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Abstract: A new member of the Weibull-generated (Weibull-G) family of distributions—namely
the Weibull-gamma distribution—is proposed. This four-parameter distribution can provide great
flexibility in modeling different data distribution shapes. Some special cases of the Weibull-gamma
distribution are considered. Several properties of the new distribution are studied. The maximum
likelihood method is applied to obtain an estimation of the parameters of the Weibull-gamma
distribution. The usefulness of the proposed distribution is examined by means of five applications
to real datasets.

Keywords: weibull distribution; gamma distribution; transformed-transformer family of distributions;
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1. Introduction

Probability distributions provide important information about the statistical inference and analysis
of data. These results can be used for considering some well-grounded decisions. Hence, it is essential
to have a distribution that accurately reflects the data. Different classical distributions have been
broadly applied for the description of real-world phenomena and the modeling of data in different
disciplines, including insurance, economics, finance, engineering, biology, industry, and medical
sciences. However, many of these standard distributions have limitations in fitting some of the real
data accurately. Therefore, it is of great importance to identify which distribution should be applied
to model the data. Knowledge of the appropriate distribution greatly improves the efficiency of any
statistical inference related to data sets. Hence, researchers are always trying to extend existing classical
distributions, to improve their goodness-of-fit and obtain more flexibility and adaptability in modeling
data in practice. This paper proposes a new modified distribution, which has increased flexibility to
fit various data in practice. Many approaches to extend the existing standard models and develop
generalized classes of distributions have been suggested in the literature; for an excellent review of
various approaches in generating distributions, one may refer to [1].

Recently, Alzaatreh et al. [2] proposed a new approach for generating families of distributions,
namely the transformed-transformer (T-X) family of distributions. These families can be defined for
any baseline distribution with probability density function (pdf) g, cumulative density function (cdf)
G, and a parameter vector ζ, by applying a function to its cdf. To illustrate, assume a continuous
generator random variable (RV) T is defined on [a, b] with pdf r(t) and cdf R(t). Then, the cdf of the
T-X family of distributions for a RV X is defined as

F(x) =
∫ W(G(x;ζ))

a
r(t)dt,

which can be written as
F(x) = R(W(G(x; ζ))), (1)
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where W(G(x; ζ) is a function of the cdf G which satisfies W(G(x; ζ) ∈ [a, b], W(G(x; ζ) is differentiable
and monotonically non-decreasing, W(G(x; ζ) → a as x → −∞, and W(G(x; ζ) → b as x → ∞.
The corresponding pdf, associated with Equation (1), can be found as

f (x) =
{

d
dx

W(G(x; ζ))

}
r(W(G(x; ζ))).

Different forms of the upper limit W can be used to generate different types of the T-X family of
distributions. Additionally, the term “generated” (which we will denote G, for short) illustrates that for
each baseline distribution G, a different distribution F can be obtained; that is, for each family, several
sub-models can be derived according to the choice of the distribution G. For more details, see [2], where
they choose W(G(xζ)) = −log(1− (G(xζ))) in order to introduce the gamma-G, beta-exponential-G,
and Weibull-G families. Many T-X generated distributions have been proposed recently. For example,
the gamma-G family was introduced in [3], the Lomax-G family was introduced in [4], the Lindley-G
family was introduced in [5], the Gompertz-G family was introduced in [6], the generalized Burr-G
family was introduced in [7], the power Lindley-G family was introduced in [8], and the odd Lomax-G
family was introduced in [9], among others.

The gamma distribution can be considered to be one of the most commonly applied lifetime
distributions in different fields. A RV X is said to have a gamma distribution, with shape parameter
k > 0 and a scale parameter s > 0, if the pdf and cdf of X are, respectively, given as

g(x; k, s) =
1

skΓ(k)
xk−1e−

x
s ; x ≥ 0 (2)

and

G(x; k, s) =
γ(k, x

s )

Γ(k)
, (3)

where Γ(k) is the gamma function and γ(k, x) is the incomplete gamma function. given respectively as

Γ(k) =
∫ ∞

0
tk−1e−tdt and γ(k, x

s ) =
∫ x

s

0
tk−1e−tdt. (4)

Many attempts have been made to increase the flexibility of this distribution by introducing
some new distribution with additional parameter(s), such as the exponentiated gamma (EG).
This distribution can be considered to be a member of the exponentiated class of distributions proposed
in [10], where the cdf of any classical distribution is raised to a power (shape) parameter. Thus, the cdf
of the EG takes the form

F(x; s, k, α) =

[
γ(k, x

s )

Γ(k)

]α

. (5)

See, for example [11], where the one-parameter gamma (with scale parameter s = 1), is exponentiated.
This paper proposes a new modification of the gamma distribution, based on the Weibull-G (W-G)

family of distributions. The additional parameters presented by the Weibull generator might enhance
the flexibility of the distribution. The rest of the paper is organized as follows. In Section 2, the W-G
family is discussed. A member of this family—namely the Weibull-gamma (W-g) distribution—is
introduced in Section 3. Some special cases of the W-g distribution are examined in Section 4.
In Section 5, some of the properties of the new distribution are briefly discussed. The method of
maximum likelihood for estimating the parameters of the W-g distribution is discussed in Section 6.
Then, the consistency and precision of these estimates, by means of some Monte Carlo simulation
studies, are investigated in Section 7. Finally, five real datasets are applied, in Section 8, to investigate
the flexibility and usefulness of the W-g distribution.
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2. The Weibull-Generated Family

A RV T is said to have a Weibull distribution, with shape parameter c > 0 and scale parameter
β > 0, if its pdf and cdf are, respectively, given by

r(t; c, β) =
c
β

(
t
β

)c−1
e
−
( t

β

)c

; t ≥ 0, and (6)

R(t; c, β) = 1− e
−
( t

β

)c

. (7)

Assuming that G(x; ζ) is a cdf of the baseline distribution with parameter vector ζ, the cdf of the
W-G distribution can be derived by replacing t in Equation (7) by W(G(x; ζ)), as follows

F(x, c, β, ζ) =
∫ W(G(x;ζ))

0

c
β

(
t
β

)c−1
e
−
( t

β

)c

dt

= 1− e
−
(

W(G(x;ζ))
β

)c

.

(8)

Then, the W-G distribution is obtained with two extra parameters, c and β, for any baseline distribution
G distribution. Different types of W-G can be found, based on the choice of the upper limit of the
integral W(G(x; ζ)). In other words, ref [12] assumed W(G(x)) = −log(1− Gα(x; ζ)) for α > 0

to introduce the exponentiated W-G, ref [13] considered W(G(x; ζ)) =
G(x; ζ)

1− G(x; ζ)
, ref [14] used

the form of W(G(x; ζ)) =
1

1− G(x; ζ)
, and [15] assumed W(G(x; ζ)) = −log(G(x; ζ)). In this paper,

W(G(x; ζ)) = −log(1−G(x; ζ)), which was discussed by [2,16,17], is considered in particular. The cdf
of the W-G distribution is defined as

F(x; c, β, ζ) =
∫ −log(1−G(x;ζ))

0

c
β

(
t
β

)c−1
e
−
( t

β

)c

dt

= 1− e
−
(
−log(1−G(x;ζ))

β

)c

,

(9)

with the corresponding pdf

f (x; c, β, ζ) =
c
β

(
g(x; ζ)

1− G(x; ζ)

)(
−log(1− G(x; ζ))

β

)c−1

e
−
(
−log(1−G(x;ζ))

β

)c

. (10)

In [18], a transformer X distributed as Pareto distribution was considered, to introduce the
Weibull-Pareto distribution. In [16], the logistic distribution was used as a baseline distribution,
providing the Weibull-logistic model. The Weibull-log-logistic distribution was discussed in [17] as a
special case of the W-G family of distributions. Additionally, ref [19] applied this form of the upper
limit for the Rayleigh and discussed the Weibull-Rayleigh distribution.

3. The Weibull-Gamma Distribution

The W-g distribution is derived as a member of the W-G family of distributions in Equation (9);
that is, T is a Weibull RV and X is a gamma RV. Then, the pdf and cdf of the W-g distribution, with



Entropy 2019, 21, 438 4 of 15

a vector of parameters ζ = {c, β, k, s}, can be found by substituting with Equations (2) and (3) in
Equations (9) and (10), as follows

f (x; c, β, k, s) =
c

βskΓ(k)
xk−1e−

x
s

w(x; k)

(
−log(w(x; k))

β

)c−1

×

exp
(
−
(
−log(w(x; k))

β

)c) (11)

and

F(x; c, β, k, s) = 1− exp
(
−
(
−log(w(x; k))

β

)c)
. (12)

The reliability function of the W-g can be obtained, consequently, as

R(x; c, β, k, s) = 1− F(x; c, β, k, s) = exp
(
−
(
−log(w(x; k))

β

)c)
, (13)

where x ≥ 0, c, β, k, s > 0, and

w(x; k) = 1−
γ(k, x

s )

Γ(k)
. (14)

The hazard function can be defined as

h(x; c, β, k, s) =
f (x; c, β, k, s)

1− F(x; c, β, k, s)
, (15)

where f (x) and F(x) are, respectively, defined by Equations (11) and (12).
Different plots of the pdf and the hazard functions for the W-g distribution are displayed,

respectively, in Figures 1 and 2, for some specific parameter values. The density and hazard functions
show differing behaviors, based on the values of the parameters. The various possible shapes of
the density function, including (approximately) symmetric, skewed, and bimodal, were produced.
Additionally, several shapes, including monotonically decreasing, monotonically increasing, unimodal,
bathtub, and U shapes, can be obtained for the hazard function of the W-g, for different combinations
of the values of the parameters. This illustrates the great flexibility of the W-g distribution, which make
it suitable for various real data.
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Figure 2. The W-g hazard functions for various values of c, β, k, and s.

4. Some Special Cases of the Weibull-Gamma Distribution

• If c = β = k = s = 1, the W-g distribution reduces to the standard exponential distribution, with
pdf as follows

f (x) = e−x ; x > 0.
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• When c = β = 1 in the W-g model, the gamma distribution in Equation (2) with shape parameter
k and scale parameter s is obtained.

• If c = 1, the W-g distribution reduces to the exponential-gamma distribution, with pdf as follows

f (x; β, k, s) =
xk−1e−

x
s

βskΓ(k)

(
1−

γ(k, x
s )

Γ(k)

) 1
β−1

; x > 0,

where Γ(k) and γ(k, x) are, respectively, defined by Equation (4).

5. Properties

Providing some mathematical expansions to find some characteristics of the W-g distribution
might be more reasonable than numerically solving the integrals of the pdf given by Equation (11)
to derive these properties. Hence, some mathematical properties are provided here using algebraic
expansions, which can be carried out using any computational software platform which can deal with
analytic expressions.

5.1. Useful Expansions

In the following, we show an alternative formula for the pdf of the W-g distribution given in
Equation (11). Using the power series for the exponential function

e−x =
∞

∑
a1=0

(−1)a1

a1!
xa1 ,

we obtain

f (x; c, β, k, s) =
c

βskΓ(k)
xk−1e−

x
s

w(x; k)

∞

∑
a1=0

(−1)a1

a1!

(
−log(w(x; k))

β

)a1c+c−1

.

Applying the binomial theorem, which defines (1− x)−1 as

(1− x)−1 =
∞

∑
a2=0

xa2 ,

to expand w(x; k)−1 (where the definition of w(x; k) is given in Equation (14)), the pdf can be reduced to

f (x; c, β, k, s) =
c

βskΓ(k)
xk−1e−

x
s

∞

∑
a2=0

(
γ(k, x

s )

Γ(k)

)a2

×

∞

∑
a1=0

(−1)a1

a1!

(
1
β

)a1c+c−1 (
−log

(
1−

γ(k, x
s )

Γ(k)

))a1c+c−1

.

Furthermore, ref [17,20] applied the generalized binomial theorem to prove that

(−log(1− x))a = a
∞

∑
a3=0

a3

∑
a4=0

(−1)a4+a3(a3−a
a3

)(a3
a4
)pa4,a3

(a− a4)
xa+a3 .
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Consequently, the pdf can be obtained as

f (x; c, β, k, s) =
c

βskΓ(k)
xk−1e−

x
s ×

∞

∑
a1,a2,a3=0

a3

∑
a4=0

(−1)a1+a3+a4(a1c + c− 1)(a3−a1c−c+1
a3

)(a3
a4
)pa4,a3

(a1!)βa1c+c−1(a1c + c− a4 − 1)
×

(
γ(k, x

s )

Γ(k)

)a1c+c+a2+a3−1

,

where the constant pa4,a3 can be found recursively by

pa4,a3 = a−1
3

a3

∑
l=1

(a3 − l(a4 + 1)) cl pa4,a3−l ,

for a3 = 1, 2, . . ., pa4,0 = 1, and ca3 = (−1)a3+1(a3 + 1)−1.
By application of the expansion for the incomplete gamma function γ(a, x) using the power series,

presented in [21] as

γ(a, x) = xa
∞

∑
a5=0

(−1)a5 xa5

a5!(a + a5)
,

we obtain

f (x; c, β, k, s) =
c

βskΓ(k)
xk−1e−

x
s ×

∞

∑
a1,a2,a3=0

a3

∑
a4=0

(−1)a1+a3+a4(a1c + c− 1)(a3−a1c−c+1
a3

)(a3
a4
)pa4,a3

(a1!)βa1c+c−1(a1c + c− a4 − 1)

( x
s

)k(a1c+c+a2+a3−1)
×

(
1

Γ(k)

)a1c+c+a2+a3−1
(

∞

∑
a5=0

(−1)a5
( x

s
)a5

a5!(k + a5)

)a1c+c+a2+a3−1

.

Again, according to [21], the power series raised to an integer m can be simplified as(
∞

∑
a5=0

aa5 xa5

)m

=
∞

∑
a5=0

qa5 xa5 ,

where q0 = a0
m and qv = 1

va0
∑v

a5=1(a5m− v + a5)aa5 qv−a5 for v ≥ 1.

Hence, assuming aa5 =
(−1)a5

a5!(k + a5)
yields

f (x; c, β, k, s) =ce−
x
s ×

∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

(−1)a1+a3+a4(a1c + c− 1)(a3−a1c−c+1
a3

)(a3
a4
)pa4,a3 qa5 xk(a1c+c+a2+a3)+a5−1)

(Γ(k))a1c+c+a2+a3(a1!)sk(a1c+c+a2+a3)+a5 βa1c+c(a1c + c− a4 − 1)
,

where q0 = a0
a1c+c+a2+a3−1 and qv = 1

va0
∑v

a5=1 (a5(a1c + c + a2 + a3)− v) aa5 qv−a5 for v ≥ 1.
If we define

Aa1,a2,a3,a4,a5 =
c(−1)a1+a3+a4(a1c + c− 1)(a3−a1c−c+1

a3
)(a3

a4
)pa4,a3 qa5

(Γ(k))a1c+c+a2+a3(a1!)sk(a1c+c+a2+a3)+a5 βa1c+c(a1c + c− a4 − 1)
, (16)



Entropy 2019, 21, 438 8 of 15

and using A instead of Aa1,a2,a3,a4,a5 for short, the pdf of the W-g can be rewritten as

f (x; c, β, k, s) =
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

Axk(a1c+c+a2+a3)+a5−1)e−
x
s . (17)

Using a similar technique, the cdf of the W-g distribution can be obtained as

F(x;c, β, k, s) = 1−
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

(−1)a1+a3+a4(a1c)(a3−a1c
a3

)(a3
a4
)pa4,a3 qa5

(Γ(k))a1c+a3(a1!)βa1c(a1c + c− a4 − 1)

( x
s

)k(a1c+a3)+a5)
.

(18)

5.2. Quantile Function

The pth quantile function (0 < p < 1) of the RV X which follows the W-g distribution is obtained
by inverting Equation (12) and solving the non-linear equation

γ(k,
x
s
) = Γ(k)(1− e−β(−log(1−p))

1
c ). (19)

5.3. Moments

From Equation (17), the rth moment of a RV X which follows the W-g distribution can be
obtained as

µr = E(Xr) =
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

A
∫ ∞

0
xr+k(a1c+c+a2+a3)+a5−1)e−

x
s dx

=
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

Asr+k(a1c+c+a2+a3)+a5 Γ(r + k(a1c + c + a2 + a3) + a5).

(20)

5.4. Moment Generating Function

The moment generating function for the W-g distribution follows, from Equation (17), as

Mx(t) = E(etX) =
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

A
∫ ∞

0
xk(a1c+c+a2+a3)+a5−1)e−x( 1

s−t)dx

=
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

A
(

s
1− ts

)k(a1c+c+a2+a3)+a5

Γ(k(a1c + c + a2 + a3) + a5).

(21)

5.5. Characteristic Function

We can obtain the characteristic function for the W-g distribution, from Equation (17), as follows

φx(t) = E(eitX) =
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

A
∫ ∞

0
xk(a1c+c+a2+a3)+a5−1)e−x( 1

s−it)dx

=
∞

∑
a1,a2,a3,a5=0

a3

∑
a4=0

A
(

s
1− its

)k(a1c+c+a2+a3)+a5

Γ(k(a1c + c + a2 + a3) + a5).

(22)

6. Parameter Estimation for Weibull-Gamma Distribution

Assuming a random sample of size n is taken from the W-g distribution in Equation (11).
Then, to find the maximum likelihood errors (MLEs) of the vector of parameters θ = (c, β, k, s),
we need to find the log-likelihood function, then obtain the partial derivative with respect to each
parameter and set these derivatives to zero.
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The log-likelihood function ` for the W-g can be given as

` =nlog(c)− nclog(β)− nklog(s)− nlog(Γ(k))

+ (k− 1)
n

∑
i=1

log(xi)−
1
s

n

∑
i=1

xi −
n

∑
i=1

log(w(xi; k))

+ (c− 1)
n

∑
i=1

log(−log(w(xi; k)))

− β−c
n

∑
i=1

(−log(w(xi; k)))c

, (23)

where w(x; k) is defined by Equation (14).
The derivatives of Equation (23), with respect to c, β, k , and s, respectively, are given by

∂`

∂c
=

n
c
− nlog(β) +

n

∑
i=1

log(−log(w(xi; k)))

−
n

∑
i=1

log
(
−log(w(xi; k))

β

)(
−log(w(xi; k))

β

)c, (24)

∂`

∂β
=
−nc

β
+

c
βc+1

n

∑
i=1

(−log(w(x; k)))c , (25)

∂`

∂k
=− nlog(s)− n

Γ(k)
d
dk

Γ(k) +
n

∑
i=1

log(xi)−
n

∑
i=1

d
dk

w(xi; k)

w(xi; k)

+ (c− 1)
n

∑
i=1

d
dk

w(xi; k)

w(xi; k)log(w(xi; k))
+

c
βc

n

∑
i=1

(−log(w(xi; k)))c−1 d
dk

w(xi; k)

w(xi; k)
, and

(26)

∂`

∂s
=
−nk

s
+

1
s2

n

∑
i=1

xi. (27)

Thus, the MLEs of the parameters c, β, k, and s can be obtained by setting Equations (24)–(27) to
zero and solving them iteratively, using numerical methods such as the Newton-Raphson iteration
method. Alternatively, the log-likelihood in Equation (23) can be directly maximized, using any
standard non-linear optimization tool.

7. Simulation Study

This section considers some simulation studies to evaluate the performance of the MLEs of the
parameters of the W-g distribution. The simulation is considered over several iterations equal to
nsim = 1000, and for different sample sizes n with the following cases for the true parameters θtr

• Case I: c = 1.5, β = 0.5, k = 0.5, s = 0.4, and
• Case II: c = 1.8, β = 0.3, k = 0.5, s = 0.4

The MLE, θ̂, for each parameter can be evaluated using two accuracy measures—the bias and the
root mean square error (RMSE)—which can be calculated, respectively, as follows

bias(θ̂) =
∑nsim

i=1 θ̂i

nsim
− θtr (28)

and

RMSE(θ̂) =

√
∑nsim

i=1 (θ̂i − θtr)2

nsim
. (29)
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The Monte Carlo simulation studies were conducted using the R programming language. Table 1
shows the results for the MLE of the parameters of W-g, along with their corresponding average bias
and RMSE, respectively. As expected for the method of maximum likelihood, it can be seen that both
criteria, bias, and RMSE, generally decreases as the size of the sample n increases and the estimates
become closer to the true parameters on average.

Table 1. Simulation study: W-g parameter estimates, together with bias and root mean square error
(RMSE), for two different cases with different sample sizes. MLE, maximum likelihood error.

Sample Size Parameter Case I Case II

MLE Bias RMSE MLE Bias RMSE

n = 30

c 1.8567 0.3567 1.3371 2.4955 0.6955 1.8919
β 0.9846 0.4846 1.2006 0.8371 0.5371 1.1462
k 0.8473 0.3473 0.9991 0.7038 0.2038 0.7729
s 0.3492 −0.0508 1.0025 0.3349 −0.0651 0.9125

n = 100

c 1.6269 0.1269 0.8466 1.9732 0.1732 1.0898
β 0.7970 0.2970 0.8186 0.5303 0.2303 0.6201
k 0.6396 0.1396 0.5129 0.6788 0.1788 0.5824
s 0.4629 0.0629 0.9147 0.3931 −0.0069 0.8175

n = 500

c 1.5168 0.0168 0.4565 1.7818 −0.0182 0.4919
β 0.7535 0.2535 0.7530 0.3760 0.0760 0.2767
k 0.5373 0.0373 0.2011 0.5534 0.0534 0.2481
s 0.4577 0.0577 0.4976 0.4053 0.0053 0.4096

8. Applications

This section illustrates the usefulness of the W-g distribution through five different real data sets.
The fit of the W-g is compared with some related distributions; namely the gamma distribution in
Equation (2) with shape parameter k and scale parameter s, and the Weibull distribution in Equation (6)
with shape parameter c and scale parameter β. The gamma and Weibull distributions are fitted using
the “fitdistr” function from the MASS package in R. Additionally, the fitting is compared with the EG
in Equation (5) with power parameter α, shape parameter k, and scale parameter s. Also, the data is
fitted by the exponentiated exponential (EE), introduced in [22] as an alternative to the gamma and
Weibull distributions. The EE is obtained by exponentiating the classical exponential distribution to a
power (shape) parameter α as F(x) = [1− e−sx]

α, where s is the scale parameter and α is the shape
parameter. The results for EG, EE, and W-g were obtained using the package Newdistns, given in [23],
in the statistical software R.

In particular, the MLEs of the parameters for each of the distributions with the value of the
log-likelihood were computed. Then, to choose the best model among these various models, the Akaike
Information Criterion (AIC), given in [24], was computed and the best model is the model with the
minimum AIC values. The plots of the expected frequencies for the fitted gamma, Weibull, EE, EG,
and W-g were compared with the histograms of the observed frequencies. Furthermore, the empirical
cdf was plotted and compared with the estimated cdf for each of the distributions.

8.1. First Dataset

First, we will consider the dataset discussed in [25], which concerns with a large system with
30 units, in which the failure and running times are 2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00,
1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00, 3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45,
and 2.66.

Table 2–6 shows a summary of the MLEs of the parameters, the log-likelihood, and the AIC for
each model. It can be seen that the W-g can be selected as the best model, according to its low AIC
when compared to the other fitted distributions. The histogram of the data and plots of the estimated
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pdf and cdf for each model are displayed in Figures 3–7. It is clear that the proposed W-g distribution
is the closest to the actual distribution of the data. Therefore, the W-g distribution can be selected as
the best model for all datasets.

Table 2. Estimation for the first dataset.

Distribution gamma Weibull EE EG W-g

Parameter estimates k̂ = 1.1894 ĉ = 1.265 α̂ = 1.1543 α̂ = 0.0210 ĉ = 6.0638
ŝ = 1.4884 β̂ = 1.8805 ŝ = 1.6231 k̂ = 54.853 β̂ = 6.4448

ŝ = 0.0849 k̂ = 0.0085
ŝ = 1.891

Log-likelihood −46.8656 −46.1587 −46.9569 −44.3009 −42.1281
AIC 97.7311 96.3175 97.9139 94.6018 92.2563

Table 3. Estimation for the second dataset.

Distribution gamma Weibull EE EG W-g

Parameter estimates k̂ = 0.7991 ĉ = 0.9492 α̂ = 0.7802 α̂ = 0.0655 ĉ = 5.1941
ŝ = 57.1717 β̂ = 44.9466 ŝ = 53.4185 k̂ = 11.8984 β̂ = 7.5083

ŝ = 10.875 k̂ = 0.0044
ŝ = 39.4314

Log-likelihood −240.1902 −241.0018 −239.9952 −237.314 −231.7916
AIC 484.3804 486.0037 483.9903 480.628 471.5832

Table 4. Estimation for the third dataset.

Distribution gamma Weibull EE EG W-g

Parameter estimates k̂ = 1.1892 ĉ = 1.2651 α̂ = 1.1659 α̂ = 0.0236 ĉ = 6.2924
ŝ = 148.8595 β̂ = 188.0556 ŝ = 161.1306 k̂ = 47.957 β̂ = 6.3784

ŝ = 9.8477 k̂ = 0.0084
ŝ = 197.8811

Log-likelihood −185.0207 −184.3138 −185.113 −182.4996 −180.267
AIC 374.0413 372.6277 374.2259 370.9992 368.5341

Table 5. Estimation for the fourth dataset.

Distribution gamma Weibull EE EG W-g

Parameter estimates k̂ = 1.6208 ĉ = 1.2744 α̂ = 1.7317 α̂ = 7.3683 ĉ = 0.7086
ŝ = 24.5738 β̂ = 43.205 ŝ = 28.5766 k̂ = 0.2578 β̂ = 4.0834

ŝ = 36.8853 k̂ = 4.6704
ŝ = 3.6166

Log-likelihood −295.8994 −296.9001 −295.666 −295.2987 −293.5914
AIC 595.7988 597.8003 595.332 596.5974 595.1828

Table 6. Estimation for the fifth dataset.

Distribution gamma Weibull EE EG W-g

Parameter estimates k̂ = 3.6782 ĉ = 1.8404 α̂ = 5.5309 α̂ = 33.1003 ĉ = 0.5883
ŝ = 3.667 β̂ = 15.306 ŝ = 5.5966 k̂ = 0.207 β̂ = 2.8474

ŝ = 7.0303 k̂ = 16.5821
ŝ = 0.5763

Log-likelihood −193.0820 −197.2905 −191.2235 −190.3999 −188.3944
AIC 390.164 398.5811 386.4471 386.7998 384.7887
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Figure 3. Comparison of W-g distribution with the other distributions for the first dataset. (Left): cdf
for each of the fitted distributions. (Right): observed and expected frequencies for each model.
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Figure 4. Comparison of W-g distribution with the other distributions for the second dataset. (Left): cdf
for each of the fitted distributions. (Right): observed and expected frequencies for each model.
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Figure 6. Comparison of W-g distribution with the other distributions for the fourth dataset. (Left): cdf
for each of the fitted distributions. (Right): observed and expected frequencies for each model.
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Figure 7. Comparison of W-g distribution with the other distributions for the fifth dataset. (Left): cdf
for each of the fitted distributions. (Right): observed and expected frequencies for each model.

8.2. Second Dataset

The second dataset consists of the lifetimes of n = 50 components, given in [26] as: 0.1, 0.2, 1.0,
1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0, 18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 46.0, 47.0,
50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0, 67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0,
85.0, 85.0, 85.0, 86.0, and 86.0.

8.3. Third Dataset

The third dataset also gives the failure and running times of a sample of n = 30 devices, given
in [25] as: 2, 10, 13, 23, 23, 28, 30, 65, 80, 88, 106, 143, 147, 173, 181, 212, 245, 247, 261, 266, 275, 293, 300,
300, 300, 300, 300, 300, 300, and 300.

8.4. Fourth Dataset

The dataset considered here, discussed by [27], presents the waiting times between 65 consecutive
eruptions of a blowhole, called the Kiama Blowhole, as follows: 83, 51, 87, 60, 28, 95, 8, 27, 15, 10, 18,
16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40 , 10, 7, 34, 27, 28, 56, 8, 25, 68, 146, 89, 18, 73, 69,
9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83, 11, 42, 17, 14, 9, and 12.
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8.5. Fifth Dataset

The fifth dataset is from [28], and is the monthly actual tax revenues in Egypt between January
2006 and November 2010. These actual taxes, in 1000 million Egyptian pounds, are as follows: 5.9,
20.4, 14.9, 16.2, 17.2, 7.8, 6.1, 9.2, 10.2, 9.6, 13.3, 8.5, 21.6, 18.5, 5.1, 6.7, 17, 8.6, 9.7, 39.2, 35.7, 15.7, 9.7, 10,
4.1, 36, 8.5, 8, 9.2, 26.2, 21.9, 16.7, 21.3, 35.4, 14.3, 8.5, 10.6, 19.1, 20.5, 7.1, 7.7, 18.1, 16.5, 11.9, 7, 8.6, 12.5,
10.3, 11.2, 6.1, 8.4, 11, 11.6, 11.9, 5.2, 6.8, 8.9, 7.1, and 10.8.

9. Conclusions

The W-g distribution, a member of the W-G family, is proposed and discussed. This distribution is
introduced as a new four-parameter distribution which extends the classical gamma distribution.
This generalization can provide more flexibility in analyzing real data. Some special cases of
this distribution are presented. Furthermore, some characteristics of this new distribution are
obtained. The maximum likelihood method is applied to estimate the model parameters. Different
simulation studies are conducted, with different sample sizes, to verify the consistency of the
estimates in terms of the bias and RMSE. The results indicate the good performance of the proposed
estimators. The usefulness of the suggested distribution is illustrated by means of five real-life
datasets. The proposed W-g distribution can consistently provide a better fit than some other common
competitive models. Hence, the new W-g distribution can be applied as a competitive model to fit
different real data.
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Abbreviations

The following abbreviations are used in this manuscript:

cdf cumulative distribution function
pdf probability density function
RV random variable
MLE maximum likelihood estimator
W-G Weibull-generated
W-g Weibull-gamma
EG exponentiated gamma
EE exponentiated exponential
AIC Akaike Information Criterion
RMSE root mean squared error
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