (3) real fractals: scaling range is infinite, and 
Lebesgue measure is zero; (4) prefractals: scaling range is finite, and Lebesgue measure is greater 
than zero; (5) monofractals, or unifractals: there is one scaling process; (6) multifractals: there is 
more than one scaling process. A viewpoint is that monofractals are mostly concerned with spaces, 
while multifractals deal with measures [27]. In fact, both monofractals and multifractals can be 
unified into the same mathematical framework by the ideas from entropy conservation [28]. The 
remaining parts of this paper are organized as follows. In Section 2, the relationships between 
measurements and fractal dimension are explained. In Section 3, various methods of fractal 
dimension estimation are collected and sorted. In Section 4, several related questions are discussed. 
Finally, the conclusions are drawn by summarizing the main points of this work. 

2. Measurement and Dimension 

2.1. Euclidean Measurement and Fractal Dimension 

As indicated above, scientific research begins with a description. In order to describe a thing, 
we should measure its number (for a point set), length (for a line), area (for a surface), or volume 
(for a body). Using number, length, area, or volume, we can define a measurement such as density 
and shape index [29]. In this way, the characters of a system can be condensed into a simple 
number. As Lord Kelvin once pointed out: “When you can measure what you are speaking about, 
and express it in numbers, you know something about it; but when you cannot measure it, when 
you cannot express it in numbers, your knowledge is of a meager and unsatisfactory kind.” (Cited 
from [4], p37) Therefore, Edwards Deming said, “In God we trust, all others bring data” (Cited from 
[30]). Once a number is obtained for a thing by measurement, some uncertainty is eliminated. Then 
we will say we gain information from it. Information indicates an increase of understanding and 
resolution of uncertainty [31]. For example, if we want to know the size of a lake, we can measure 
its area by means of an electronic map. The smaller the scale of measurement, the more accurate the 
result of measurement. If the scale becomes smaller and smaller, and the measurement results 
converges rapidly to a certain value, then we can say that the lake area has a characteristic scale. 
The characteristic length can be represented by the radius of the lake’s equivalent circle [4]. 

In urban geography, urban land use area can be used to reflect the extent of space filling. 
However, if we try to measure the total area of land use of a city, the process will become very 
complicated. First, it is hard to identify a clear urban boundary line. Second, the patches of urban 
land use on remoting sense images are too random, fragmented, and irregular to be exactly caught. 
Although the scale of measurement becomes smaller and smaller, the measurement results will 
never converge. Finally, the measurement process reaches the limit allowed by image resolution 
and is cut off. The essence of the problem from image resolution can be treated as a type of the finite 
size effect in fractal measurements. So, in order to characterize the land-use filling degree of urban 
space, we must find a new approach. According to fractal theory, urban area can be replaced by a 
scaling exponent, that is, fractal dimension. By the double logarithmic linear relation between scales 
(say, linear sizes of boxes) and corresponding measures (say, numbers of nonempty boxes), we can 
estimate a slope on a log–log plot [16,32]. The value of the slope indicates the fractal dimension, and 
the parameter can reflect the space filling extent of urban land use. 

It can be seen that there is a symmetry and duality relation between Euclidean geometry and 
fractal geometry. It is just Euclidean geometric measurement that leads to fractal dimensions. For a 
Euclidean geometry body, the dimension is known: 0 dimension for points, 1 dimension for lines, 2 
dimensions for surfaces, and 3 dimensions for bodies. Generally speaking, without measurement, 
we cannot know the length, area, or volume. In contrast, for a fractal object defined in an 
embedding space with given Euclidean dimension dE, the length, or area, or volume, is known in 
principle: if the topological dimension dT is 1, the length is infinite; if the topological dimension dT is 
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0, the length, or area, or volume, is 0. In theory, the Lebesgue measure of a real fractal object is zero. 
This suggests that a fractal defined in a 2-dimensional embedding space (dE = 2) have no area, and a 
fractal defined in a 3-dimensional embedding space (dE = 3) has no volume. However, without 
measurement and calculation, we cannot know its fractal dimension value. In the process of fractal 
measurement, common scales are always replaced by scaling, and the conventional measures such 
as length, area, and volume are replaced by fractal dimension. Where urban form is concerned, both 
area and fractal dimension can reflect space filling extent. If the area measurement of a city fails, we 
will use fractal dimension to replace the area to characterize it space filling. 

2.2. Uniqueness and Diversity of Fractal Dimension 

A geometric phenomenon has only one value of dimension, which is of Euclidean dimension 
or fractal dimension. In other words, for a given aspect of a geometric object, the dimension value is 
uniquely determined. For example, for a circle or a square, it has two aspects: area and perimeter. 
The dimension for area is 2, and the dimension for boundary line is 1. Where a fractal is concerned, 
thing seems to be complicated, but can be made clear. For a regular fractal defined in 1-dimension 
embedding space and its topological dimension is 0 (e.g., Cantor set), or for a fractal line defined in 
2-dimension embedding space but its topological dimension equals 1 (e.g., Koch curve, Peano 
curve), it has only one aspect and the fractal dimension is uniquely determined in theory. For a 
fractal object defined in 2-dimension embedding space, which bears two topological dimensions dT: 
0 for point sets and 1 for boundary lines (e.g., Box growing fractal, Sierpinski gasket), it has two 
aspects corresponding to two different fractal dimensions. As a special example, Vicsek fractal (box 
growing fractal) has fractal area (aspect 1, dT = 0) and fractal boundary (aspect 2, dT = 1), both the two 
fractal dimension values are D = ln(5)/ln(3) = 1.465 [33]; Sierpinski gasket also has two aspects, the 
fractal dimension of fractal area (aspect 1, dT = 0) is D = ln(3)/ln(2) = 1.585 [5], while the fractal 
dimension of fractal boundary (aspect 2, dT = 1) is D = ln(5)/ln(2) = 2.3219 [34]. Please note that the 
similarity dimension and radial dimension can exceed the dimension value of its embedding space; 
in contrast, the box dimension must come between the topological dimension dT and the Euclidean 
dimension of the embedding space dE [12,14,16,28,32]. The Koch lake is a special case, which also 
has two aspects: area and perimeter. The dimension for area is 2, and the dimension for boundary 
curve is 1.2619 [5]. The perimeter of the Koch lake is a fractal line (dT = 1), but the area within the 
perimeter is a Euclidean plane (dT = 2). 

Fractal studies on cities are neither pure mathematical processes nor absolute true portrayal of 
cities. Just like any other scientific research, urban studies based on fractal geometry are involved 
with three worlds, that is, real world, mathematical world, and computational world [35]. The 
mathematical world (objective world) is always linked to the real world (objective world) by the 
computational world (subjective world). Random fractals in the real world are more complex than 
the regular fractals in the mathematical world. For a fractal city defined in the 2-dimension space, if 
we examine the land-use pattern, it will be involved with two aspects, urban area and urban 
boundary. The fractal dimension of urban form can be estimated by the box-counting method 
[12,14,16,36–38], sandbox method [10], area–radius scaling (cluster growing) method [11,39–42], 
density–radius scaling method [43], length–area scaling [44], correlation and dilation methods [45], 
wave-spectrum scaling method [46], and so on; the fractal dimension of boundary line can be 
directly estimated by walking-divider method [47], or indirectly estimated by perimeter–area 
scaling method [48–50], and so on. Unfortunately, in empirical studies on city fractals, the process is 
very complicated. Differing from the field investigation in the real world and logic reasoning in the 
mathematical world, the fractal dimension estimation is conducted in the computational world. 
However, the subjectivity of fractal dimension measurement and calculation is not the fatal 
problem; the key lies in the fractal properties of cities, and this will be discussed in next section. 

2.3. Varied Fractal Dimension Calculation Methods 

In order to calculate fractal dimension, fractal scientists propose a number of methods. The 
most of these methods are generic in different fields, and they were summarized and sorted by 
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fractal experts years ago [8]. In urban studies, fractal dimension estimation methods were once 
researched, developed, and sorted by urban theoreticians such as Michael Batty, Frankhauser, and 
Paul Longley [11,39]. Generally speaking, different methods have different uses, but sometimes, we 
can use different methods to estimate the same fractal dimension. For example, at least four types of 
methods can be used to estimate the fractal dimension geographical boundaries [11,50]. Now, 
various fractal dimension methods have been introduced into fractal city studies. 

First, different methods can be employed to compute the fractal dimensions for different 
aspects of a city or a system of cities. Based on time series of urban evolution, the fractal dimensions 
of dynamic processes can be estimated; based on spatial datasets, the fractal dimensions of spatial 
structure of cities can be estimated; based on sectional data of cities, the fractal dimensions of 
rank-size distributions and hierarchies can be estimated (Table 1). The datasets of time series, space 
series, and hierarchy series can be used to make different types of spatial analyses and correlation 
analyses for urban studies [51]. 

Second, different methods can be utilized to calculate different types of urban fractal 
dimension. In the majority of cases, we compute the self-similar fractal dimensions of urban form or 
urban systems, but sometimes, we are concerned about the self-affine fractal dimension of urban 
growth [52]. Self-similar fractal dimension and self-affine fractal dimension represent two different 
but related fractal parameters (Table 2). Self-similar growth is isotropic growth, while self-affine 
growth indicates anisotropic growth [33]. Generally speaking, the density distribution of urban 
transport network takes on self-similar growth with isotropy, while urban population and land-use 
expansion takes on self-affine growth with anisotropy. 

Third, a variety of methods can be used to compute the same fractal dimension of cities. The 
solution to a problem is not the only one. For each aspect of a city fractal, more than one approaches 
can be used to estimate the fractal dimension (Table 3). For example, we can use the 
walking-divider method, perimeter–area scaling method, and box-counting method to estimate the 
fractal dimension of urban boundary [11,47,50,53]. In theory, the three methods are equivalent to 
each other. An aspect of a fractal object has only one fractal dimension. However, in practice, the 
calculation results from different methods are not always consistent with each other. This gives rise 
to a number of problems and different opinions about fractal dimension calculation of cities. 

Table 1. Methods of urban fractal dimension estimation based on time series, spatial structure, and 
hierarchical structure. 

Object Method Fractal dimension 
Time series (process) Power spectrum Self-affine and self-similar 

dimension 
Reconstructing phase space Correlation dimension 
Elasticity relation Similarity dimension 
…… …… 

Spatial structure, texture, and distribution 
(pattern) 

Box counting method Self-similar dimension 
Sandbox Self-similar dimension 
Radius scaling (cluster 
growing) 

Self-similar dimension 

Wave spectrum Self-affine and self-similar 
dimension 

Walking-divider method Self-similar dimension 
Perimeter–area scaling Self-similar dimension 
…… …… 

Hierarchical structure (cascade), 
Scale-free network 

Size distribution Self-similar dimension 
Hierarchical scaling Self-similar dimension 
Allometric scaling Self-similar dimension 
Renormalization Self-similar dimension 
…… …… 
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Table 2. Fractal dimension estimation methods for self-similar patterns and self-affine processes of 
cities. 

Fractality Aspect Method 
Self-similarity Area/Point 

(spatial structure) 
Box counting method 
Prism counting method 
Area–radius scaling (cluster growing) 
Sandbox method 
Wave spectrum analysis 
…… 

Boundary/Line (spatial texture) Walking-divider method 
Perimeter–area scaling 
…… 

Network Renormalization 
…… 

Self-affinity Area/Line Fractional Brownian Motion (FBM) 
Wave spectrum 
…… 

Multifractality Points/Lines/Areas Renyi entropy measurement and Legendre transform 
Reconstruction of probability (μ-weight method) 
Wavelet analysis 
…… 

Table 3. Direct and indirect fractal dimension estimation methods for cities. 

Property Method (Type) Method (Subtype) 
Direct Box counting Common box, prism box, sandbox 

Radius scaling (cluster 
growing) 

Area–radius scaling, number–radius scaling, density–radius scaling, 
radius of gyration 

Walking-divider Various step length processes 
…… …… 

Indirect Spectral analysis Wave spectrum, power spectrum 
Geometric measure relation Allometric scaling, perimeter–area scaling, length–area scaling, 

elasticity relation 
Fractional Brownian Motion (mainly for self-affine process) 
…… …… 

3. Solutions to Fractal Dimension Estimation Problems 

3.1. A Dilemma of Fractal Dimension Estimation 

To make or use a mathematical model, we must find an effective algorithm and approach to 
determine its parameter values. The algorithms include the ordinary least squares (OLS), maximum 
likelihood estimation (MLE), and major axis method (MAM). A number of measurement 
approaches, as displayed above, are proposed in literature to estimate fractal dimension values 
(Tables 1–3). Generally speaking, different methods are applied to different directions (different 
aspects or properties). For example, the walking-divider method can be used to estimate the fractal 
dimension of urban boundary dimension rather than urban area; power spectrum is used to 
research the urban evolution based on time series rather than urban form based on spatial data; 
fractional Brownian motion (FBM) is used to estimate self-affine record dimension rather than 
self-similar trail dimension; the sandbox method, clustering growing, and wave-spectrum are used 
to calculate the radial dimension for characterizing urban growth; the box-counting method is used 
to compute fractal dimensions for describing spatial structure and texture of urban morphology, 
and so on. Sometimes, several different methods can be applied to the same aspect of cities. For 
example, the box-counting method, area–radius scaling method, sandbox method, and wave 
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spectrum analysis based on density–radius scaling can be employed to estimate the fractal 
dimension of urbanized area. In theory, a fractal aspect has only one fractal dimension value, but 
unfortunately, in empirical studies, different methods often result in different fractal dimension 
estimation values, and in many cases, the numerical differences are statistically significant and 
cannot be ignored in a spatial analysis. Even for a given method, a fractal dimension value often 
depends on the size and central location of the study area defined by a researcher. This is involved 
with the uncertainty of fractal dimension calculation, which puzzles many fractal scientists. 

A simple prototype is helpful for understanding complex phenomena in scientific research. In 
order to study the atomic structure, physicists first explored the structure of the simplest atom, the 
hydrogen atom; in order to study the structure of viruses, biologists first concentrated on exploring 
the structure of simple virus, bacteriophages. Simple prototypes often form the beginning of 
theoretical analysis. To reveal the root of the problem of uncertainty in fractal dimension calculation, 
we can examine two regular fractals, including monofractal and multifractal patterns. All these 
regular fractals reflect prefractal structure because we can never look the real fractal patterns. The 
real fractals in geometry are just like the high-dimensional spaces in linear algebra, which can be 
imagined but can never be observed. All of the fractal images we encounter in books or articles 
represent prefractals rather than real fractals [54]. The difference between real fractals and 
prefractals is as follows: A real fractal has infinite levels, but a prefractal is a limited hierarchy; 
therefore, the Lebesgue measure of a real fractal equals 0, but the Lebesgue measure of a prefractal 
is not equal to 0. For a given aspect (say, area or boundary) of a regular monofractal object, we can 
apply different methods to its prefractal structure to determine its fractal dimension. Different 
methods lead to the same result, which represents the real fractal dimension value. However, for a 
multifractal object, the real fractal dimension cannot be computed by applying some method to its 
prefractal pattern. We can only obtain comparable parameters rather than real fractal dimension for 
multifractal systems. 

By analyzing the regular fractal objects, we can gain new insight into fractal structure and 
fractal dimension measurement. First of all, let us see a simple regular growing fractal, which is 
employed to model urban growth in literature [11,21,39,42,55]. This fractal was proposed by Jullien 
and Botet [56] and became well known due to the work of Vicsek [33], and it is also termed Vicsek’s 
figure or box fractal (Figure 1). Three approaches can be applied to its prefractal pattern, including 
the box-counting method, sandbox method, and cluster growing scaling method. The third 
approached can be divided into two equivalent methods: area (number)–radius scaling and 
density–radius scaling. According to its regular composition, we can obtain the datasets comprising 
the first 10 steps (Table 4). Based on the box-counting method, sandbox method, and area–radius 
scaling method, the scaling exponent is just its fractal dimension, and the value is D = ln(5)/ln(3) = 
1.465. Based on the density–radius scaling method, the scaling exponent is a = 2–D = 0.535, and thus 
the fractal dimension is also D = 2–0.535 = 1.465. This value is exactly the real fractal dimension of 
this fractal object. 

Table 4. Box-counting method, sandbox method, and cluster radius scaling methods for fractal 
dimension of a regular monofractal growing fractal. 

Level Box-Counting Method Sandbox Method Cluster Growing and Radius Scaling 
m Box Side 

Length r 
Box 
Number 
N(r) 

Sandbox 
Side Length 
L 

Box 
Number 
N(L) 

Radius R Fractal Unit 
Number 
N(R) 

Density 
ρ(R) 

0 1.0000 1 1 1 0.7071 1 1.0000 
1 0.3333 5 3 5 2.1213 5 0.5556 
2 0.1111 25 9 25 6.3640 25 0.3086 
3 0.0370 125 27 125 19.0919 125 0.1715 
4 0.0123 625 81 625 57.2756 625 0.0953 
5 0.0041 3125 243 3125 171.8269 3125 0.0529 
6 0.0014 15,625 729 15,625 515.4808 15,625 0.0294 
7 0.0005 78,125 2187 78,125 1546.4425 78,125 0.0163 
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8 0.0002 390,625 6561 390,625 4639.3276 390,625 0.0091 
9 0.0001 1,953,125 19,683 1,953,125 13,917.9828 1,953,125 0.0050 
… … … … … … … … 

3R

9R
r=1/3

r=1/9

R

 

Figure 1. Three approaches to estimating fractal dimension of a regular fractal (the first 3 steps). 
Note: The schematic diagram of measurement method is drawn by referring to the work of Batty and 
Longley [11]. Sandbox method, radius–number scaling, and box-counting method can be employed 
to calculate the fractal dimension of this growing fractal. 

Further, let us examine a regular growing multifractal object, which reflects the pattern of 
spatial heterogeneity. This fractal is presented by Vicsek [33]. It can be used to model multifractal 
growth of cities [57]. The first three steps represent a prefractal process (Figure 2). The box-counting 
method can be used to calculate its global dimension. Step 1: fractal dimension D = 0 (for a point, 
the fractal dimension can be obtained by L’Hospital’s rule). Step 2: box dimension D = –ln(17)/ln(1/5) 
= 1.7604. Step 3: box dimension D = –ln(289)/ln(1/25) = 1.7604. If we apply the sandbox method to 
the figure in the third step, the fractal dimension is also D = 1.7604. However, two problems can be 
found by careful investigation. First, different fractal units bear different fractal dimension values. 
One of basic properties of fractals, including monofractals and multifractals, is entropy 
conservation: different fractal units at a given level has the same Shannon entropy value 
[9,28,58–61]. In fact, different fractals, except fat fractals, can be unified into the same framework 
[28], and expressed by a transcendental equation as below [60,61] 

( )
(1 )

1
( ) 1q

N r
q Dq

i i
i
P r r −

=

= ,  (1) 

in which Pi denotes the growth probability of the ith fractal unit, ri represents the linear size of the 
ith fractal unit, q refers to the order of moment, and the power exponent Dq is termed the 
generalized correlation dimension [59]. For monofractals, we have, Dq ≡ D0; for self-affine fractals, 
different directions have different fractal dimension values, and for a given direction, we have Dq = 
D0; for multifractals, different parts of a multifractal system have different local fractal dimension 
values, and the global fractal dimension Dq depends on the moment order q [28]. Equation (1) can 
be employed to identify different fractals from varied complex systems. One of the commonalities 
of different fractals is the conservation of entropy, which can be derived from Equation (1). 
However, the fractal dimension does not comply with a conservation law. In fact, for a multifractal 
system, different parts have different local fractal dimensions. For example, for the second level of 
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the third step, the five parts have two fractal dimension values. The central part, box dimension is D 
= ln(1/17)/ln(1/5) = 1.7604; the other four parts, box dimension is D = ln(4/17)/ln(2/5) = 1.5791. Second, 
the parameter value estimated by the box-counting method and the sandbox method is not equal to 
its real dimension value. In theory, the calculated values represent the capacity dimension of this 
multifractals, i.e., D0 = 1.7604. The regular multifractal structure can be modeled by a transcendental 
equation based on probabilities and the corresponding scales. Where the third step is concerned, 
the multifractal transcendental equation can be constructed as follows 

5
(1 ) (1 ) (1 )

1

1 1 4 2( ) ( ) 4( ) ( ) 1
17 5 17 5

q q qq D q D q Dq q q
i i

i
P r − − −

=

= + = , (2) 

Using Matlab to find its numerical solutions, we can obtain its multifractal parameter values (Table 
5). The results show that the real capacity dimension is about D = 1.5995 < D = 1.7604. The capacity 
dimension based on the box-counting method and the sandbox method is in fact the maximum 
dimension, that is D–∞ = 1.7604. The capacity (D0) is the maximum value of the local dimension, 
while the maximum dimension (D–∞) is the upper range value of global dimension.  

Now, a basic judgment can be reached as follows. For a regular monofractal (Figure 1), the real 
fractal dimension value can be calculated by the prefractal structure. However, for a regular 
multifractal (Figure 2), the real fractal dimension values cannot be obtained by applying some 
method such as the box-counting method to its prefractal structure. This suggests that the resolution 
of remote sensing images influences the multifractal parameter estimation of cities, reminding us of 
the finite size effect in fractal measurements. In fact, for a random multifractal system, we cannot 
construct its multi-scaling transcendental equation such as in Equation (1). As a result, we will 
never know the real fractal parameter values. We can only estimate a set of comparable parameter 
values to replace the real values. In the real world, fractal cities have two properties. First, they are 
random multifractals rather the regular monofractals or regular multifractals; second, they only 
develop prefractal structure rather than real fractal structure. What is more, the prefractal structure 
of multifractals are always mixed up with self-affine processes, fat fractal components, or even 
fractal complements. In this case, the processes of measurements and analyses become very 
complicated relative to the regular fractals. 

Table 5. Four sets of fractal parameters of a regular growing multifractal (typical values). 

Moment 
Order q 

Global Parameters Local parameters 
Generalized Correlation 

Dimension Dq 
Mass 

Exponent τq 
Singularity 

Exponent α(q) 
Local fractal 

Dimension f(α(q)) 
–100 1.7429 –176.0374 1.7604 0.0000 
–10 1.6404 –18.0440 1.6933 1.1107 
–2 1.6054 –4.8161 1.6153 1.5855 
–1 1.6022 –3.2044 1.6081 1.5963 
0 1.5995 –1.5995 1.6020 1.5995 
1 1.5970 0.0000 1.5970 1.5970 
2 1.5949 1.5949 1.5930 1.5910 
10 1.5859 14.2730 1.5806 1.5330 

100 1.5798 156.3975 1.5791 1.5129 
Note: Multifractal parameters include global parameters and local parameters. The former comprises 
generalized correlation dimension and mass exponent, while the latter consists of local fractal 
dimension and singularity exponent. Global parameters describe the spatial dependence of 
multifractal elements from a global perspective, while local parameters describe the spatial 
heterogeneity of multifractal distributions from a local perspective. See [7,13,14,27,28,33,58–60]. 
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Figure 2. The prefractal structure of a regular growing multifractals (the first three steps). Note: The 
fractal pattern is adapted by referring to the work of Vicsek [33], but the figure is designed by the 
author. This fractal can be used to model multifractal growth of cities [14,57]. 

3.2. The Reasons for the Divergence of Calculation Results. 

In urban studies, the fractal dimension value is always influenced by the selection of method 
and the definition of the study area. Fractal dimension estimation depends on the method, and this 
is indeed a problem. However, study area (size, location) influences fractal dimension values, but 
this seems not to be a problem. The concrete reasons are as follows (Table 6). (1) Prefractal is the 
main reason for the influence of method on the fractal dimension values. For a real fractal, its 
scaling range is infinite; for a prefractal, its scaling range is limited to certain scales. The 
precondition of accurate calculation of fractal dimension for a random fractal is that the scale of 
measurement is close to infinitesimal in theory. For a given aspect of a given random fractal, if the 
measurement scale becomes smaller and smaller, different methods will lead to the similar fractal 
dimension values. However, for a prefractal, the linear size of measurement scale is limited to its 
lower bound of scaling range and cannot approach infinitely small scales. (2) Multifractal structure 
is the main reason for the influence of the size and central location of the study area on the fractal 
dimension values. The fractals in the real world are all random multifractals rather than 
monofractals. A monofractal object has only one scaling process, while multifractals have more than 
one scaling process. For a monofractal object, capacity dimension is equal to information dimension 
and correlation dimension, and global dimension is equal to local dimension. However, for a 
random multifractal, the capacity dimension is often greater than the information dimension, and 
the information dimension is often greater than the correlation dimension, and so on [28,33,59]. 
Different parts of a random multifractal object have different local fractal dimension, and different 
sizes of study area yield different fractal parameters. Thus, if we define different study area for a 
multifractal city, the results of fractal dimension estimation will be different. (3) Self-affine fractal 
process is a reason associated with the influence of both method and study area on fractal 
dimension estimation. Self-similar growth indicates isotropy, and measurement direction does not 
influence fractal dimension estimation, while self-affine growth implies anisotropy, and different 
measurement directions lead to different fractal dimension. Especially, self-affine growth causes 
area–radius scaling to break, and form what is called bi-fractal pattern in a log–log plot. The essence 
of bi-fractals rests with self-affine development and growth of fractal systems, which can be 
illustrated by testing the regular self-affine fractals. 

Table 6. Three significant properties of city fractals: prefractal structure, multifractal form, and 
self-affine growth. 

City Fractal Theoretical Problem Practical Problem 
Random 
prefractal 

The range of measurement is limited. The 
topological dimension is easily misunderstood, 
and this leads to misunderstanding on scaling 

Finite size effect influences the 
identification of patterns, which in 
turn influence fractal dimension 
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range. estimation. 
Random 
multifractal 

Different moment order q lead to different global 
fractal dimensions, different parts have different 
local fractal dimensions. 

The scope of study area and the angle 
of view influence the multifractal 
parameter spectrums. 

Random 
self-affine 
fractal 

Anisotropic growth lead to different fractal 
dimension values in different directions. 

It is hard to estimate fractal dimension 
using radius scaling method. 

3.3. Solutions to Problems 

In the literature, the word “solution” has two basic meanings: one is finding a way of solving a 
problem or dealing with a difficult situation, and the other is an answer to a puzzle or to a problem 
in mathematics. In this paper, I do not provide an answer to a puzzle/problem of fractal dimension 
calculation; instead, I discuss the ways of solving the uncertainty problem of fractal dimension 
measurements. The problems cannot be solved once and for all. Different problems should be 
treated differently, and different types of problems need different types of solutions (Table 7). There 
are two main ideas to solve the problem: one is to find a proper method for a special studies on 
fractal cities, and the other is to replace the real fractal parameters with the comparable fractal 
parameters. Based on the above explanation, the possible solutions to the problems of fractal 
dimension estimation of cities can be presented as follows. 

First, the solutions to the problem of method dependence of fractal dimension estimation. The 
results of model parameter estimation depend on the methods, and this phenomenon is not only in 
the field of fractal research. It is hard to find good solutions to this kind of problem. In fact, for a 
random system or based on random variables, it is unlikely to find the true parameter values for its 
mathematical models. Scientists then look for comparable parameter values instead of real 
parameter values (Faute de mieux). In urban studies on fractals, two approaches are employed to 
deal with this kind of problems. One approach is to replace the real fractal values by comparable 
fractal dimension values which are based on the same criterion for different times, spaces, levels, 
and scales; the other approach is to find the most suitable method for specific research objectives. 
As indicated above, different methods have different merits and can be applied to different aspects 
and directions of urban studies (Tables 1–3). If we measure the fractal dimension of geographical 
fractal lines such as urban boundaries, the advisable methods are the walking-divider method and 
the area–perimeter scaling method [11,47,50]; if we research complex patterns and spatial structure, 
we can utilize the box-counting method [12,14,16,37]; if we explore the dynamic process of isotropic 
urban growth, we should adopt the sandbox method, area–radius scaling, and density–radius 
scaling [10,11]; if we examine anisotropic urban growth, we should adopt wave-spectrum analysis 
based on density–radius scaling [34,46]. Generally speaking, in order to estimate the fractal 
dimension of an urban boundary, we often regard urban area as Euclidean surface with an integral 
dimension d = 2 [11]. Thus, we can make use of the area–perimeter scaling method [48,59]. However, 
if we try to compare the fractal dimension value of urban form with that of urban boundary for the 
same city, we should adopt the box-counting method, which can give comparable fractal dimension 
for both boundary line and urban pattern within this boundary. 

Second, the solutions to the problems of study are scope dependence of fractal dimension 
calculation. A random prefractal object has a limited scaling range, in which fractal property 
appears. As shown above, for a given aspect (area or boundary) of a regular monofractal, its fractal 
dimension value is unique, and the real fractal dimension can be calculated through its prefractal 
structure. However, for a regular multifractal object, different parts have different local fractal 
dimension values, and the real fractal dimension values cannot be computed by its prefractal 
structure. No regular monofractal can be found in the real world. A real city is a random 
multifractal system with prefractal structure. It is impossible to identify the boundaries of different 
fractal units. Different sizes of study area process different global fractal dimensions, and different 
parts have different local fractal dimensions. Consequently, based on different scope (size and 
central location) of a study area, different fractal parameter values will be worked out. We never 
know the sets of real fractal dimension values. In this case, we can use relative comparable 



Entropy 2019, 21, 453 11 of 17 

 

parameter values instead of absolute real parameter values. In particular, we can employ 
multifractal dimension spectrums to make spatial analyses for cities and systems of cities. To obtain 
comparable fractal dimension, we must define a comparable study area. Where urban form and 
box-counting method are concerned, the procedure is as follows: (1) use a proper method and the 
concept from characteristic scales to define objective urban boundaries; (2) define a measure area 
based on certain direction for the urban envelope; (3) use the measure area as the maximum box for 
box-counting. In the specific research, the methods should be adjusted according to specific 
problems and research objectives. 

Table 7. The possible directions of solving problems in fractal dimension estimation. 

Factor Reason Mechanism Influence Solution 
Method Pre-fractal Scaling range Analytical 

conclusions 
Select the most 
suitable method 

Study 
area 

Size of 
study area 

Pre-multifractals Multi-scaling pattern 
and range 

Analytical 
objects 

Define a comparable 
scope 

Place of 
study area 

Pre-multifractals Multi-scaling process 
and range 

Analytical 
objects 

Define a comparable 
location 

4. Questions and Discussion 

In scientific research, if we cannot obtain absolute measurements based on certain values, we 
should try to find the relative measurements based on comparable values. If we only focus on the 
fractal studies on cities, the uncertainty of fractal dimension estimation is a problem; however, if we 
look at the entire system of scientific methodology, this kind of uncertainty is not a problem. In fact, 
the uncertainty of model parameter estimation is a common phenomenon in scientific research. 
Mathematical models and quantitative analyses can be divided into two types: one is based on 
characteristic scales, and the other is based on scaling. The traditional mathematical tools are 
mainly based on characteristic scales, while fractal studies are mainly based on scaling. In 
conventional mathematical modeling processes, the parameter estimation relies heavily on 
computational methods. It is impossible to evaluate the real parameters for the great majority of 
mathematical models by empirical analysis. A number of examples are listed as follows (Table 8). (1) 
For the simplest linear regression model, a number of algorithms such as the least squares method, 
maximum likelihood method, major axis method, and reduced major axis method can be employed 
to estimate the regression coefficients, and different methods lead to different results. Moreover, 
sample size and variable dimension also influence the constant and regression coefficients. (2) For 
factor analysis, the calculation results depend on the methods of factor extraction and factor 
rotation, and there are various methods for factor extraction (e.g., orthogonal transformation, 
maximum likelihood) and rotation (e.g., Quartimax, Varimax). What is more, the starting point of 
factor analysis can be correlation coefficient matrix or covariance matrix, and different starting 
points lead to different numerical results. (3) For hierarchical cluster, a final output depends on the 
methods of cluster and measure, and there are various methods for cluster (e.g., between-groups 
linkage, within-groups linkage) and measure (e.g., Euclidean distance, Pearson correlation). 
Different measure methods lead to different proximity matrixes, and different cluster methods 
based on different proximity matrixes lead to different final results. Moreover, the value transform 
methods (e.g., standardization, normalization, etc.) influence cluster analysis. (4) For 
auto-regression analysis based on time series, there are various methods for parameter estimation; 
for spatial autocorrelation analysis, different impedance functions lead to different contiguity 
matrixes, which in turn lead to different Moran’s I, Geary’s C, Getis’s G, and so on. 

The uncertainty of fractal dimension calculation is associated with the uncertainty of scaling 
exponent estimation. Scaling is one of basic properties of fractals. If and only if a scaling 
phenomenon satisfies three conditions, it can be regarded as a fractal set. The conditions include 
scaling law (scale invariance), fractal dimension (Hausdorff dimension is greater than its 
topological dimension), and entropy conservation (the Shannon entropy of each fractal units is a 



Entropy 2019, 21, 453 12 of 17 

 

constant) [28]. However, many natural and social complex systems follow scaling law, but have no 
fractal dimension and do not meet the entropy conservation condition. These types of complex 
systems cannot be effectively modeled by traditional mathematical methods. In this case, we can 
use scaling exponents to characterize the complex systems. In recent years, scaling has become a hot 
topic in urban studies, and a number of interesting research results emerged [62–68]. Among 
various urban scaling, the most frequently appearance is the allometric scaling. However, in 
empirical studies, it is difficult to obtain stable scaling exponent values. Algorithms, study area, 
datasets, scaling ranges, and so on, influence the results of scaling exponent estimation [69]. A 
recent discovery is that the scaling exponent values of the allometric relation between patents and 
city sizes depend on the population size cut-offs [70]; Another meaningful discovery is that the 
scaling exponent values of the allometric relation between urban CO2 emissions and city population 
sizes depend on the definition of urban area [71,72]. A scaling exponent is often directly or 
indirectly related to fractal dimension. The allometric scaling exponent is actually the ratio of one 
fractal dimension to another fractal dimension [69]. In this sense, the uncertainty of fractal 
dimension computation account for the uncertainty of scaling exponent estimation of cities. 

As indicated above, fractal dimension calculation is implemented in the computational world 
rather than in the mathematical world. Cities appearing in the real world are objective, but it is hard 
to reveal the deep structure and the complicated relationships between causes and effects hidden 
behind urban world. Regular fractals, fractal laws, and strict logic reasoning defined in the 
mathematical world are also objective, but the graceful mathematical processes are not consistent 
with the real systems. We can use Koch snowflake to model the central place system of human 
settlements, but the real central place networks differ from the ideal Koch snowflake pattern. We 
can employ the diffusion-limited aggregation (DLA) models to simulate urban growth and form, 
but real urban evolution differs from the DLA process. So, Albert Einstein once said, “I don't 
believe in mathematics.” He observed, “As far as the laws of mathematics refer to reality, they are 
not certain, and as far as they are certain, they do not refer to reality.” In fact, as a pure theoretical 
physicist, Einstein ignored an important linkage, which represents a logic bridge between 
mathematical world (e.g., theoretical models and laws) and real world (e.g., urban growth and 
form). The bridge coming between reality and mathematics is what is called computational world, 
which is a subjective world to some extent. Spatial measurements, data processing, algorithms, and 
so on, are all defined in the computational world. The ways of measurements and data extraction as 
well as choices of algorithms and models varies from person to person. Therefore, for the urban 
form of a same city, the fractal dimension estimation results may be different from one another 
significantly. The more experienced a scholar is, the better the process of fractal dimension 
calculation is handled. However, no matter how hard we try, we can never obtain the real values or 
absolutely exact values for the fractal parameters of a city. The best results that we can gain in a 
study are a set of comparable fractal dimension values for different times, places, levels, or scales. 

The three worlds are related to three types of studies about fractal cities. According to the 
theory of systems analysis, academic research falls into three categories: behavioral research, 
normative research, and values research [73]. Behavioral research on fractal cities are a type of 
positive studies, which correspond to the real world; normative research on fractal cities are pure 
theoretical studies, which correspond to the mathematical world. On the one hand, fractal geometry 
is a powerful tool for exploring nonlinear processes, irregular patterns, and scale-free distributions 
(spatial distributions and probability distributions), and can be used to bright to light the evolution 
process and spatial pattern of cities. On the other, a fractal suggests an unlimited filling process in a 
limited space, which leads to an optimized pattern. In this sense, fractals represent the optimum 
designs in nature and society. A fractal object can occupy its space in the most efficient way. Fractal 
geometry can be devoted to finding the most reasonable structure of urban systems or construct 
ideal models for urban spatial analyses. The two types of research, behavioral research and 
normative research, can be linked by the values research. For fractal cities, the values research is to 
develop a set of evaluation indexes, by which we can judge the pros and cons of the development of 
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a city in the past and at present (for behavioral research) and its direction of optimal design in the 
future (for normative research). 

The emergence of fractal geometry represents a discovery of new form of symmetry, i.e., 
scaling symmetry. The basic property of a fractal is its invariance under contraction or dilation [74]. 
Because of the scaling symmetry, it is impossible to find certain length, area, volume, and number 
for a scale-free system. In this case, we can use a scaling exponent to replace the common measures. 
One of the basic scaling exponents is fractal dimension. As a matter of fact, there must be some 
symmetry when there is immeasurable quantity [75]. The fractal concept came from the 
immeasurable length of the cost of Britain [76]. Today, fractal dimension seems to be another 
immeasurable quantity. Although we found various factors that affect fractal dimension 
measurements, there is no exclusion of the possibility that a kind of super symmetry is hidden 
behind the scaling symmetry [13]. What is more, spatial autocorrelation of urban patterns 
influences spatial measurement results. Reliable measurements depend on no spatial 
autocorrelation. These problems remain to be explored in future studies. All in all, we cannot give 
up eating for fear of choking, and cannot give up fractal geometry in urban studies because of the 
uncertainty of fractal dimension estimation. The application value of a measure or parameter value 
lies in comparability rather than reality or accuracy. It is like a small-scale map of a country or the 
world. A map is a typical model, and the mapping is a typical process of model building [77]. When 
we map the geographical things on the three-dimensional spherical surface to the two-dimensional 
plane, in any case, we will encounter the projection deformation, which results in the distortion of 
the spatial pattern on the map. However, the maps are very useful in everyday life and 
geographical research. 

Table 8. Diversity of methods for estimating model parameters or finding solutions to problems. 

Type 
Model Methodology 

Category Approach 
Characteristic 
Scale 

Regression 
analysis 

Algorithm Least squares, Maximum likelihood, Major axis, 
Reduced major axis, … 

Factor Extraction Principal components, Unweighted least squares, 
Generalized least squares, Maximum likelihood, 
Principal axis factoring, Alpha factoring, Image 
factoring, … 

Rotation None, Quartimax, Varimax, Equamax, Promax, Direct 
oblimin, … 

Analytical 
base 

Correlation matrix, covariance matrix 

Hierarchical 
cluster 

Cluster Between-groups linkage, Within-groups linkage, 
Nearest neighbor, Furthest neighbor, Centroid 
clustering, Median clustering, Ward’s method, … 

Measure Euclidean distance, squared Euclidean distance, cosine, 
Pearson correlation, Chebychev distance, Block 
distance, Mahalanobis distance, Minkowski distance, 
varied customized distance, 

Value 
transform 

None, standardization (Z scores), range standardization 
(range –1 to 1), range normalization (range 0 to 1), 
maximum magnitude of 1, mean of 1, standard 
deviation of 1, … 

Auto-regression Algorithm Exact maximum-likelihood, Cochrane–Orcutt, 
Prais–Winsten, Least squares, … 

Spatial 
autocorrelation 

Measurement Moran’s I, Geary’s C, Getis’ G, Ripley’s K, … 
Calculation Conventional formula, Three-step calculation, Matrix 

scaling, Standard deviation, Least square, … 
Contiguity 
matrix 

Power function, exponential function, step function, … 

Scaling Fractals Algorithm Least squares, Maximum likelihood, Major axis, 
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Reduced major axis, … 
Measurement Box-counting, sandbox, radius scaling, radius of 

gyration, walking divider, geometric measure relation, 
spectral analysis, distribution function, … 

5. Conclusions 

There are various approaches to fractal dimension estimation, and the great majority of them 
can be adopted to research fractal cities. Generally speaking, different methods are suitable for 
different directions of urban studies. Sometimes, several different methods can be applied to the 
same aspect of fractal dimension estimation, but the results are different from each other 
significantly. What is more, changing the scope of study area for a city, the result will change 
accordingly. This gives rise to a dilemma of fractal dimension calculation, that is, fractal dimension 
values depend on both methods adopted and scope of study area defined in an empirical analysis. 
The main factors influencing fractal dimension calculation include prefractal structure, multifractal 
patterns, and self-affine fractal growth. The concrete reasons can be summarized as follows. First, 
random prefractal structure result in diversity of fractal dimension estimation based on different 
methods and the deviation of estimated fractal dimension values from real fractal dimension values. 
The regular monofractal dimension can be determined by its prefractal, but the dimension of a 
random fractal cannot be evaluated by its prefractal structure. The precondition of calculating its 
real or exact fractal dimension values lies in the linear scales of spatial measurement approaching to 
infinitely small size. If the linear size of spatial measurement is small enough, different methods will 
lead to the similar or even the same fractal dimension values. Unfortunately, due to the limited 
scaling ranges of random prefractals, the linear size of spatial measurement is confined to a certain 
range. Second, random multifractal patterns result in the deviation of estimated fractal dimension 
values from the real fractal dimension values and the dependence of fractal dimension values on the 
scope of study area. On the one hand, the global fractal dimension of a (regular or random) 
multifractal system cannot be determined by its prefractal structure. However, in practice, we can 
only face the prefractal structure rather than real fractal structure of random multi-scaling fractals. 
On the other hand, multifractals bear spatial heterogeneity and different parts have different local 
fractal dimension values. Consequently, changing the size or the central location of study area 
results in different fractal dimension calculation results. Third, self-affine fractal growth influences 
the fractal dimension estimation. A self-similar growing fractal bears isotropic pattern and its fractal 
dimension can be estimated by area–radius scaling or density–radius scaling. However, many fractal 
growing processes of cities take on self-affinity and anisotropy. In this case, the scaling range often 
break into two segments, and it is difficult to find the reliable fractal dimension values. Because of 
the interaction between random patterns, prefractal structure, multi-scaling processes, and 
self-affine growth, things become very complicated and the fractal dimension values take on 
diversity in an urban study. In addition, the spatial autocorrelation of geographical phenomena is 
one of the possible influencing factors of fractal dimension measurement results. However, this 
problem is more of an algorithmic problem than the topic discussed in this article. Therefore, there is 
no in-depth discussion on this issue for the time being. The dependence of fractal dimension values 
on scope of study area is indeed a problem, but strictly speaking, the dependence of the fractal 
dimension on methods is not a problem. In mathematical modeling and quantitative analysis, the 
method-dependence of model parameter values is a common phenomenon. The solution to the 
problems lies in two aspects. On the one hand, one must find the most proper method for the special 
aspect of a city fractal and for the special direction of a study; on the other, we can use the 
comparable fractal dimension values to replace the real or exact fractal dimension values. 
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