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Abstract: A CoCrFeNiMo0.2 high entropy alloy (HEA) was prepared through powder metallurgy
(P/M) process. The effects of annealing on microstructural evolution and mechanical properties of P/M
HEAs were investigated. The results show that the P/M HEA exhibit a metastable FCC single-phase
structure. Subsequently, annealing causes precipitation in the grains and at the grain boundaries
simultaneously. As the temperature increases, the size of the precipitates grows, while the content
of the precipitates tends to increase gradually first, and then decrease as the annealing temperature
goes up to 1000 ◦C. As the annealing time is prolonged, the size and content of the precipitates
gradually increases, eventually reaching a saturated stable value. The mechanical properties of the
annealed alloys have a significant correspondence with the precipitation behavior. The larger the
volume fraction and the size of the precipitates, the higher the strength and the lower the plasticity
of the HEA. The CoCrFeNiMo0.2 high entropy alloy, which annealed at 800 ◦C for 72 h, exhibited
the most excellent mechanical properties with the ultimate tensile strength of about 850 MPa
and an elongation of about 30%. Nearly all of the annealed HEAs exhibit good strength–ductility
combinations due to the significant precipitation enhancement and nanotwinning. The separation of
the coarse precipitation phase and the matrix during the deformation process is the main reason for
the formation of micropores. Formation of large volume fraction of micropores results in a decrease
in the plasticity of the alloy.

Keywords: powder metallurgy; high entropy alloy; microstructure; precipitation strengthening;
mechanical properties

1. Introduction

Designing strong and ductile metals has been among the most ambitious goals for
metallurgists [1–4]. During the past decade, a new concept of high entropy alloys (HEAs), which is
broadly defined based on the high entropy effect of alloys with multi-components, has attracted great
attention due to their unique superior properties, such as high strength, good ductility, high thermal
stability, corrosion and oxidation resistance [5–7]. The most studied HEAs can be divided into two
categories: one is FCC HEAs, with Fe, Co, Ni, Cr, Mn and other transition elements as main components,
and the other is BCC HEAs, with refractory metals as main components [8–10]. Previous studies have
demonstrated that FCC structured HEAs generally exhibited high tensile elongation but relatively low
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yield strength, while BCC alloys are the opposite, although some relatively ductile BCC refractory
HEAs have been reported [11–13].

Simultaneous improvement of strength and ductility of alloys has been very challenging.
Although single-phase FCC high-entropy alloys struggle to meet the high strength requirements
of engineering materials, such alloys exhibit high work hardening rates and uniform deformation
behavior [14,15]. These characteristics make high-entropy alloys prone to be an excellent composite
matrix. Yang et al. [1] reported that the FCC based (CoFeNi)86-Al7Ti7 alloy can be significantly
strengthened by the L12 multicomponent intermetallic nanoparticles and exhibit superior strength of
1.5 GPa and ductility as high as 50% in tension at ambient temperature. Liu et al. [16] reported that the
FCC CoCrFeNiNbx can be significantly strengthened by the Nb-enriched Laves phase with the HCP
structure. He et al. [17] reported that the addition of Al to the CoCrFeNiMn alloy can form a BCC
phase, resulted in a high tensile strength up to 1174 MPa. The above studies show that the formation
of high hardness reinforcing particles is an effective way to prepare high performance high entropy
composite alloys.

Presently, different kinds of topologically close-packed (TCP) phases, such as σ, µ, Laves, etc.
are observed in HEAs [18,19]. Adding this reinforcing phase to the FCC high entropy alloys can
significantly increase their strength, but at the same time significantly reduce their plasticity [20].
Based on the precipitation strengthening effect, the most important thing is to control the morphology
and distribution of the precipitated phase, and then to alleviate their harmful effects on ductility.
As reported, the size and distribution of the reinforcing phase is very sensitive to heat treatment
conditions. Gwalani et al. [21] reported that the L12 Ni3 (Ti, Al) nano-precipitates in the Al0.3CrFeCoNi
alloy can only be stably present in the temperature range of 500–600 ◦C. As the temperatures above
~700 ◦C, these precipitates are dissolved and replaced by coarser ordered B2 precipitates. Liu et al. [14]
reported that the precipitated nano σ phase formed during the heat treatment at 850–900 ◦C can
simultaneously increase the strength and plasticity of the CoCrFeNiMo0.3 alloy. Ming et al. [22]
reported that the Cr15Fe20Co35Ni20Mo10 HEA exhibit a superb strength–ductility combination by
precipitation hardening of nanoscale precipitates of Mo-rich µ phase. It is suggested that a reasonable
heat treatment process is essential for the formation of nano-precipitates, generally resulting in the
improved comprehensive mechanical properties of alloys.

Powder metallurgy technology is one of the effective methods to avoid component segregation and
obtain high performance composite materials. There have been many reports on powder metallurgy
high entropy alloys [23–25]. Due to the higher cooling rate during the preparation process, these alloys
typically exhibit an equiaxed microstructure. Presently, the effects of precipitation strengthening on
the mechanical properties of CoCrFeNi based HEAs prepared by powder metallurgy have not yet
been reported.

In the present research, a CoCrFeNiMo0.2 high entropy alloy was prepared by P/M process.
A systematic study on precipitation behavior of the reinforcing phase is obtained. The effects of
annealing on microstructure and mechanical properties of powder metallurgy CoCrFeNiMo0.2 high
entropy alloy were also discussed.

2. Experimental Procedures

The CoCrFeNiMo0.2 spherical powders were obtained by an atomization process with high purity
Fe Co Cr Ni and Mo raw materials. These raw materials were firstly melted in a vacuum furnace.
And then, the melt dropped through a ceramic tube and was atomized in high purity Ar with an
atomization pressure was 4 MPa. The chemical composition and oxygen content of the atomized
powders was characterized by chemical methods and the fusion method on a Leco O/N analyzer
(LECO TCH 600) respectively.

Subsequently, the CoCrFeNiMo0.2 alloy was prepared by a hot extrusion process with the atomized
powders. The dimensions of the stainless-steel mold used in the hot extrusion process is d60× 150 mm3.
The powder is first loaded into a stainless steel can, pre-heated at 1473 K for 60 min, and sealed under
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vacuum. The enclosed powders were immediately subjected to hot extrusion with an extrusion ratio
of 6 and a velocity of ~10 mm/s on a 2500 T hydraulic press. The as-extruded alloy was annealed at
different temperatures range from in the range between 700 and to 1000 ◦C in vacuum for different
times range from 2 to 72 h respectively, and then water quenched.

Tensile samples with d4 × 15 mm3 were prepared with the as-extruded and annealed HEA alloys
along the extrusion direction (ED). Microstructures of these alloys were analyzed using a field emission
scanning electron microscope (FESEM) (FEI Nova Nano-230, Hillsboro, OR, USA) equipped with an
electron backscattered diffraction system (EBSD). The size and volume fraction of the precipitated phase
were obtained by image analysis using Imagepro software. Phase structures were identified by an X-ray
diffractometer (XRD) (Rigaku D/MAX-2250, Tokyo, Japan) with a Cu/Ka radiation. Tensile tests were
performed with a loading strain rate of 10−3/s on an Instron 3369 testing machine at room temperature.
The standard bright-field images and diffraction patterns were obtained using a transmission electron
microscope (Tecnai G2 F20 S-TWIN, FEI, Hillsboro, OR, USA).

3. Results and Discussion

3.1. Microstructures

Figure 1a shows the inverse pole figure (IPF) of the as-extruded CoCrFeNiMo0.2 HEA. It is obvious
that the extruded alloy exhibits an equiaxed grain structure with an average grain size of approximately
20 µm. The relative density of the as-extruded alloy is approximately 99.5%. The consolidated
microstructure is fully recrystallized, indicating that recrystallization occurred during and after the
extrusion. Figure 1b shows the XRD patterns of the P/M CoCrFeNiMo0.2 HEA, where the alloy shows
clearly a single FCC structure.
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Figure 1. (a) IPF map of the P/M CoCrFeNiMo0.2 high entropy alloy (HEA), (b) XRD patterns of the
P/M CoCrFeNiMo0.2 alloy.

Figure 2 demonstrate the microstructures of the Co Cr Fe Ni Mo 0.2 HEAs annealed at different
temperatures in the range of 700–1000 ◦C for 72 h respectively. These annealed alloys are mainly
composed of distinct grey matrix, black pores and white areas. It is apparent from Figure 2a to d that
the size of these white areas gradually increases as the annealing temperature increased. As shown in
Figure 2b, white areas generally appear at the grain boundaries and the size is less than 1 µm. As the
annealing temperature increased up to 1000 ◦C, the size of these white areas is rapidly coarsened to
3–5 microns. In addition, the volume fraction of these white areas tends to increase gradually first and
then decrease, as the annealing temperature goes up to 1000 ◦C.

In order to further identify the crystal structure of the P/M CoCrFeNiMo0.2 HEA, we performed the
TEM analysis on the precipitated phase. It is reported that the σ phase and µ phase in the CoCrFeNiMox

alloy systems is corresponding to the stoichiometric (Cr,Mo)(Co,Fe,Ni) and (Mo,Cr)7(Co,Fe,Ni)6

respectively [26,27]. The EDS analysis results in Table 1 clearly indicates that the chemical composition
of the precipitates contains a high concentration of Mo, which is very close to the σ phase reported by
Shun et al. [27,28]. The selected electron diffraction pattern embedded in the upper right corner of
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Figure 3 also confirms that the white precipitates are σ phase. This result is also consistent with the
calculated pseudo binary (CoCrFeNi)-Mo phase diagram [14].Entropy 2019, 21, x FOR PEER REVIEW 4 of 9 
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Figure 2. SEM images of the P/M CoCrFeNiMo0.2 HEAs annealed at different temperatures for 72 h. (a)
700 ◦C, (b) 800 ◦C, (c) 900 ◦C, and (d) 1000 ◦C.

Table 1. EDS analysis results for the P/M CoCrFeNiMo0.2 HEA annealed at 700 ◦C for 72 h (Spots in
Figure 3).

Location
Chemical Composition (at.%)

Mo L Cr K Fe K Co K Ni K

EDS spot 1 34.56 18.03 20.38 17.53 9.49
EDS spot 2 6.18 22.08 25.71 24.51 21.52
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Figure 3. TEM image of the P/M CoCrFeNiMo0.2 HEA annealed at 700 ◦C for 72 h.

The microstructures of the CoCrFeNiMo0.2 HEAs annealed at 800 ◦C for various times are
illustrated in Figure 4. It is apparent that prolongation of the annealing time promotes the precipitation
of the σ phase. As shown in Figure 4b, σ phase began to appear at the grain boundary of the matrix as
the annealing time was 4 h. σ phase grows with annealing time and changes its morphology.



Entropy 2019, 21, 448 5 of 9

Entropy 2019, 21, x FOR PEER REVIEW 5 of 9 

 

The microstructures of the CoCrFeNiMo0.2 HEAs annealed at 800 °C for various times are 
illustrated in Figure 4. It is apparent that prolongation of the annealing time promotes the 
precipitation of the σ phase. As shown in Figure 4b, σ phase began to appear at the grain boundary 
of the matrix as the annealing time was 4 h. σ phase grows with annealing time and changes its 
morphology. 

 
Figure 4. SEM images of the P/M CoCrFeNiMo0.2 HEAs annealed at 800 °C for different times: (a) 2 h, 
(b) 4 h, (c) 8 h, (d) 16 h, (e) 48 h, and (f) 72 h. 

Figure 5 shows a statistical analysis on the variation of the size and volume fraction of the σ 
phase with the annealing temperature and time. As shown in Figure 5a, the size of the σ phase is less 
than 0.5 μm as the annealing temperature at 700 °C. As the temperature increases, the size of the σ 
phase rapidly grows to the micron level. When the annealing temperature increases to 1000 °C, the 
size of the σ phase reaches to 3.7 μm. As seen from Figure 5b, the content of the precipitated phase is 
also closely related to the annealing time. As the annealing time is prolonged, the volume fraction of 
the precipitates gradually increases, eventually reaching a saturated stable value. Therefore, 
obtaining a uniformly dispersed nanoprecipitate phase in the CoCrFeNiMo0.2 HEA is strictly 
controlled by the heat treatment process. 

 
Figure 5. (a) Variation of the average size and volume fraction of σ precipitate with annealing 
temperatures; (b) Variation of the volume fraction of σ precipitate with annealing times at 800 °C. 

3.2. Mechanical Properties 

Figure 6a shows the engineering stress-strain curves of the as-extruded and annealed 
CoCrFeNiMo0.2 HEA at different temperatures for 72 h. The evolution of tensile strength and 
plasticity with annealing temperature was also statistically calculated in Figure 6b. A typical elasto-
plastic deformation behavior is remarked. All these annealed alloys exhibited a long work hardening 
stage. The yield strength, ultimate tensile strength and elongation to failure of the as-extruded 

Figure 4. SEM images of the P/M CoCrFeNiMo0.2 HEAs annealed at 800 ◦C for different times: (a) 2 h,
(b) 4 h, (c) 8 h, (d) 16 h, (e) 48 h, and (f) 72 h.

Figure 5 shows a statistical analysis on the variation of the size and volume fraction of the σ phase
with the annealing temperature and time. As shown in Figure 5a, the size of the σ phase is less than
0.5 µm as the annealing temperature at 700 ◦C. As the temperature increases, the size of the σ phase
rapidly grows to the micron level. When the annealing temperature increases to 1000 ◦C, the size of
the σ phase reaches to 3.7 µm. As seen from Figure 5b, the content of the precipitated phase is also
closely related to the annealing time. As the annealing time is prolonged, the volume fraction of the
precipitates gradually increases, eventually reaching a saturated stable value. Therefore, obtaining a
uniformly dispersed nanoprecipitate phase in the CoCrFeNiMo0.2 HEA is strictly controlled by the
heat treatment process.
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Figure 5. (a) Variation of the average size and volume fraction of σ precipitate with annealing
temperatures; (b) Variation of the volume fraction of σ precipitate with annealing times at 800 ◦C.

3.2. Mechanical Properties

Figure 6a shows the engineering stress-strain curves of the as-extruded and annealed
CoCrFeNiMo0.2 HEA at different temperatures for 72 h. The evolution of tensile strength and plasticity
with annealing temperature was also statistically calculated in Figure 6b. A typical elasto-plastic
deformation behavior is remarked. All these annealed alloys exhibited a long work hardening stage.
The yield strength, ultimate tensile strength and elongation to failure of the as-extruded CoCrFeNiMo0.2

HEA were about 400 MPa, 781 MPa and 55.6% respectively. As the annealing temperature increases
from 700 ◦C to 900 ◦C, it is apparent that the yield strength and ultimate tensile strength of these
annealed alloys were gradually improved. However, the ductility of these alloys has also dropped
significantly. Since the annealing temperature increases up to 1000 ◦C, the yield strength and ultimate



Entropy 2019, 21, 448 6 of 9

tensile strength of the alloy is significantly decreased, while the plasticity is correspondingly increased
to as high as approximately 65%. Although such a tradeoff relationship between the strength and
plasticity is conventional, the comprehensive mechanical properties of these annealed CoCrFeNiMo0.2

alloys are significantly better than those of the as-extruded one.
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Figure 6. (a) Room-temperature engineering stress-strain curves for these HEAs annealed at different
temperatures; (b) variation tendency of ultimate tensile strength and elongation of the annealed alloys
with at different annealing temperatures.

Figure 7a shows the engineering stress-strain curves of the as-extruded and annealed
CoCrFeNiMo0.2 HEA at 800 ◦C with different annealing times. The evolution of tensile strength and
plasticity with annealing time was also statistically calculated in Figure 7b. With the prolongation of
annealing time, the yield strength and ultimate tensile strength of these annealed alloys gradually
increase, while the plasticity decreases gradually. Combined with the Figure 5, it is obvious that the
evolutionary trend of the mechanical properties of the annealed alloys has a significant correspondence
with the precipitate behavior of σ phase. The enhanced yield strength and ultimate tensile strength is
mainly attributed to the high content and grain growth of the σ phase. The larger the volume fraction
and the size of the σ phase, the higher the strength while the lower the plasticity of the alloy.
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Figure 7. (a) Room-temperature engineering stress-strain curves for the HEAs annealed at 800 ◦C for
various times; (b) variation tendency of ultimate tensile strength and elongation of the annealed HEAs
at different annealing times.

Figure 8 shows the fracture surface of CoCrFeNiMo0.2 HEA annealed at different temperatures
in the range from 700 ◦C to 1000 ◦C for 72 h. The presence of a large number of dimples on the
fracture surface indicates that these alloys have good deformability [29]. As the annealing temperature
increases, it can be found that the size of the dimples becomes significantly bigger. Simultaneously,
obvious signs of broken phase of the precipitated phase can be found at the bottom of the dimple. It is
found that the separation of the precipitation phase and the matrix during the deformation process is
the main reason for the formation of micropores. Due to the difference between the elastic modulus,
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stress concentration is likely to occur at the interface between the precipitated phase and the matrix
during the deformation process. The size of the micropores increases with this coarse precipitated
phase, indicating crack propagation in the localized region of the alloy was significantly affected by
these precipitated phase. Formation of large volume fraction of micropores results in a decrease in the
plasticity of the alloy.
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Figure 9 illustrates the TEM bright-field images of the annealed CoCrFeNiMo0.2 alloy after
tensile deformation. It can be seen that a large number of deformed twins formed during the tensile
deformation process. The interaction of the precipitates, deformed twins and grain boundary results
in the pileup of dislocations. The σ precipitates did not undergo plastic deformation during the
dislocation slip, resulting in high strength and work hardening rate of the alloy. As can be seen from
Figure 9b, the nanoprecipitate phase preferentially precipitates at the grain boundary. In addition,
deformed twins also play an important role in improving the strength and toughness of the alloy.
The twin boundaries have a significant hindrance to the slip of dislocations. Thus, these annealed
CoCrFeNiMo0.2 HEAs plastically deform via dislocation gliding and nanotwinning, significantly
enhancing strain hardening capability.
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4. Conclusions

In the present research, a CoCrFeNiMo0.2 HEA is prepared using P/M method. The P/M HEA was
annealed at different temperatures (700–1000 ◦C) for different times (2–72 h). The following conclusions
are drawn:

1. The P/M CoCrFeNiMo0.2 HEA has a metastable FCC single-phase microstructure.
During annealing, σ phase enriched with Mo and Cr precipitates in the grains and at the grain
boundaries. As the temperature increases from 700 ◦C to 1000 ◦C, the size of the precipitates grows
apparently. The volume fraction of the precipitates tends to increase gradually as the annealing
temperature up to 900 ◦C and then decrease at 1000 ◦C. At 800 ◦C, the volume fraction of the
precipitates gradually increases as the annealing time is prolonged, eventually reaching a saturated
stable value about 14%.

2. The comprehensive mechanical property of the annealed CoCrFeNiMo0.2 HEAs has a significant
correspondence with the precipitates. The larger the volume fraction and the size of the precipitates, the
higher the strength and the lower the plasticity of the HEA. Nearly all the annealed HEAs exhibit good
strength–ductility combinations due to the significant precipitation enhancement and nanotwinning.
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