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Abstract: The present paper contrasts two related criteria for the evaluation of prior-data conflict: the
Data Agreement Criterion (DAC; Bousquet, 2008) and the criterion of Nott et al. (2016). One aspect
that these criteria have in common is that they depend on a distance measure, of which dozens are
available, but so far, only the Kullback-Leibler has been used. We describe and compare both criteria
to determine whether a different choice of distance measure might impact the results. By means
of a simulation study, we investigate how the choice of a specific distance measure influences the
detection of prior-data conflict. The DAC seems more susceptible to the choice of distance measure,
while the criterion of Nott et al. seems to lead to reasonably comparable conclusions of prior-data
conflict, regardless of the distance measure choice. We conclude with some practical suggestions for
the user of the DAC and the criterion of Nott et al.
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1. Introduction

Any Bayesian model consists of at least two ingredients: a prior and a sampling model for the
observed data. The prior contains the a priori beliefs about the parameter(s) and can, for instance,
be based on expert knowledge, if elicitation methods are used [1–6]. Consecutive inferences based on
the Bayesian model are built on the assumption that the (expert) prior is appropriate for the collected
data. In case of a prior data conflict, this assumption is violated. In such a conflict, the prior primarily
favors regions of the parameter space that are far from the data mass. Such a conflict can be caused
by the unfortunate collection of a rare data set, a problem with the prior, or both of these factors [7].
To avoid erroneous inferences, checking for prior-data conflict should be ‘part of good statistical
practice’ ([8], p. 894).

In the current paper, we focus on two checks, developed for the detection of prior-data conflict.
First, Bousquet (see [8]; see also [9]) suggested that the expert prior be compared with a non-informative,
reference prior in his “Data Agreement Criterion” (DAC). When the expert prior has a larger distance to
a reference posterior—a posterior based on the data and the non-informative, reference prior—than the
non-informative prior, it can be concluded that the expert and data are in conflict. Second, Nott et al.
(see [10]) suggested that the distance between the expert prior and resulting posterior be measured
directly. According to this method, the expert and data are in conflict when this distance is surprising
in relation to the expert’s prior predictive distribution (see also [11]).

One thing that the DAC [7] and the criterion of Nott et al. [10] have in common is that they
depend on a distance measure. Currently, both the DAC and the Nott et al. criteria rely on the
Kullback-Leibler divergence (heretofore abbreviated as KL). One of the advantages of the KL is that it
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has an intuitive interpretation—the informative regret due to the prior choice—and some favorable
analytical properties, such as its invariance to reparameterization [12]. However, the KL is not the only
available option for the measurement of distance between statistical distributions. To illustrate: the
“Encyclopedia of distances” [13] consists of 583 pages filled with distance measures, and their list is
not even exhaustive. How the DAC and the Nott et al. criteria behave for different distance measure
choices has yet to be investigated.

Therefore, the goal of the current paper is to investigate how the implementation of different
distance measures in the DAC and Nott et al. criteria influence the detection of prior-data conflict.
In the remainder, we first discuss both prior-data conflict criteria in detail. Thereafter, we discuss the
design and results of a simulation study into the effect of the choice of distances on the conclusion of
prior-data conflict, using a variety of distance measures (also see the Appendix A for an overview).
We end with a general discussion and practical recommendations for users, who would like to test for
a prior-data conflict.

2. Prior-Data Conflict Criteria

2.1. DAC

2.1.1. Computation of Prior-Data Conflict

The Data Agreement Criterion (DAC; [7]) is based on the ratio of two distances, denoted by ∆.
The first distance is between the expert prior πE

i (θ) and the posterior πB
(
θ
∣∣∣yn

)
, where θ denotes the

parameter of interest, and upper script B is used for a ‘benchmark’, upper script E for an ‘expert’,
and subscript i, 1, · · · , I to distinguish between experts. As reflected in the expression, ‘πB

(
θ
∣∣∣yn

)
’,

the posterior is based on dataset yn and priorπB(θ). The idea is to chooseπB(θ), such that the posterior
is dominated by the data yn. Following [14,15], in order to affect the posterior as little as possible,
a reference prior should be chosen for πB(θ). The second distance is between the posterior πB

(
θ
∣∣∣yn

)
and the non-informative prior πB(θ). The ratio between the two distances results in the DAC:

DACi =
∆
(
πB

(
θ
∣∣∣yn

)∣∣∣∣∣∣∣∣πE
i (θ)

)
∆
(
πB

(
θ
∣∣∣yn

)∣∣∣∣∣∣∣∣πB(θ)
) . (1)

In [7,9], the KL-divergence is used for ∆, denoted here by ∆KL. The KL-divergence expresses the
loss of information that occurs when we rely on the expert prior πE

i (θ), instead of on the posterior

πB
(
θ
∣∣∣yn

)
:

∆KL
(
πB

(
θ
∣∣∣yn

)
‖πE

i (θ)
)
=

∫
Θ
πB

(
θ
∣∣∣yn

)
log

πB
(
θ
∣∣∣yn

)
πE

i (θ)
dθ. (2)

Here, Θ is the set of all possible values for the parameter θ. Figure 1a illustrates the KL-divergence
between the prior πB(θ) and posterior πB

(
θ
∣∣∣yn

)
. The lower part of this figure shows the prior πB(θ)

(dashed line) and the πB
(
θ
∣∣∣yn

)
(solid line), and the upper part of this figure shows the corresponding

KL-divergence, which is equal to the highlighted area under the curve. Figure 1b illustrates the
KL-divergence between the expert prior πE

i (θ) and the posterior πB
(
θ
∣∣∣yn

)
(see [9]). To compute the

DACi the KL-divergence in the upper part of Figure 1b is divided by the KL-divergence in the upper part
of Figure 1a. In this example, the KL-divergence for the prior πB(θ) is 1.26, and the KL-divergence for
the expert prior πE

i (θ) equals 0.89. Since this value is lower than 1.26 (the “benchmark” KL-divergence),
we would, in this example, conclude that there is no prior-data conflict, according to the DAC criterion.

Note that the DAC (Equation (1) does not necessarily have to be based on the KL-divergence
(Equation (2); any other distance or divergence measure can be substituted for ∆.
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Figure 1. Illustration of the Data Agreement Criterion (DAC), with (a) the Kullback-Leibler (KL)-
divergence BETWEEN the posterior 𝜋஻ሺ𝜃|𝒚𝐧) and non-informative prior 𝜋஻ሺ𝜃), and (b) the KL-
divergence between the posterior π୆ሺθ|𝐲𝐧) and an expert prior π୧୉ሺθ). Note the difference in the y-
axis scale between the upper parts and lower parts of Figure (a) and (b).  

2.1.2. Definition of Prior-Data Conflict 

As is shown by Equation 1, the distance between the prior 𝜋஻ሺ𝜃)  and posterior 𝜋஻ሺ𝜃|𝒚𝐧) 
serves as a benchmark. When the distance between the expert prior 𝜋௜ாሺ𝜃)  and posterior 𝜋஻ሺ𝜃|𝒚𝐧) exceeds the benchmark (i.e., when DAC௜ > 1), it is concluded that there is a prior-data 
conflict. As stated by Bousquet (2008), 𝜋஻ሺ𝜃) can be seen as a fictitious, oblivious expert, perfectly 
in agreement with 𝒚𝐧. When this ‘ideal’, fictitious expert 𝜋஻ሺ𝜃) is more in agreement with 𝜋஻ሺ𝜃|𝒚𝐧) 
than the actual expert, it is concluded that there is a prior-data conflict. According to Bousquet [7], 
this happens in the following two scenarios: (1) when the expert (𝜋௜ாሺ𝜃)) favors the regions of Θ that 
are far from the data mass (conflict in location), or (2) when the prior information on 𝜃 is far more 
precise than the information from the data 𝒚𝐧  (conflict in information uncertainty). The latter 
scenario mainly arises with small data sets. Note that a prior-data conflict, as defined by Bousquet 
[7], does not necessarily point to a problem with the expert prior. The DAC is developed as a 
simultaneous check of the sampling model, and the expert data and may both have symmetric roles 
in the conflict.  

2.1.3. Pros and cons  

The DAC is appealing to the applied user because of its clear, binary decision. Other than with 
p-values (see [10]; next section), the applied user does not have to choose a threshold him- or herself. 
A disadvantage, however, is the necessity to specify a suitable non-informative, benchmark prior 𝜋஻ሺ𝜃). Choosing such a prior is a delicate matter, since there are many alternative candidates to be 
considered, which all directly influence the conclusion and thus the definition of the prior-data 
conflict. This is especially problematic when an improper prior is chosen. In that case, the notion of 
distance gets lost in the determination of ∆൫𝜋஻ሺ𝜃|𝒚𝐧)||𝜋஻ሺ𝜃)൯. It might also feel counterintuitive that, 
in order to compare an expert prior 𝜋௜ாሺ𝜃) with 𝒚𝐧 , the specification of another prior 𝜋஻ሺ𝜃) is 
required.  

2.2. Criterion of Nott et al. 

2.2.1. Computation of Prior-Data Conflict  

Inspired by the work of Box [see 16] and Evans and Moshonov [8,17–18], the criterion developed 
by Nott et al. [10] is based on the premise of Bayesian prior predictive model checking. The prior 
predictive distribution informs us as to which data are considered plausible a priori by the respective 
expert. When the collected data 𝒚𝐧 are surprising under the prior predictive (i.e., located in the tails 
of the prior predictive distribution), this signals that something is wrong. More formally stated, the 

Figure 1. Illustration of the Data Agreement Criterion (DAC), with (a) the Kullback-Leibler
(KL)-divergence between the posterior πB

(
θ
∣∣∣yn

)
and non-informative prior πB(θ), and (b) the

KL-divergence between the posterior πB(θ
∣∣∣yn) and an expert prior πE

i (θ). Note the difference
in the y-axis scale between the upper parts and lower parts of Figure (a) and (b).

2.1.2. Definition of Prior-Data Conflict

As is shown by Equation (1), the distance between the prior πB(θ) and posterior πB
(
θ
∣∣∣yn

)
serves

as a benchmark. When the distance between the expert prior πE
i (θ) and posterior πB

(
θ
∣∣∣yn

)
exceeds

the benchmark (i.e., when DACi > 1), it is concluded that there is a prior-data conflict. As stated by
Bousquet (2008), πB(θ) can be seen as a fictitious, oblivious expert, perfectly in agreement with yn.
When this ‘ideal’, fictitious expert πB(θ) is more in agreement with πB

(
θ
∣∣∣yn

)
than the actual expert, it is

concluded that there is a prior-data conflict. According to Bousquet [7], this happens in the following
two scenarios: (1) when the expert (πE

i (θ)) favors the regions of Θ that are far from the data mass
(conflict in location), or (2) when the prior information on θ is far more precise than the information
from the data yn (conflict in information uncertainty). The latter scenario mainly arises with small
data sets. Note that a prior-data conflict, as defined by Bousquet [7], does not necessarily point to a
problem with the expert prior. The DAC is developed as a simultaneous check of the sampling model,
and the expert data and may both have symmetric roles in the conflict.

2.1.3. Pros and Cons

The DAC is appealing to the applied user because of its clear, binary decision. Other than with
p-values (see [10]; next section), the applied user does not have to choose a threshold him- or herself.
A disadvantage, however, is the necessity to specify a suitable non-informative, benchmark prior
πB(θ). Choosing such a prior is a delicate matter, since there are many alternative candidates to be
considered, which all directly influence the conclusion and thus the definition of the prior-data conflict.
This is especially problematic when an improper prior is chosen. In that case, the notion of distance

gets lost in the determination of ∆
(
πB

(
θ
∣∣∣yn

)∣∣∣∣∣∣∣∣πB(θ)
)
. It might also feel counterintuitive that, in order to

compare an expert prior πE
i (θ) with yn, the specification of another prior πB(θ) is required.

2.2. Criterion of Nott et al.

2.2.1. Computation of Prior-Data Conflict

Inspired by the work of Box see [16] and Evans and Moshonov [8,17,18], the criterion developed
by Nott et al. [10] is based on the premise of Bayesian prior predictive model checking. The prior
predictive distribution informs us as to which data are considered plausible a priori by the respective
expert. When the collected data yn are surprising under the prior predictive (i.e., located in the tails of
the prior predictive distribution), this signals that something is wrong. More formally stated, the idea
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is that there is a discrepancy function D(yn) of the data yn (see [19]) and that, for the prior predictive
distribution, a Bayesian p-value is computed as (see p. 3, [11]):

p = P
(
D(Y) ≥ D

(
yn

))
, (3)

where Y is a draw from the prior predictive distribution. A small p-value results when D(yn) is large
(i.e., surprising), compared to D(Y). In principle, any discrepancy function can be chosen that suits
a specific model-checking goal. To check for prior-data conflict, Evans and Moshonov [8] consider
1/mT

(
T
(
yn

))
as their discrepancy function, where mT is the prior predictive density of a minimal

sufficient statistic T. Despite their promising results (see [17,18]), a drawback of this suggestion is that the
check is not invariant in relation to the choice of the minimal sufficient statistic, when (3) is continuous
(see [20]). Nott et al. [10] solve this problem elegantly by considering another discrepancy function:
the distance between the prior πE

i (θ) and posterior πE
i (θ

∣∣∣yn); ∆
(
πE

i (θ
∣∣∣yn)

∣∣∣∣∣∣πE
i (θ)

)
. The advantage of

∆
(
πE

i (θ
∣∣∣yn)

∣∣∣∣∣∣πE
i (θ)

)
is that it depends on the data yn only through the posterior distribution πE

i (θ
∣∣∣yn).

Hence, the statistic ∆
(
πE

i (θ
∣∣∣yn)

∣∣∣∣∣∣πE
i (θ)

)
is a function of any sufficient statistic and thus invariant in

relation to the particular choice of T.
To express the distance betweenπE

i (θ) andπE
i (θ

∣∣∣yn), Nott et al. [10] consider a class of divergences,
of which the KL-divergence is a special case. This class contains the Rényi divergences of order α,
here denoted by ∆Rα. ∆Rα can be explained as a measure of how much beliefs change from prior to
posterior, comparable to the notion of relative belief (see [21]). The earlier mentioned KL-divergence
is a special case of this class, with α→ 1 . For the Nott et al. [10] criterion, Equation (3) can thus be
rewritten as:

pi = P
(
∆Rα

(
πE

i (θ|Y)π
E
i (θ)

)
≥ ∆Rα

(
πE

i

(
θ
∣∣∣yn

)
‖πE

i (θ)
))

, (4)

where

∆Rα
(
πE

i

(
θ
∣∣∣yn

)
‖πE

i (θ)
)
=

1
α− 1

log
∫

Θ
πE

i

(
θ
∣∣∣yn

)π
E
i

(
θ
∣∣∣yn

)
πE

i (θ)


α−1

dθ, (5a)

and

∆Rα
(
πE

i (θ|Y)‖π
E
i (θ)

)
=

1
α− 1

log
∫

Θ
πE

i (θ|Y)

πE
i (θ|Y)

πE
i (θ)


α−1

dθ. (5b)

Figure 2 illustrates the criterion of Nott et al. for the same πE
i (θ) and yn, as used in Figure 1.

In Figure 2a, the KL-divergence between the prior πE
i (θ) (lower panel; dashed line) and posterior

πE
i

(
θ
∣∣∣yn

)
(lower panel; solid line) is illustrated. The area under the curve is equal to 0.43. In Figure 2b,

this value (0.43) is compared to 105 KL-divergences, obtained by repeatedly drawing Y from the prior
predictive distribution of the expert i. In this example, 30% of the KL-divergences in Figure 2b exceed
0.43 (see the dark blue bins in Figure 2b). We would therefore conclude that there is no prior-data
conflict in this example.

Note that, in prior-predictive checking, the user has considerable freedom in choosing a suitable
discrepancy function D(yn). Therefore, the distance measure ∆Rα in the criterion of Nott et al. [10] can
be replaced by any other distance or divergence measure.
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Figure 2. Illustration of the criterion of Nott et al. [9], with (a) the KL-divergence between the posterior 𝜋௜ாሺ𝜃|𝒚𝐧) and expert prior 𝜋௜ாሺ𝜃) and (b) the distribution of KL-divergences between the posterior 𝜋௜ாሺ𝜃|𝑌) and expert prior 𝜋௜ாሺ𝜃), for 105 draws Y from the prior predictive.  

2.2.2. Definition of Prior-Data Conflict 

In [10], it is found that prior-data conflict exists when the observed distance between the prior π୧୉ሺθ)  and posterior π୧୉ሺθ|𝐲𝐧)  is surprising in relation to the corresponding prior predictive 
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data 𝐲𝐧 appear to be in conflict.  
Note that this definition of prior-data conflict is vastly different from the earlier definition of the 

DAC. First, although both rely on the KL-divergence, in the criterion of Nott et al., the prior π୧୉ሺθ) is 
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the variety of data that are deemed plausible by this expert, as captured in the prior predictive 
distribution. Therefore, when the location of the prior and posterior match, we do not find a prior-
data conflict with the criterion of Nott et al., even if that prior variance is relatively small. Finally, the 
DAC and the criterion of Nott et al. respond differently, when little data is available. With a small 
sample size, the criterion of Nott et al. may fail to detect an existing prior-data conflict. A bad prior 
may pass the test, as the relatively large sampling variability is taken into account in the comparison 
with the prior predictive. In the DAC, the sampling variability is not taken into consideration; 𝜋஻ሺ𝜃|𝒚𝐧) is treated as a temporary ‘truth’. Therefore, we should be careful not to falsely interpret a 
prior-data conflict as a problem with the prior in a situation where there is little data. Such a conflict 
may very well be the result of the unavailability of representative data and a mismatch in the amount 
of information captured in π୧୉ሺθ) and 𝜋஻ሺ𝜃|𝒚𝐧).  

2.2.2. PROS AND CONS  

Figure 2. Illustration of the criterion of Nott et al. [9], with (a) the KL-divergence between the posterior
πE

i

(
θ
∣∣∣yn

)
and expert prior πE

i (θ) and (b) the distribution of KL-divergences between the posterior
πE

i (θ|Y) and expert prior πE
i (θ), for 105 draws Y from the prior predictive.

2.2.2. Definition of Prior-Data Conflict

In [10], it is found that prior-data conflict exists when the observed distance between the prior
πE

i (θ) and posterior πE
i (θ

∣∣∣yn) is surprising in relation to the corresponding prior predictive distribution.
In other words, if the data yn would have been in line with the prior πE

i (θ), we would not expect to

observe such a large distance ∆Rα
(
πE

i

(
θ
∣∣∣yn

)
πE

i (θ)
)
. Hence, the prior πE

i (θ) and the data yn appear to
be in conflict.

Note that this definition of prior-data conflict is vastly different from the earlier definition of
the DAC. First, although both rely on the KL-divergence, in the criterion of Nott et al., the prior
πE

i (θ) is directly compared to its corresponding posterior πE
i (θ

∣∣∣yn), instead of πB
(
θ
∣∣∣yn

)
, as in the DAC.

The criterion of Nott et al. (2016) and the DAC therefore ask different questions: how much
information do we lose when relying on πE

i (θ), instead of πB
(
θ
∣∣∣yn

)
(DAC)? To what extent does our

information change, when moving from πE
i (θ) to πE

i (θ
∣∣∣yn) (Nott et al.)? Second, the observed values

∆KL
(
πB

(
θ
∣∣∣yn

)
πE

i (θ)
)

and ∆Rα
(
πE

i

(
θ
∣∣∣yn

)
πE

i (θ)
)

are calibrated differently. In the DAC, prior-data conflict
exists when more information is lost than with the benchmark prior πB(θ). In the criterion of Nott et al.,
the p-value in Equation (4) calibrates the change in information by expressing how surprising this
change is. Third, the uncertainty of the expert (i.e., the variance of πE

i (θ)) is treated differently in the
criterion of Nott et al. than in the DAC. In the DAC, prior-data conflict can occur when there is no
mismatch in location (i.e., both πE

i (θ) and πB
(
θ
∣∣∣yn

)
place their mass primarily in the same region of

Θ) but there is a mismatch in information uncertainty (i.e., the variance of πE
i (θ) is smaller than the

variance of πB
(
θ
∣∣∣yn

)
). In the criterion of Nott et al., the uncertainty of the expert simply reflects the

variety of data that are deemed plausible by this expert, as captured in the prior predictive distribution.
Therefore, when the location of the prior and posterior match, we do not find a prior-data conflict
with the criterion of Nott et al., even if that prior variance is relatively small. Finally, the DAC and
the criterion of Nott et al. respond differently, when little data is available. With a small sample size,
the criterion of Nott et al. may fail to detect an existing prior-data conflict. A bad prior may pass
the test, as the relatively large sampling variability is taken into account in the comparison with the
prior predictive. In the DAC, the sampling variability is not taken into consideration; πB

(
θ
∣∣∣yn

)
is

treated as a temporary ‘truth’. Therefore, we should be careful not to falsely interpret a prior-data
conflict as a problem with the prior in a situation where there is little data. Such a conflict may very well
be the result of the unavailability of representative data and a mismatch in the amount of information
captured in πE

i (θ) and πB
(
θ
∣∣∣yn

)
.
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2.2.3. Pros and Cons

One major advantage is that—aside from Bousquet [7]—the criterion of Nott et al. [10] does
not depend on the definition of a non-informative prior πB(θ). A possible disadvantage, however,
is that the p-value in Equation (4) is often misinterpreted in practice (see [22]). The p-value in Equation
(4) should be used as a measure of surprise rather than support ([20]), and not be mistaken for the
probability of a (non-)conflict between πE

i (θ) and πE
i (θ

∣∣∣yn). Given that the definition of prior-data
conflict is quite different for the DAC and the criterion of Nott et al. (see Section 2.2.1), choosing one or
the other should be based on a clear and well-informed opinion of what prior-data conflict entails.

3. Simulation Study

3.1. Goal of the Simulation

In principle, the KL-divergence in Equations (1) and (4) can be replaced by any other distance
measure. The goal of our simulation is therefore to investigate the role of the distance measure in the
detection of prior-data conflict. The main question is: How much does the choice of distance measure
eventually impact the conclusions of prior-data conflict by the DAC and the criterion of Nott et al.?
In other words: How robust are the DAC and the criterion of Nott et al. in relation to the choice of
distance measure?

3.2. Simulation Design

3.2.1. Scenario

In our simulation, we focus on one example scenario, in which θ is a one-dimensional parameter.
Specifically, yn ∼ Binomial(n, θ) and πE

i (θ) is a conjugate Beta distribution beta(α, β) on [0,1]. In this
scenario, πB(θ)—the benchmark prior in the DAC—is set to beta(α = 1, β = 1), and the prior predictive
distribution for the criterion of Nott et al. equals a Beta Binomial, with parameters α, β and n. θ set
to 0.5 in the population, whereas α, β and n are varied in the simulation. Note that α and β together
express the location of the expert prior (i.e., the region with most of the prior’s mass), α/(α+ β),
and the (un)certainty of the expert. α+ β. α/(α+ β) are set to 0.05, 0.07, 0.09, · · · 0.95, respectively,
and α+ β is varied from 10, 12, 14, · · · , 200. The sample size of the data, n, is varied between 50, 100
and 200. As explained in Section 3.2.3, twelve distance measures are compared. Figure 3 summarizes
the simulation design.

 

Prior uncertainty (𝜶+ 	𝜷)	 

Prior 
Location 
𝜶/(𝜶+ 	𝜷) 

x 12 
Distances 

Sample size 𝒚𝒏 

50 
100 

200 

.95 
 
 
 
 
 
 
 
 
.05 

10            200 

Figure 3. Illustration of the simulation design. The prior location (α/(α+ β)), prior uncertainty (α+ β),
and sample size of yn were varied, as well as the distance measure used.
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3.2.2. Steps

We started the simulation by taking 1000 samples from the respective population, with θ = 0.5
(see Section 3.2.1.) and sample sizes equal to 50. We repeated this sampling process for the other
sample sizes (n = 100 and 200). Subsequently, multiple expert priors πE

i (θ) were constructed, based on
all possible combinations of location (i.e., α/(α+ β) = 0.05, · · · , 0.95) and expert uncertainty (i.e.,
α+ β = 10, 12, · · · , 200). For all these expert priors, we then determined πE

i

(
θ
∣∣∣yn

)
(for the criterion of

Nott et al.) and πB
(
θ
∣∣∣yn

)
(for the DAC) and calculated their respective distances to πE

i (θ) using the
variety of distance measures, named in Section 3.2.3. The calculation of the DAC and p-value of the
criterion of Nott et al. (2016) followed, using Equations (1) and (4), respectively. Finally, all DAC values
above 1 were flagged as prior-data conflicts. For the criterion of Nott et al. (2016), we considered
p ≤ 0.05 as indicative of a prior-data conflict. All analyses were performed using RStudio [23] and the
R packages, “Philentropy” [24], “distr” and “distrEx’ [25].

3.2.3. Distance Measures

The KL-divergence, used in both the DAC and the criterion of Nott et al., is an instance of an
f -divergence, also known as an Ali-Silvey divergence ([26]). The more general Rényi divergences,
considered in Nott et al., are related to this class. One of the distance measures we investigate in
our simulation (the total variation distance) belongs to the class of f -divergences (see [27]). We also
consider distance measures that are not part of this class: Hellinger, Kolmogorov, Euclidean, Manhattan,
Sorensen, Intersection, Harmonic mean, Bhattacharyya, Divergence, Jeffreys and Jensen-Shannon
(leading to twelve distance measures in total). See [28] for more information on these distance measures.

4. Results

As stated in Section 3.1, the main goal of the simulation was to investigate the robustness of the
DAC and the criterion of Nott et al. in relation to the choice of the twelve distance measures under
study. Below, we split the results of the simulation into two parts. In the first part, we look at how
the conclusion of prior-data conflict varies with different choices of distance measures, when we vary
the expert priors for a specific sample yn (see Figure 3). Ideally, whether or not the varying expert
priors are found to be in conflict with the specific sample should not depend on the choice of distance
measure. In this first part, we act as if the fixed, single sample is ‘the truth’. Of course, the sample is
drawn from a population. Therefore, in the second part, we look at varying samples yn and specific
expert priors. This way, we can investigate how sampling variability influences the behavior of the
DAC and the criterion of Nott et al., when different distance measures are used.

4.1. Robustness in Relation to the Choice of Distance Measure: Specific Sample and Varying Expert Priors

In this section, we investigate varying expert priors to determine whether they are in conflict with
one specific sample, yn ∼ Binomial(n = 100, θ = 0.5). To limit the number of plots here, a part of the
plots is shown in the Appendix A. Specifically, the plots in the Appendix A visualize the DAC and
p-values for varying expert priors, for each of the twelve distance measures separately. The x-axes
show the expert prior uncertainty (α+ β) and the y-axis prior location (α/(α+ β)), such that, for every
combination of uncertainty and location, the DAC and p-value can be read from the plots. The contour
lines show which expert priors lead to comparable DAC and p-values, such as DAC =0.2, 0.3, · · · ,
1.1 and p = 0.05, 0.1, · · · , 0.9. The most interesting contour lines are DAC = 1 and p = 0.05, since
these lines distinguish the expert priors for which a prior-data conflict and no prior-data conflict is
concluded. As seen in the DAC plots, the Jeffreys divergence leads to the most lenient decision of a
prior-data conflict. Indeed, when Jeffreys divergence is used, relatively many expert priors lead to a
DAC value below 1 (i.e., many combinations of expert uncertainty and location fall in the area of DAC
values < 1). Kolmogorov, on the other hand, leads to the most stringent decision of prior-data conflict.
All divergence-based measures show problematic behavior. Using ‘divergence’, DAC values below 1
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are solely found for a small group of expert priors. In the criterion of Nott et al., divergence shows
divergent behavior, especially for expert priors with a low α+ β. To a lesser extent, this problematic
behavior at low values of α+ β is also found when using the Euclidean distance in the criterion of
Nott et al. Apart from the divergence and Euclidean distance, the criterion of Nott et al. generally
shows behavior more comparable to the p-value for different distance measures than the DAC.

Figure 4a combines the twelve DAC plots from the Appendix A into one plot, in which only the
contour lines ‘DAC = 1’ are displayed. By doing so, these DAC = 1 boundaries can more easily be
compared over the twelve distance measures. Figure 4b does the same for the twelve p-value plots from
the Appendix A, for the contour lines p = 0.05. The contour lines (DAC = 1 and p = 0.05) of the distance
measure which leads to the most stringent conclusion of prior-data conflict, mark the area (i.e., the
combinations of expert prior uncertainty and location) for which all distance measures agree that there
is no prior-data conflict. In Figure 4a,b, this area is colored light blue. As stated before, in Figure 4a,
this area is determined by Kolmogorov. The contour lines (DAC = 1 and p = 0.05) belonging to the
distance measure which leads to the most lenient conclusion of prior-data conflict, mark the area for
which all distance measures agree that there is a prior-data conflict. As stated before, in Figure 4a,
this area is determined by Jeffreys divergence. In Figure 4a,b, this area is colored dark blue. The area in
between the contour lines of the most lenient and most stringent distance measures illustrates the area
of no consensus, i.e., the expert priors for which some distance measures would lead to a conclusion of
prior-data conflict and others not. The larger this area is, the more influence the choice of distance
measure has on the conclusion of prior-data conflict. The white lines in this area illustrate the exact
DAC = 1 and p = 0.05 contour lines of the distance measures. Comparing Figure 4a,b clearly shows
that a different choice of distance measure more profoundly influences the conclusion of the DAC than
the criterion of Nott et al. When used in the criterion of Nott et al., the distance measures primarily
disagree with each other for the expert priors that have α/(α+ β) far from 0.5 (0.1, 0.2, 0.8 and 0.9)
and a low α+ β (smaller than 50). The outer line separating the area with no consensus from the area
with consensus on prior-data conflict is formed by the Divergence distance. Of the twelve distance
measures under study here, this distance measure thus leads to the most lenient decision of prior-data
conflict, at least in this specific scenario.

For only a relatively small area, the distance measures agree that there is no prior-data conflict,
when used in the DAC (see Figure 4a). Other than in the criterion of Nott et al., differences in
conclusions of (no) prior-data conflict are not restricted to certain combinations of prior location
(α/(α+ β)) and uncertainty (α+ β).
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In this section, we investigate how many times the DAC and p-values lead to a conclusion of 
prior-data conflict, when repeated samples are drawn, and the expert prior is fixed. Figures 5a–c 
show an overview of the results. The stacked histograms show the number of times the DAC and the 
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Figure 4. The white lines in this figure show the DAC = 1 (a) and p < 0.05 (criterion of Nott et al.)
(b) boundaries for the twelve distance measures, when the sample is fixed, and α+ β (x-axis) and
α/(α+ β) (y-axis) are varied. The darkest blue area illustrates the expert priors (i.e., the combination
of α+ β and α/(α+ β) ) for which all distance measures would lead to a conclusion of prior-data
conflict. The lightest blue area shows the expert priors that consistently lead to a conclusion of no
prior-data conflict. The area in between these two areas is inconclusive and depends on the choice of
distance measure.

4.2. Robustness in Relation to the Choice of Distance Measure: Specific Expert Prior and Varying Samples

In this section, we investigate how many times the DAC and p-values lead to a conclusion of
prior-data conflict, when repeated samples are drawn, and the expert prior is fixed. Figure 5a–c show
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an overview of the results. The stacked histograms show the number of times the DAC and the
criterion of Nott et al. do (red color) or do not (green color) reach a conclusion of prior-data conflict.
Every stacked histogram is based on a Beta prior, with a certain combination of α/(α+ β) (row) and
α+ β (column) and 1000 repeated samples yn ∼ Binomial(n, θ) with θ = 0.5 and n = 50 (Figure 5a),
n = 100 (Figure 5b) or n = 200 (Figure 5c). Every bin of the stacked histogram corresponds to one of
the 12 distance measures. The first bin, for instance, corresponds with the total variance distance,
and the second one corresponds with the Hellinger distance. When a bin within a stacked histogram is
completely red, this means that all 1000 repeated samples led to a conclusion of prior-data conflict,
when this specific distance measure was used. The dashed horizontal line and the corresponding
percentage printed at the bottom of each histogram show the average number of times the distance
measures lead to a conclusion of no prior-data conflict. To ease comparison, the left side of Figure 5a–c
shows the results for the DAC, and the right side of Figure 5a–c shows the results for the criterion of
Nott et al.

The most important conclusion that can be drawn from Figure 5a–c is that the criterion of Nott et al.
is less sensitive to the choice of the twelve distance measures than the DAC. Comparing the right
side (criterion Nott et al.) with the left side (DAC) of Figure 5a–c, the coloring of the bins is more
comparable over the twelve distance measures when the Nott et al. criterion rather than the DAC is
used. Only one of the twelve distance measures shows problematic behavior: “Divergence” (bin nr.
10). When “Divergence” is used as a distance measure in the criterion of Nott et al., the conclusion of
prior-data conflict becomes more lenient. When α/(α+ β) = 0.2, α+ β = 50 and n = 50, for instance,
almost half of the 1000 repeated samples would result in a conclusion of “no prior-data conflict”. Using
any of the other distance measures would, however, lead to a conclusion of prior-data conflict in almost
all samples.
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Figure 5. This Figure shows how many times, out of 1000 repeated samples yn ∼ Binomial(n, θ) of
θ = 0.5 and n = 50 (a), n = 100 (b) or n = 200 (c), the twelve distance measures led to a conclusion of
prior-data conflict. Every stacked histogram is based on an expert prior, with a certain combination of
α/(α+ β) = 0.2, 0.3, 0.4 or 0.5 (rows) and α+ β = 50, 100 or 200 (columns). The red bins correspond to a
conclusion of prior-data conflict, and the green bins correspond to a conclusion of no prior-data conflict.
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5. Conclusions

The goal of the current paper was to investigate how the implementation of different distance
measures in the DAC and Nott et al. criteria influence the detection of prior-data conflict. Overall,
the criterion of Nott et al. seems less sensitive to the choice of distance measure than the DAC.

In the criterion of Nott et al., the user seems to have more freedom in the choice of distance
measure. With the exception of one distance measure, all distance measures led to a comparable
conclusion of prior-data conflict (see again Figure 5). This is advantageous, as even the simplest (and
fastest computable) distance measures (for instance, the Manhattan distance) can be chosen, without
changing the interpretation of prior-data conflict. In our specific scenario, we did see that some distance
measures led to a more lenient treatment of experts, who were very insecure and incorrect.

Concerning the DAC, substituting the KL-divergence (see Equation (2)) for another distance
measure is only encouraged, when the KL results in issues. One reason to not use the KL-divergence
in the DAC, for instance, is that it can lead to computational problems (see [27]). In case of
such computational problems, the best strategy is to search for a distance measure without these
computational issues and with comparable behavior, so as to not jeopardize the interpretation of
the DAC. Plotting the size of the DAC (or the criterion of Nott et al.), compared to the characteristics
of the (possible) expert priors, as we did in Figure 4 and in the Appendix A, can help to spot potential
problems with the distance measure. Such a plot can also help to check whether the distance measure
leads to a relatively strict or relatively lenient conclusion of prior-data conflict.

The results of our study are limited to a specific example scenario and a limited set of twelve
distance measures. We chose this limited scope, as it was impossible to investigate the hundreds of
possible distance measures and anticipate all possible scenarios. Our study can, therefore, best be
read as an example of how the choice of distance measure may influence the detection of prior-data
conflict with the DAC and the criterion of Nott et al. Whether or not the detection of prior-data conflict
depends on the choice of distance measure in another scenario should be checked beforehand by
the investigator.
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Appendix A DAC- and p-Values Separately for Each of the Twelve Distance Measures, for Fixed
Sample and Varying Expert Priors

This appendix provides background information for Figure 4. In Figure 4, we showed the DAC
= 1 and p = 0.05 boundaries of all twelve distance measures in one plot. We did this to compare the
distance measures’ behavior for varying expert priors, when the sample yn is fixed. In this Appendix,
we show the DAC- (upper part) and p-values (lower part) for each of the twelve distance measures
separately, for the expert priors with varying α+ β (x-axis) and α/(α+ β) (y-axis).
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