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Abstract: Retailers need demand forecasts at different levels of aggregation in order to support a
variety of decisions along the supply chain. To ensure aligned decision-making across the hierarchy,
it is essential that forecasts at the most disaggregated level add up to forecasts at the aggregate levels
above. It is not clear if these aggregate forecasts should be generated independently or by using
an hierarchical forecasting method that ensures coherent decision-making at the different levels
but does not guarantee, at least, the same accuracy. To give guidelines on this issue, our empirical
study investigates the relative performance of independent and reconciled forecasting approaches,
using real data from a Portuguese retailer. We consider two alternative forecasting model families for
generating the base forecasts; namely, state space models and ARIMA. Appropriate models from both
families are chosen for each time-series by minimising the bias-corrected Akaike information criteria.
The results show significant improvements in forecast accuracy, providing valuable information
to support management decisions. It is clear that reconciled forecasts using the Minimum Trace
Shrinkage estimator (MinT-Shrink) generally improve on the accuracy of the ARIMA base forecasts
for all levels and for the complete hierarchy, across all forecast horizons. The accuracy gains generally
increase with the horizon, varying between 1.7% and 3.7% for the complete hierarchy. It is also
evident that the gains in forecast accuracy are more substantial at the higher levels of aggregation,
which means that the information about the individual dynamics of the series, which was lost due to
aggregation, is brought back again from the lower levels of aggregation to the higher levels by the
reconciliation process, substantially improving the forecast accuracy over the base forecasts.

Keywords: hierarchical forecasting; information criteria; entropy; model selection; ARIMA;
state space models; retail

1. Introduction

Retailers need demand forecasts at different levels of aggregation to support decision-making at
operational and short-term strategic levels [1]. Consider a retailer warehouse storing inventory that is
used to replenish multiple retail stores: Store-level forecasts at different product levels are needed to
manage inventory in the store or to allocate shelf space, but aggregate forecasts are also required for
the inventory decisions of the retailer warehouse [2]. Understanding whether these aggregate forecasts
should be generated independently at each level of the hierarchy, based on the aggregated demand,
or obtained using an hierarchical forecasting method, which depends on the aggregation constraints
of the hierarchy but ensures coherent decision-making at the different levels, is the gap we seek to
address in this paper.
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SKUs (Stock Keeping Units) are naturally grouped together in hierarchies, with the individual
sales of each product at the bottom level of the hierarchy, sales for groups of related products (such as
categories, families, or areas) at increasing aggregation levels, and the total sales at the top level [3].
Generating accurate forecasts for hierarchical time-series can be particularly difficult. Time-series
at different levels of the hierarchical structure have different scales and can exhibit very different
patterns. The time-series at the most disaggregated level can be very noisy and are often intermittent,
being more challenging to model and forecast. Aggregated series at higher levels are usually much
smoother and, therefore, easier to forecast. Additionally, in order to ensure coherent decision-making
at the different levels of the hierarchy, it is essential that forecasts of each aggregated series be equal to
the sum of the forecasts of the corresponding disaggregated series. However, it is very unlikely that
these aggregation constraints will be satisfied if the forecasts for each series in the hierarchical structure
are generated independently. Finally, hierarchical forecasting methods should take advantage of the
interrelations between the series at each level of the hierarchy.

The most traditional approaches to hierarchical forecasting are bottom-up and top-down methods.
The bottom-up method involves forecasting each series at the bottom level, and then summing these to
obtain forecasts at the higher levels of the hierarchy [4–7]. The main advantage of this approach is that,
since forecasts are obtained at the bottom level, no information is lost due to aggregation. However,
it ignores the inter-relations between the series and usually performs poorly on highly aggregated
data. The top-down method involves forecasting the most aggregated series at the top level, and then
disaggregating these, using either historical [8] or forecasted proportions [9], to obtain bottom level
forecasts. Top-down approaches based on historical proportions tend to produce less accurate forecasts
at lower levels of the hierarchy. The middle-out approach combines both bottom-up and top-down
methods. First, forecasts for each series of an intermediate level of the hierarchy chosen previously are
obtained. The forecasts for the series above the intermediate level are produced using the bottom-up
approach, while the forecasts for the series below the intermediate level are produced using the
top-down approach. Empirical studies comparing the performance of bottom-up and top-down
methods have mixed results as to a preference for either bottom-up or top-down [4,6,10–12].

Recent work in the area tackles the problem using a two-stage approach: In the first
step, forecasts for all series at all the levels of the hierarchy, rather then at a single level,
are independently produced (these are called base forecasts). Then, a regression model is used to
combine these to give coherent forecasts (these are called reconciled forecasts). Athanasopoulos et al. [9]
and Hyndman et al. [13] used the Ordinary Least Squares (OLS) estimator and showed that their
approach worked well, compared to most traditional methods. Hyndman et al. [14] suggested the
Weighted Least Squares (WLS) estimator, proposing the variances of the base forecast errors as a proxy
to the diagonal of the errors covariance matrix, with null off-diagonal elements. They also introduced
several algorithms to make the computations involved more efficient under a very large number of
series. To extend the work of Hyndman et al. [14], Wickramasuriya et al. [15] proposed a closed-form
solution, based on the Generalised Least Squares (GLS) estimator, that minimised the sum of the
variances of the reconciled forecast errors incorporating information from a full covariance matrix of
the base forecast errors. The authors evaluated the performance of their method, compared to the most
commonly-used methods and the results showed that it worked well with both artificial and real data.

Erven and Cugliari [16] proposed a Game-Theoretically OPtimal (GTOP) reconciliation method
that selected the set of reconciled predictions, such that the total weighted quadratic loss of the
reconciled predictions will never be greater than the total weighted quadratic loss of the base
predictions. The authors illustrated the benefits of their approach on both simulated data and real
electricity consumption data. This approach required fewer assumptions about the forecasts and
forecast errors, but it did not have a closed-form solution and did not scale well for a huge set of
time-series.

Mircetic et al. [17] proposed a top-down approach for hierarchical forecasting in a beverage supply
chain, based on projecting the ratio of bottom and top level series into the future. Forecast projections
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were then used to disaggregate the base forecasts of the top level series. The disadvantage of all
top-down approaches, including this one, is that they do not produce unbiased coherent forecasts [13].

The remainder of the paper is organized as follows. The next section presents a brief description
of the two most widely-used approaches to time-series forecasting: State space models and ARIMA
models. The procedure for using information criteria in model selection is also discussed. Section 3
describes the methods more commonly used to forecast hierarchical time-series. Section 4 presents the
case study of a Portuguese retailer, explains the evaluation setup implemented and error measures
used, and discusses the results obtained. Finally, Section 5 offers the concluding remarks.

2. Pure Forecasting Models

We consider two alternative forecasting methods for generating the base forecasts used by
hierarchical forecasting approaches; namely, state space models and ARIMA models. These are briefly
described in this section, giving a special focus on the use of information criteria for model selection.

2.1. State Space Models

Forecasts generated by exponential smoothing methods are weighted averages of past
observations, where the weights decrease exponentially as the observations get older. The component
form representation of these methods comprises the forecast equation and one smoothing equation
for each of the components considered, which can be the level, the trend, and the seasonality.
The possibilities for each of these components are: Trend = {N, A, Ad} and Seasonality = {N, A, M},
where N, A, Ad and M mean, respectively, none, additive, additive damped, and multiplicative.
By considering all combinations of the trend and seasonal components, nine exponential smoothing
methods are possible. Each method is usually labelled by a pair of letters, (T,S), specifying the type of
trend and seasonal components. Denoting the time-series by yt, t = 1, 2, . . . , n and the forecast of yt+h,
based on all data up to time t by ŷt+h|t, the component form of the additive Holt-Winters’ method,
(A, A), is

ŷt+h|t = lt + hbt + st+h−m(k+1) (1)

lt = α (yt − st−m) + (1− α) (lt−1 + bt−1) (2)

bt = β∗ (lt − lt−1) + (1− β∗) bt−1 (3)

st = γ (yt − lt−1 − bt−1) + (1− γ) st−m (4)

0 ≤ α ≤ 1, 0 ≤ β∗ ≤ 1, 0 ≤ γ ≤ 1− α,

where lt, bt, and st denote, respectively, the estimates of the series level, trend (slope), and seasonality
at time t; m denotes the period of seasonality; and k is the integer part of (h− 1)/m. The smoothing
parameters α, β∗, and γ are constrained, to ensure that the smoothing equations can be interpreted
as weighted averages. Fitted values are calculated by setting h = 1 with t = 0, 1, . . . , n− 1. H-step
ahead forecasts, for h = 1, 2, . . ., can then be obtained using the last estimated values of the level,
trend, and seasonality (t = n). Details about all the other methods may be found in Hyndman
and Athanasopoulos [18]. To be able to produce forecast intervals and use a model selection criteria,
Hyndman et al. [19] (amongst others) developed a statistical framework, where an innovation state
space model can be written for each of the exponential smoothing methods. Each state space model
comprises a measurement equation, which describes the observed data, and state equations which
describe how the unobserved components (level, trend, and seasonality) change with time. For each
exponential smoothing method, two possible state space models are considered, one with additive
errors and one with multiplicative errors, giving a total of 18 models. To distinguish state space models
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with additive and multiplicative errors, an extra letter E was added: The triplet (E, T, S) identifies the
type of error, trend, and seasonality. The general state space model is

yt = w(xt−1) + r(xt−1)εt (5a)

xt = f (xt−1) + g(xt−1)εt, (5b)

where yt denotes the observation at time t, xt is the state vector, {εt} is a white noise process
with variance σ2 referred to as the innovation (new and unpredictable), w(.) is the measurement
function, r(.) is the error term function, f (.) is the transition function, and g(.) is the persistence
function. Equation (2a) is the measurement equation and Equation (2b) gives the state equations.
The measurement equation shows the relationship between the observations and the unobserved
states. The transition equation shows the evolution of the state through time. The equations of the
ETS(A, A, A) model (underlying additive Holt-Winters’ method with additive errors) are [18]

yt = lt−1 + bt−1 + st−m + εt (6a)

lt = lt−1 + bt−1 + αεt (6b)

bt = bt−1 + βεt (6c)

st = st−m + γεt, (6d)

and the equations of the ETS(M, A, A) model (underling additive Holt-Winters’ method with
multiplicative errors) are [19]

yt = (lt−1 + bt−1 + st−m) (1 + εt) (7a)

lt = lt−1 + bt−1 + α (lt−1 + bt−1 + st−m) εt (7b)

bt = bt−1 + β (lt−1 + bt−1 + st−m) εt (7c)

st = st−m + γ (lt−1 + bt−1 + st−m) εt. (7d)

2.1.1. Estimation of State Space Models

Maximum likelihood estimates of the parameters and initial states of the state space model (2)
can be obtained by minimizing its likelihood. The probability density function for y = (y1, . . . , yn)′ is
given by [19]

p(y | θ, x0, σ2) =
n

∏
t=1

p(yt | xt−1) =
n

∏
t=1

p(εt)/|r(xt−1)|, (8)

where θ is the parameters vector, x0 is the initial states vector, and σ2 is the innovation variance.
By assuming that the distribution of {εt} is Gaussian, this likelihood has the form

L(θ, x0, σ2 | y) = (2πσ2)−n/2

∣∣∣∣∣ n

∏
t=1

r(xt−1)

∣∣∣∣∣
−1

exp

(
−1

2

n

∑
t=1

ε2
t /σ2

)
, (9)

and its logarithm is

logL = −n
2

log(2πσ2)−
n

∑
t=1

log |r(xt−1)| −
1
2

n

∑
t=1

ε2
t /σ2. (10)

The maximum likelihood estimate of σ2 can be obtained by taking the partial derivative of (10)
with respect to σ2 and setting it to zero:

σ̂2 = n−1
n

∑
t=1

ε2
t . (11)
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This estimate can be used to eliminate σ2 from the likelihood (9), which becomes

L(θ, x0 | y) = (2 π e σ̂2)−n/2

∣∣∣∣∣ n

∏
t=1

r(xt−1)

∣∣∣∣∣
−1

. (12)

Hence, twice the negative logarithm of this likelihood is

− 2 logL(θ, x0 | y) = cn + n log

(
n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|, (13)

where cn = n log(2 π e)− n log(n). Thus, maximum likelihood estimates for the parameters θ and the
initial states x0 can be obtained by minimizing

L∗(θ, x0) = n log

(
n

∑
t=1

ε2
t

)
+ 2

n

∑
t=1

log |r(xt−1)|. (14)

The innovations can be computed recursively, using the relationships

εt = [yt − w(xt−1)]/r(xt−1) (15)

xt = f (xt−1) + g(xt−1)εt. (16)

2.1.2. Information Criteria for Model Selection

Forecast accuracy measures can be used to select a model for a given time-series, as long as the
errors are computed from a test set and not from the training set used to estimate the model. However,
the errors usually available are not enough to draw reliable conclusions. One possible solution is to use
an information criterion (IC), based on the likelihood L(θ, x0 | y), that would include a regularization
term to compensate for potential overfitting. The Akaike Information Criteria (AIC) for state space
models is defined as [18]

AIC = −2 logL(θ, x0 | y) + 2k, (17)

where L(θ, x0 | y) is the likelihood and k is the number of parameters and initial states of the estimated
model. Akaike based his model selection criteria on the Kullback-Liebler (K-L) discrimination
information, also known as negative entropy, defined by

I( f , g) =
∫

f (x) log
(

f (x)
g(x|θ)

)
dx, (18)

which measures the information lost when the model g is used to approximate the real model f .
He found that he could estimate the expectation of K-L information by the maximized log-likelihood
corrected for bias. This bias can be approximated by the number of estimated parameters in the
approximating model. Thus, the model selection procedure is to choose the model amongst the
candidates having the minimum value of the AIC. The Bayesian Information Criteria (BIC) is defined
as [20]

BIC = AIC + k[log(n)− 2]. (19)

The BIC is order-consistent, but is not asymptotically efficient like the AIC. The AIC corrected for
small-sample bias, denoted by AICc, is defined as [19]

AICc = AIC +
k(k + 1)
n− k− 1

. (20)

Appropriate models can be selected by minimizing the AIC, the BIC, or the AICc.
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2.2. ARIMA Models

ARIMA models are generally accepted as one of the most versatile classes of models for forecasting
time-series [21,22]. Many different types of stochastic seasonal and non-seasonal time-series can be
represented by them. These include pure autoregressive (AR), pure moving average (MA), and mixed
AR and MA processes, all requiring stationary data so that they can be applied. Although many
time-series are non-stationary, they can be transformed to stationary time-series by taking proper
degrees of differencing (regular and/or seasonal). The multiplicative seasonal ARIMA model,
denoted as ARIMA(p, d, q)× (P, D, Q)m, has the following form [23]:

φp(B)ΦP(Bm)(1− B)d(1− Bm)Dyt = c + θq(B)ΘQ(Bm)εt, (21)

where

φp(B) = 1− φ1B− · · · − φpBp ΦP(Bm) = 1−Φ1Bm − · · · −ΦPBPm,

θq(B) = 1 + θ1B + · · ·+ θqBq ΘQ(Bm) = 1 + Θ1Bm + · · ·+ ΘQBQm,

m is the period of seasonality, D is the degree of seasonal differencing, d is the degree of ordinary
differencing, B is the backward shift operator, φp(B) and θq(B) are the regular autoregressive and
moving average polynomials of orders p and q, respectively, ΦP(Bm) and ΘQ(Bm) are the seasonal
autoregressive and moving average polynomials of orders P and Q, respectively, c = µ(1− φ1 − · · · −
φp)(1−Φ1 − · · · −ΦP), where µ is the mean of (1− B)d(1− Bm)Dyt, and εt is a zero-mean Gaussian
white noise process with variance σ2. To ensure causality and invertibility, the roots of the polynomials
φp(B), ΦP(Bm), θq(B), and ΘQ(Bm) should lie outside the unit circle. One of the main tasks in ARIMA
forecasting is selecting the values of p, q, P, Q, d, and D. Usually, the following steps are used [23]:
Plot the series, identify outliers, and choose a proper variance-stabilizing transformation. For that
purpose, a Box-Cox transformation may be applied [24]:

y′t =

{
ln(yt), λ = 0

(yλ
t − 1)/λ, λ 6= 0

, (22)

where the parameter λ is a real number, often between −1 and 2. Then, the sample
ACF (Auto-Correlation Function) and sample PACF (Partial Auto-Correlation Function) can be
computed to decide appropriate degrees of differencing (d and D). Alternatively, unit-root tests
may be applied. The Canova–Hansen test [25] can be used to choose D. After D is selected, d can
be chosen by applying successive KPSS (Kwiatkowski, Phillips, Schmidt & Shin) tests [26]. Finally,
the sample ACF and sample PACF are matched with the theoretical patterns of known models, to
identify the orders of p, q, P, and Q.

Information Criteria for Model Selection

As for state space models, the values of p, q, P, and Q may be selected by an information criterion,
such as the Akaike Information Criteria [18]:

AIC = −2 logL(θ, σ2| y) + 2(p + q + P + Q + k + 1), (23)

where k = 1 if c 6= 0 and 0 otherwise, and logL(θ, σ2| y) is the log-likelihood of the model fitted to the
properly transformed and differenced data, given by [27]

logL(θ, σ2| y) = −n
2

log(2π)− n
2

log(σ2)−
n

∑
t=1

ε2
t

2σ2 , (24)
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where θ is the parameter vector of the model and σ2 is the innovation variance (the last term in
parentheses in (23) is the total number of parameters that have been estimated, including the innovation
variance). Note that the AIC is defined by considering the same principles of maximum likelihood and
negative entropy discussed in Section 2.1. The AIC corrected for small sample sizes, AICc, is defined as

AICc = AIC +
2(p + q + P + Q + k + 1)(p + q + P + Q + k + 2)

n− p− q− P−Q− k− 2
. (25)

The Bayesian Information Criterion is defined as

BIC = AIC + [log(n)− 2](p + q + P + Q + k + 1). (26)

As for the state space models, appropriate ARIMA models may be obtained by minimizing either
the AIC, AICc, or BIC.

3. Hierarchical Forecasting

3.1. Hierarchical Time-Series

For the purpose of illustration, consider the example of the hierarchical structure shown in
Figure 1. At the top of the hierarchy (level 0) is the most aggregated time-series, denoted by Total.
The observation at time t of the Total series is denoted by yTotal,t. The Total series is disaggregated
into series A and series B, at level 1. The t-th observation of series A is denoted as yA,t and the t-th
observation of series B is denoted as yB,t. The series A and B are disaggregated, respectively, into two
and three series that are at the bottom level (level 2). For example, yAA,t denotes the t-th observation
of series AA. In this case, the total number of series is n = 8 and the number of series at the bottom
level is m = 5. For any time t, the observations at the bottom level will sum to the observations of the
series above. Hence, in this case, we have

yTotal,t = yAA,t + yAB,t + yBA,t + yBB,t + yBC,t, yA,t = yAA,t + yAB,t, yB,t = yBA,t + yBB,t + yBC,t. (27)

yTotal,t

yA,t yB,t

yAA,t yBA,tyAB,t yBC,tyBB,t

Figure 1. Example of a two-level hierarchical structure.

These aggregation constraints can be easily represented using matrix notation

yt = Sbt, (28)

where yt = (yTotal,t, yA,t, yB,t, yAA,t, yAB,t, yBA,t, yBB,t, yBC,t)
′ is an n-dimensional vector, bt =

(yAA,t, yAB,t, yBA,t, yBB,t, yBC,t)
′ is an m-dimensional vector, and S is the summing matrix of order

n×m, given by

S =


1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I5

 . (29)

Note that the first three rows of S correspond, respectively, to the three aggregation constraints
in (27). The identity matrix I5 below guarantees that each bottom level observation on the right-hand
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side of the equation is equal to itself on the left hand side. These concepts can be applied to an arbitrary
set of n time-series that are subject to an aggregation structure, with m series at the bottom level [18].
The goal is to produce coherent forecasts for each series in the hierarchy; that is, forecasts that add up
according to the aggregation constraints of the hierarchical structure.

3.2. Hierarchical Forecasting Methods

Let ŷt+h|t be an n-dimensional vector containing the forecasts of the values of all series in the
hierarchy at time t + h (with h = 1, 2, . . .), obtained using observations up to and including time
t, and stacked in the same order as yt. These are usually called base forecasts. They are calculated
independently for each time-series, not taking into account any relationship that might exist between
them due to the aggregation constraints. Any forecasting method, such as ETS or ARIMA, can be used
to generate these forecasts. The issue is that it is very unlikely that these will be coherent forecasts,
hence some reconciliation method should be further applied. All existing reconciliation methods can
be expressed as

ỹt+h|t = SPŷt+h|t, (30)

where ỹt+h|t is an n-dimensional vector of reconciled forecasts, which are now coherent, and P is a
matrix of dimension m× n, which maps the base forecasts ŷt+h|t into reconciled bottom level forecasts,
which are then aggregated by the summing matrix S. If the bottom-up (BU) approach is used, then
P = [0m×(n−m) | Im], where 0m×(n−m) is the null matrix of order m× (n− m) and Im is the identity
matrix of order m [4–6,9,10,28,29]. For the hierarchy shown in Figure 1, P is given by

P =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 . (31)

This approach is computationally very efficient, since it only requires summing the bottom level
base forecasts. It also has the advantage of forecasting the series at the most disaggregated level
and, although it is more difficult to model, no information about the dynamics of the series is lost
due to aggregation. However, it usually provides very poor forecasts for the upper levels in the
hierarchy [13]. If a top-down (TD) approach is used, then P = [p | 0m×(n−1)], where p = [p1, . . . , pm]′

is an m-dimensional vector containing the disaggregation proportions, which indicate how the top
level base forecast at time t + h is to be distributed to obtain forecasts for the bottom level series, which
are then summed by S [8,17,30–33]. For the hierarchy shown in Figure 1, P is given by

P =


p1 0 0 0 0 0 0 0
p2 0 0 0 0 0 0 0
p3 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0
p5 0 0 0 0 0 0 0

 . (32)

The most common top-down methods performed quite well in Gross and Sohl [8]. In method “a”
of Gross and Sohl [8] (referred to in the results that follow as TDGSa), each proportion pi is the average
of the historical proportions of bottom level series yi,j, relative to top level series yT,j, over the time
period j = 1, . . . , t:

pi =
1
t

t

∑
j=1

yi,j

yT,j
, i = 1, . . . , m. (33)
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In method “f” (referred to in the results that follow as TDGSf), each proportion pi is the average
value of the historical data of bottom level series yi,j, relative to the average value of the historical data
of top level series yT,j, over the time period j = 1, . . . , t:

pi =
t

∑
j=1

yi,j

t

/ t

∑
j=1

yT,j

t
, i = 1, . . . , m. (34)

These two methods are very simple to implement, since they only require forecasts for the most
aggregated series in the hierarchy. They seem to provide reliable forecasts for the aggregate levels.
However, they are not able to capture the individual dynamics of the series that is lost due to aggregation.
Moreover, since they are based on historical proportions, they tend to produce less accurate forecasts
than the bottom-up approach at lower levels of the hierarchy, as they do not take into account how
these proportions may change over time. To address this issue, Athanasopoulos et al. [9] proposed to
obtain proportions based on forecasts rather than historical data:

pi =
k−1

∏
l=0

ŷ(l)i,t+h|t

Ŝ(l+1)
i,t+h|t

, i = 1, . . . , m, (35)

where k is the level of the hierarchy, ŷ(l)i,t+h|t is the base forecast at the time t + h of the series that

corresponds to the node which is l levels above i, and Ŝ(l+1)
i,t+h|t is the sum of the base forecasts at the

time t + h of the series that corresponds to the nodes that are below the node that is l levels above
node i and are directly connected to it. In the results that follow, this top-down method is referred as
TDfp. In the methods discussed so far, no real reconciliation has been performed, because these have
been based on base forecasts from a single level of the hierarchy. However, processes that reconcile the
base forecasts from the whole hierarchy structure in order to produce coherent forecasts can also be
considered. Hyndman et al. [13] proposed an approach based on the regression model

ŷt+h|t = Sβt+h|t + εh, (36)

where βt+h|t is the unknown conditional mean of the most disaggregated series and εh is the coherency
error assumed with mean zero and covariance matrix Σh. If Σh was known, the generalised least
squares (GLS) estimator of βt+h|t would lead to the following reconciled forecasts

ỹt+h|t = Sβ̂t+h|t = S(S′Σ−1
h S)−1S′Σ−1

h ŷt+h|t = SPŷt+h|t, (37)

where P = (S′Σ−1
h S)−1S′Σ−1

h . Hyndman et al. [13] also showed that, if the base forecasts ŷt+h|t are
unbiased, then the reconciled forecasts ỹt+h|t will be unbiased, provided that SPS = S. This condition
is true for this reconciliation approach and also for the bottom-up, but not for top-down methods.
So, the top-down approaches will never give unbiased reconciled forecasts, even if the base forecasts
are unbiased. Recently, Wickramasuriya et al. [15] showed that, in general, Σh is not identifiable.
They showed that the covariance matrix of the h-step ahead reconciled forecast errors is given by

Var(yt+h − ỹt+h|t) = SPWhP′S′, (38)

for any P such that SPS = S, where Wh = Var(yt+h − ŷt+h|t) = E(êt+h|t ê′t+h|t) is the covariance matrix
of the corresponding h-step ahead base forecast errors. The goal is to find the matrix P that minimises
the error variances of the reconciled forecasts, which are on the diagonal of the covariance matrix
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Var(yt+h − ỹt+h|t). Wickramasuriya et al. [15] showed that the optimal reconciliation matrix P that
minimises the trace of SPWhP′S′, such that SPS = S, is

P = (S′W−1
h S)−1S′W−1

h . (39)

Therefore, the optimal reconciled forecasts are given by

ỹt+h|t = S(S′W−1
h S)−1S′W−1

h ŷt+h|t, (40)

which is referred to as the MinT (Minimum Trace) estimator. Note that the MinT and GLS estimators only
differ in the covariance matrix. We still need to estimate Wh, which is a matrix of order n that can be quite
large. The following simplifying approximations were considered by Wickramasuriya et al. [15]:

(1) Wh = kh In for all h with kh > 0. In this case, the MinT estimator corresponds to the
ordinary least squares (OLS) estimator of βt+h|t. It is the most simplifying approximation considered,
being P-independent of the data (it only depends on S), which means that this method does not
account for differences in scale between the levels of the hierarchy (captured by the error variances of
the base forecasts), or the relationships between the series (captured by the error covariances of the
base forecasts). This is optimal only when the base forecast errors are uncorrelated and equivariant,
which are unrealistic assumptions for an hierarchical time-series. In the results that follow, this method
is referred to as OLS.

(2) Wh = khdiag(Ŵ1) for all h with kh > 0, where Ŵ1 is the sample covariance estimator of the
in-sample 1-step ahead base forecast errors. Then, Wh is a diagonal matrix with the diagonal entries of
Ŵ1, which are the variances of the in-sample 1-step ahead base forecast errors, stacked in the same
order as yt. This approximation scales the base forecasts, using the variance of the residuals. In the
results that follow, this specification is referred to as MinT-VarScale.

(3) Wh = khΛ for all h with kh > 0, and Λ = diag(S1) where 1 is a unit vector of dimension n.
This method was proposed by Athanasopoulos et al. [34] for temporal hierarchies, and assumes that
the bottom level base forecasts errors are uncorrelated between nodes and have variance kh. Hence,
the diagonal entries in Λ are the number of forecast error variances contributing to each node, stacked
in the same order as yt . This estimator only depends on the aggregation constraints, being independent
of the data. Therefore, it is usually referred to as structural scaling, and we label it as MinT-StructScale.
Notice that this specification only assumes equivariant base forecast errors at the bottom level, which
is an advantage over OLS. It is particularly useful when the residuals are not available, which is the
case when the base forecasts are generated by judgmental forecasting.

(4) Wh = khŴ∗
1,D for all h with kh > 0, where Ŵ∗

1,D = λŴ1,D + (1 − λ)Ŵ1 is a shrinkage
estimator that shrinks the off-diagonal elements of Ŵ1 towards zero (while the diagonal elements
remain unchanged), Ŵ1,D is a diagonal matrix with the diagonal entries of Ŵ1, and λ is the shrinkage
intensity parameter. By parameterizing the shrinkage in terms of variances and correlations, rather than
variances and covariances, and assuming that the variances are constant, Schäfer and Strimmer [35]
proposed the following shrinkage intensity parameter

λ̂ =
∑i 6=j

̂Var(r̂ij)

∑i 6=j r̂2
ij

, (41)

where r̂ij is the ijth element of R̂1, the sample correlation matrix of the in-sample 1-step ahead base
forecast errors. In contrast to variance and structure scaling estimators, which are diagonal covariance
estimators accommodating only differences in scale between the levels of the hierarchy, this shrinkage
estimator, which is a full covariance estimator, also accounts for the relationships between the series,
while the shrinkage parameter regulates the complexity of the matrix Wh. In the results that follow,
this method is referred to as MinT-Shrink. In all estimators, kh is a proportionality constant that needs
to be estimated only to obtain prediction intervals.
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4. Empirical Study

4.1. Case Study Data

The Jerónimo Martins Group is an international company, based in Portugal, with 225 years of
accumulated experience in the retail sector. Food distribution is its main business and represents
more than 95% of their consolidated sales. In Portugal, it leads the supermarket segment through a
supply chain called Pingo Doce. This empirical study was performed using a real database of product
sales from one of the largest stores of Pingo Doce. The data were aggregated on a weekly basis and
span the period between 3 January 2012 and 27 April 2015, comprising a total of 173 weeks. Only the
products that have at least one sale every week were considered, since these are the most challenging
for inventory planning. The hierarchical structure of products adopted by the retailer, from the top
level to the bottom level, is: Store > Area > Division > Family > Category > Sub-category > SKU.
The total number of time-series considered is 1751 (aggregated and disaggregated) and their split in
the six levels of the hierarchy is summarised in Table 1. The most aggregated level, referred to as the
top level, comprises the total sales at the store level. Level 1 comprises these sales disaggregated by the
six main areas: Grocery, specialized perishables, non-specialized perishables, beverages, detergents
and cleaning, and personal care. These are further disaggregated, at level 2, into 21 divisions; at level 3,
into 73 families; at level 4, into 203 categories; at level 5, into 459 subcategories; and, at the bottom
level, into 988 SKUs (Stock Keeping Units).

Table 1. Number of series in each hierarchical level by area.

Area Divisions Families Categories Subcategories SKUs

Specialized perishables 6 19 50 102 193
Non-specialized perishables 4 16 48 117 287
Grocery 3 14 51 144 309
Beverages 4 6 16 32 103
Personal care 2 9 19 37 59
Detergents & cleaning 2 9 19 27 37

Total 21 73 203 459 988

Figure 2 plots the sales at the top level and at level 1 of the hierarchy, aggregating these by the
store and by each of the 6 main areas. The scale on the y axis was removed due to confidentiality
reasons. The strong peak in sales in 2012, observed in all series, is relative to a promotional event
carried out at a national level by Pingo Doce on 1 May (Labour day), after which the company shifted
from an Every Day Low Price strategy to a continuous promotional cycle.

All the series show local upward and downward trends, although less prominent in the
detergents/cleaning and personal care time-series. The store time-series shows a similar behaviour to
the perishables time-series, as the later represent the major proportion of the total sales. These aggregate
series do not show any seasonal variation.
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Figure 2. Total sales (top level, or store) and sales aggregated by area (level 1).

For a better understanding of the hierarchical structure of the data, we show, in Table 2,
the complete hierarchy for the milk division (level 2). The total sales of the milk division are
disaggregated, at level 3, into 2 families: Raw and UHT. The raw family is disaggregated into
the Pasteurized category at level 4, which is further disaggregated into the Brik sub-category
at level 5, which comprises 5 SKUs. The UHT family is disaggregated into the Current and
Special categories. The Current category is disaggregated into the Semi-skimmed and Skimmed
sub-categories, which comprise 2 and 3 SKUs, respectively. The Special category is disaggregated
into the Semi-skimmed, Skimmed, and Flavored sub-categories, which comprise 10, 10, and 3 SKUs,
respectively. The plots in Figure 3 show the sales of the SKUs within each subcategory of the milk
division. These help us to visualise the diverse individual dynamics within each sub-category and the
relative importance of each SKU. As we move down the hierarchy, the signal-to-noise ratio of the series
decreases. Therefore, the series at the bottom level shows a lot more random variation, compared to
the higher levels.
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Table 2. Hierarchical structure of the milk division.

Area Division Families Categories Subcategories SKUs

Non-specialized perishables Milk Raw Pasteurized Brik 5

UHT Current Semi-skimmed 2

Skimmed 3

Special Semi-skimmed 10

Skimmed 3

Flavored 3

P
asteurized brik

C
urrent sem

i−
skim

.
C

urrent skim
m

ed
S

pecial sem
i−

skim
.

S
pecial skim

m
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Year

Figure 3. Sales of the SKUs within each sub-category of the milk division.

4.2. Experimental Setup

Generating accurate forecasts for each of the 1751 time-series within the hierarchical structure
is crucial for the planning operations of the store. We can always forecast the series at each level of
the hierarchy independently (we refer to these as base forecasts), based on forecasting models fitted
individually for each series. However, by ignoring the aggregation constraints, it is very unlikely that
the resulting forecasts will be coherent. To ensure aligned decision-making across the various levels of
management, it is essential that these forecasts are reconciled across all levels of the hierarchy.
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We consider two alternative forecasting model families for generating the base forecasts; namely,
ETS and ARIMA, as discussed in Section 2. The appropriate ETS model for each time-series is chosen
from the 18 potential models by minimising AICc, and the smoothing parameters and initial states
are estimated by maximising the likelihood L [19], as implemented in the forecast package in
the R software [36]. The ARIMA model is chosen following the algorithm proposed by Hyndman
and Khandakar [37], also implemented in the forecast package. First, the number of seasonal and
ordinary differences D and d required for stationarity are selected, and then the orders of p, q, P, and Q
are identified, based on AICc. ETS and ARIMA models are the two most widely-used approaches to
time-series forecasting. They are based on different perspectives to the problem and often, but not
always, perform differently, although they share some mathematically equivalent models [21,22,38–40].
ARIMA can potentially capture higher-order time-series dynamics than ETS [34]. Therefore, we use both
approaches to generate base forecasts, in order to evaluate how these can influence the performance
of each reconciliation process. To make incoherent ETS and ARIMA forecasts coherent, we use the
implementations of the hierarchical forecasting approaches, as discussed in Section 3.2, available in the
hts package [41] for R.

We evaluate the forecasting accuracies of several competing methods using a rolling origin,
as illustrated in Figure 4. By increasing the number of forecast errors available, we increase the
confidence in our results.
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Figure 4. Cross-validation procedure, based on a rolling forecast origin with 1- to 12-week ahead forecasts.

We start with the training set containing the first 139 weeks and generate 1- to 12-week ahead base
forecasts for each of the 1751 series using ETS and ARIMA. These base forecasts are then reconciled,
using the alternative hierarchical methods. The training set is then expanded by one week, and the
process is repeated until week 161. This gives a total of 23 forecast origins for each of the 1751 series.
For each forecast origin, new ETS and ARIMA models based on the updated training data are specified,
from which we generate new base forecasts which are again reconciled using the corresponding errors
for both calculated. The performance of the hierarchical forecasting methods was evaluated by using
the Average Relative Mean Squared Error (AvgRelMSE) [42]. As we are comparing forecast accuracy
across time-series with different units, it is important to use a scale-independent error measure.
For each time-series i, we calculate the Relative Mean Squared Error (RelMSE) [43]

RelMSEi,h =
MSEi,h

MSEbase
i,h

, i = 1, . . . , 1751; h = 1, 2, 4, 8, 12, (42)

where MSEi,h is the mean squared error of the forecast of interest averaged across all forecast origins
and forecast horizons h, and MSEbase

i,h is the mean squared error of the base forecast averaged across all
forecast origins and forecast horizons h, which is used as a benchmark. If the hierarchical forecasting
method reconciles with ARIMA (ETS) base forecasts, then the ARIMA (ETS) base forecasts are taken as
the benchmark. For each forecast horizon h, we averaged (42) across the time-series of the hierarchy
using the following geometric mean

AvgRelMSEL,h =

(
∏
i∈L

RelMSEi,h

) 1
#L

, h = 1, 2, 4, 8, 12. (43)
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where L is the level (i.e., Top level, Level 1, . . ., Level 5, Bottom level, All). The geometric mean should
be used for averaging benchmark ratios, since it gives equal weight to reciprocal relative changes [44].
An advantage of AvgRelMSE is its interpretability. When it is smaller than 1, (1-AvgRelMSE)100% is
the average percentage of improvement in MSE of the evaluated forecast over the benchmark.

4.3. Results

Table 3 presents the results of AvgRelMSE for the series of each hierarchical level, while Table 4
presents the results of AvgRelMSE for the complete hierarchy. BU refers to bottom-up method,
TDGSa refers to top-down “a” method of Gross and Sohl [8], TDGSf refers to top-down “f” method
of Gross and Sohl [8], TDfp refers to top-down with forecast proportions, OLS refers to Ordinary Least
Squares, MinT-VarScale refers to Minimum Trace Variance Scaling estimator, MinT-StructScale refers
to Minimum Trace Structural Scaling estimator, MinT-Shrink refers to Minimum Trace Shrinkage
estimator and Base refers to base forecasts. The left side of these tables shows the results using ARIMA
base forecasts, while the right side shows the results using ETS base forecasts. As the base forecasts
were used to scale the errors, in the rows labelled Base the AvgRelMSE is equal to 1 across all columns.
We provide forecast results for 1 week, 2 weeks, 4 weeks (about one month), 8 weeks (about two
months), and 12 weeks (about three months). The column labelled Rank provides the mean rank of
each method across all forecast horizons. A method with rank of 1 is interpreted as being the best on
all the horizons, while that with a rank of 9 it is always the worst. To support the comparisons between
the methods that are expected to perform better, Figure 5 visualises the results of AvgRelMSE for the
MinT-VarScale, MinT-StructScale, MinT-Shrink, and Base methods, presented in the Tables 3 and 4.
The results for the complete hierarchy are highlighted with a light grey background.

It is immediately clear that the MinT-Shrink forecasts improved on the accuracy of the ARIMA
base forecasts for all levels and for the complete hierarchy, across all forecast horizons. The only
exception was the bottom level for the short-term horizons h = 1 and 1 − 2(h = 2), albeit with
marginal differences. The gains in forecast accuracy were more substantial at the higher levels of
aggregation. This was not the case for all other reconciliation methods, attesting to the difficulty of
producing reconciled forecasts that were (at least) as accurate as the base forecasts. Furthermore, the
MinT-Shrink method using ARIMA base forecasts returned the most accurate coherent forecasts for
all levels, the only exceptions being the Store level, for which the MinT-VarScale returned the most
accurate forecasts, and the Area level, where the MinT-StructScale performed best. The improvements
on the accuracy of MinT-Shrink forecasts, across all forecast horizons, are more pronounced with the
ARIMA base forecasts, compared to the ETS base forecasts (with the exception of horizon h = 1 at
the bottom level), although the former was almost always more accurate than the latter (see Table 5).
This could have be due to the limitation of the ets() function in the forecast package, which restricts
seasonality to have a maximum period of 24. Without this limitation, ARIMA can potentially capture
seasonalities of a higher order than ETS.

Clearly, the least accurate method was the OLS, for both ETS and ARIMA forecasts and across all
forecast horizons. OLS only improved forecast accuracy over the base forecasts at the top level. This was
due to ignoring the differences in scale between the levels of the hierarchy and any relationships
between the series. A major drawback of the TDGSa and TDGSf methods was that they only considered
information from the top level. Interestingly, their forecasts only improved on the accuracy of the
ARIMA base forecasts for the Area level, never improving over the ETS base forecasts (the forecasts
at the top level are equal to the base forecasts). The TDfp proportions were based on forecasts
from all disaggregated levels of the hierarchy, but it performed badly, never improving the forecast
accuracy over the ARIMA base forecasts across all forecast horizons. This could be expected, since
top-down approaches never give unbiased reconciled forecasts, even if the base forecasts are unbiased.
BU provided poor forecasts for all aggregate levels in the hierarchy, showing average increases in the
MSE relative to the base forecasts for all levels of aggregation and all forecast horizons (the forecasts at
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the bottom level are equal to the base forecasts). These losses in forecast accuracy were more substantial
at higher levels of aggregation.

Table 3. Average Relative Mean Squared Error (AvgRelMSE) for each level of the hierarchy obtained
with ARIMA and ETS base forecasts.

ARIMA ETS

Method h = 1 1 − 2 1 − 4 1 − 8 1 − 12 Rank h = 1 1 − 2 1 − 4 1 − 8 1 − 12 Rank

Top-level: Store

BU 2.074 2.179 2.489 2.569 2.237 9 1.748 1.721 1.869 1.990 1.914 9
TDGSa 1 1 1 1 1 6.5 1 1 1 1 1 4.6
TDGSf 1 1 1 1 1 6.5 1 1 1 1 1 4.6
TDfp 1 1 1 1 1 6.5 1 1 1 1 1 4.6
OLS 0.949 0.951 0.959 0.950 0.947 4 0.985 0.990 0.998 1 0.999 2.5
MinT-VarScale 0.736 0.754 0.778 0.762 0.750 1 0.967 0.972 1.021 1.046 1.036 5
MinT-StructScale 0.749 0.777 0.836 0.837 0.796 2.4 1.035 1.031 1.099 1.142 1.123 8
MinT-Shrink 0.737 0.764 0.848 0.877 0.856 2.6 0.915 0.913 0.993 1.011 0.999 2.1
Base 1 1 1 1 1 6.5 1 1 1 1 1 4.6

Level 1: Area

BU 1.096 1.154 1.242 1.274 1.268 8.6 1.264 1.274 1.314 1.327 1.288 9
TDGSa 0.895 0.899 0.922 0.950 0.972 5 1.077 1.074 1.069 1.092 1.083 7.6
TDGSf 0.886 0.888 0.911 0.938 0.961 4 1.067 1.063 1.057 1.080 1.071 6.6
TDfp 1.020 1.012 1.002 1.009 1.015 7 1.021 1.009 0.998 0.998 0.998 4.5
OLS 1.189 1.186 1.150 1.134 1.125 8.4 1.123 1.079 1.004 0.990 0.977 5.3
MinT-VarScale 0.754 0.763 0.794 0.814 0.827 2.8 0.962 0.965 0.980 0.990 0.985 2.3
MinT-StructScale 0.717 0.734 0.777 0.804 0.817 1 0.980 0.983 0.997 1.008 0.998 3.9
MinT-Shrink 0.733 0.741 0.786 0.812 0.830 2.2 0.906 0.917 0.936 0.946 0.947 1
Base 1 1 1 1 1 6 1 1 1 1 1 4.8

Level 2: Division

BU 1.082 1.131 1.175 1.212 1.192 7.6 1.278 1.278 1.277 1.256 1.227 8
TDGSa 1.081 1.098 1.130 1.146 1.138 5.8 1.259 1.219 1.190 1.156 1.132 6
TDGSf 1.089 1.104 1.136 1.151 1.142 7 1.269 1.226 1.197 1.162 1.137 7
TDfp 1.091 1.091 1.082 1.068 1.056 5.6 1.026 1.020 1.002 1.004 1.006 3.6
OLS 1.966 1.953 1.994 2.029 2.027 9 1.523 1.495 1.461 1.471 1.457 9
MinT-VarScale 0.848 0.864 0.881 0.887 0.889 2.4 1.009 1.007 1.005 1.006 1.003 3.4
MinT-StructScale 0.842 0.861 0.885 0.903 0.908 2.6 1.036 1.031 1.029 1.029 1.023 5
MinT-Shrink 0.795 0.802 0.819 0.839 0.851 1 0.964 0.969 0.978 0.994 0.998 1
Base 1 1 1 1 1 4 1 1 1 1 1 2

Level 3: Family

BU 1.016 1.022 1.031 1.040 1.036 5 1.083 1.083 1.073 1.067 1.061 6.4
TDGSa 1.194 1.182 1.174 1.155 1.130 7 1.217 1.176 1.132 1.079 1.043 6.8
TDGSf 1.200 1.188 1.179 1.159 1.134 8 1.223 1.181 1.136 1.083 1.046 7.8
TDfp 1.101 1.094 1.079 1.079 1.075 6 1.024 1.018 1.008 1.005 1.005 4
OLS 2.348 2.314 2.338 2.405 2.399 9 1.567 1.542 1.533 1.524 1.503 9
MinT-VarScale 0.930 0.927 0.924 0.927 0.929 2 0.989 0.988 0.983 0.981 0.981 2
MinT-StructScale 0.982 0.979 0.981 0.991 0.998 3 1.035 1.031 1.026 1.023 1.021 5
MinT-Shrink 0.898 0.888 0.883 0.885 0.890 1 0.961 0.963 0.963 0.970 0.975 1
Base 1 1 1 1 1 4 1 1 1 1 1 3

Level 4: Category

BU 1.014 1.015 1.019 1.029 1.029 4 1.027 1.028 1.027 1.028 1.027 4.2
TDGSa 1.300 1.290 1.271 1.249 1.233 7 1.295 1.263 1.219 1.159 1.122 7
TDGSf 1.306 1.296 1.276 1.253 1.237 8 1.302 1.269 1.224 1.163 1.125 8
TDfp 1.129 1.121 1.108 1.107 1.103 5.1 1.033 1.031 1.028 1.027 1.030 4.8
OLS 2.463 2.418 2.403 2.398 2.375 9 1.636 1.618 1.602 1.563 1.537 9
MinT-VarScale 0.977 0.973 0.969 0.966 0.966 2 0.988 0.990 0.989 0.988 0.989 1.8
MinT-StructScale 1.129 1.125 1.121 1.115 1.112 5.9 1.076 1.073 1.069 1.063 1.062 6
MinT-Shrink 0.940 0.932 0.926 0.928 0.933 1 0.972 0.976 0.980 0.986 0.992 1.2
Base 1 1 1 1 1 3 1 1 1 1 1 3

Level 5: Subcategory

BU 1.008 1.009 1.012 1.015 1.014 3.8 1.011 1.009 1.009 1.009 1.009 4
TDGSa 1.326 1.301 1.274 1.231 1.208 6.8 1.314 1.270 1.220 1.155 1.117 7
TDGSf 1.335 1.309 1.282 1.238 1.215 7.8 1.323 1.278 1.228 1.161 1.123 8
TDfp 1.155 1.143 1.131 1.122 1.115 5 1.052 1.046 1.044 1.039 1.039 5
OLS 2.478 2.426 2.408 2.378 2.353 9 1.677 1.651 1.626 1.582 1.558 9
MinT-VarScale 1.009 1.004 1.001 0.994 0.992 2.8 1.000 0.997 0.997 0.995 0.995 1.7
MinT-StructScale 1.260 1.250 1.243 1.225 1.219 6.4 1.135 1.125 1.117 1.106 1.103 6
MinT-Shrink 0.970 0.962 0.955 0.948 0.949 1 0.989 0.992 0.996 1.001 1.005 1.8
Base 1 1 1 1 1 2.4 1 1 1 1 1 2.5

Bottom-level: SKU

BU 1 1 1 1 1 2.1 1 1 1 1 1 1.5
TDGSa 1.381 1.355 1.321 1.267 1.243 6.2 1.387 1.346 1.293 1.217 1.177 7
TDGSf 1.393 1.366 1.331 1.276 1.251 7.4 1.398 1.357 1.303 1.225 1.184 8
TDfp 1.182 1.166 1.148 1.129 1.126 5 1.080 1.079 1.075 1.068 1.069 5
OLS 2.077 2.038 2.009 1.972 1.959 9 1.506 1.496 1.479 1.448 1.433 9
MinT-VarScale 1.035 1.029 1.022 1.012 1.012 4 1.015 1.016 1.014 1.011 1.012 3.6
MinT-StructScale 1.378 1.364 1.347 1.320 1.315 7.4 1.204 1.200 1.191 1.177 1.172 6
MinT-Shrink 1.011 1.004 0.995 0.987 0.990 1.8 1.004 1.009 1.011 1.015 1.020 3.4
Base 1 1 1 1 1 2.1 1 1 1 1 1 1.5
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Like OLS, MinT-StructScale only depended on the structure of the aggregations and not on the
actual data, resulting in poor forecasts, especially at the lower levels of aggregation; in our case, at the
Category, Sub-category, and SKU levels, which comprised about 94% of the time-series of the complete
hierarchy (see Figure 5). On the other hand, by accommodating the differences in scale between the
levels of the hierarchy, MinT-VarScale performed well almost always, generally improving the forecast
accuracy over the base forecasts. MinT-Shrink also accounted for the inter-relationships between the
series in the hierarchy, always performing better than MinT-VarScale, across both ETS and ARIMA
forecasts for all forecast horizons; the only exception being at the Store level (which comprised only
one time-series).

Table 4. AvgRelMSE for the complete hierarchy obtained with ARIMA and ETS base forecasts.

ARIMA ETS

Method h = 1 1 − 2 1 − 4 1 − 8 1 − 12 Rank h = 1 1 − 2 1 − 4 1 − 8 1 − 12 Rank

All

BU 1.006 1.008 1.010 1.013 1.012 3.7 1.013 1.013 1.013 1.012 1.012 4
TDGSa 1.343 1.320 1.292 1.248 1.225 6.8 1.346 1.306 1.256 1.186 1.148 7
TDGSf 1.353 1.329 1.301 1.255 1.232 7.8 1.356 1.315 1.264 1.193 1.154 8
TDfp 1.163 1.150 1.134 1.121 1.117 5 1.064 1.061 1.057 1.052 1.052 5
OLS 2.223 2.182 2.159 2.132 2.116 9 1.565 1.549 1.530 1.496 1.477 9
MinT-VarScale 1.013 1.008 1.003 0.996 0.995 2.9 1.006 1.006 1.005 1.003 1.003 2.6
MinT-StructScale 1.286 1.276 1.265 1.246 1.242 6.4 1.160 1.154 1.146 1.135 1.131 6
MinT-Shrink 0.983 0.975 0.968 0.963 0.966 1 0.994 0.998 1.001 1.006 1.011 2
Base 1 1 1 1 1 2.4 1 1 1 1 1 1.4

Table 5. AvgRelMSE results of ARIMA base forecasts with ETS base forecasts used as benchmark.

h = 1 1 − 2 1 − 4 1 − 8 1 − 12

Top-level 0.592 0.572 0.549 0.563 0.617
Level 1 1.007 0.98 0.958 0.947 0.929
Level 2 1.075 1.01 0.962 0.914 0.913
Level 3 0.986 0.961 0.931 0.902 0.894
Level 4 0.985 0.967 0.95 0.921 0.905
Level 5 0.984 0.969 0.955 0.937 0.925
Bottom-level 1.007 0.998 0.987 0.972 0.961
All 0.998 0.985 0.971 0.953 0.941

To improve on the accuracy of the base forecasts, the reconciliation methods have to take
advantage of the combination of informative signals from all levels of aggregation. It is clear that
MinT-Shrink was able do this and, hence, improvements in forecast accuracy over the base forecasts
were attained. For the complete hierarchy, the accuracy gains generally increased with the forecast
horizon varying between 1.7% and 3.7%. It is also evident that the gains in forecast accuracy were
more substantial at higher levels of aggregation, which means that information about the individual
dynamics of the series which was lost due to aggregation, was brought back again from the lower
levels of aggregation to the higher levels by the reconciliation process, substantially improving the
forecast accuracy over the base forecasts.

These results are in accordance with those obtained by Kourentzes and Athanasopoulos [45],
which compared MinT-Shrink and MinT-VarScale forecasts with base forecasts in the context
of generating coherent cross-temporal forecasts for Australian tourism. Both MinT-Shrink and
MinT-VarScale improved the forecast accuracy over the base ETS and ARIMA forecasts for the bottom
level and the complete hierarchy. MinT-Shrink performed better than MinT-VarScale across both ETS
and ARIMA forecasts.

In order to find out if the forecast error differences between the several competing methods were
statistically significant or not, we conducted a Nemenyi test [46]. The results of this test are shown in
Figure 6. The panels on the left side show the results for the complete hierarchy using ARIMA base
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forecasts, for each forecast horizon; while the panels on the right side show the respective results using
ETS base forecasts. In the vertical axis, the methods are sorted by MSE mean rank. In the horizontal
axis, they are ordered as in Tables 3 and 4. In each row, the cell in black represents the method being
tested and any blue cell indicates a method with no evidence of statistically significant differences,
at a 5% level, while the white cells indicate methods without such evidence. We use the Nemenyi test
implementation available in the tsutils [47] package for R.
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Analysing the results for ARIMA presented in the panels on the left side, we observe that,
for h = 1, BU and Base are grouped together as the top-performing methods. They are immediately
followed by MinT-Shrink and MinT-VarScale, which are found to be statistically indifferent. For the
forecast horizon 1− 2 (h = 2), BU, Base, MinT-Shrink, and MinT-VarScale are now grouped together
as top-performing methods. For the forecast horizon 1− 4 (h = 4), MinT-Shrink and MinT-VarScale
belong to the top-performing group of forecasts and BU and Base perform significantly worse. For the
long-term forecasts, MinT-Shrink performs significantly better than MinT-VarScale, BU, and Base.
The TDfp and MinT-StructScale methods perform significantly worse than MinT-Shrink, MinT-VarScale,
BU, and Base across all forecast horizons, and are found to be statistically indifferent, outperforming
only TDGSa, TDGSf, and OLS.

Analysing the results for ETS presented in the panels on the right side, we observe that, for h = 1,
BU and Base are again grouped together as top-performing methods, followed by MinT-VarScale and
MinT-Shrink. For the forecast horizon 1− 2 (h = 2), MinT-VarScale and Base are grouped together
as top-performing methods, being immediately followed by MinT-Shrink and BU; which are found
to be statistically indifferent. For the other forecast horizons, MinT-VarScale performs better, being
always followed by MinT-Shrink. Overall, for both ETS and ARIMA, the MinT approach outperforms
the other competing methods, with the exception for the short horizon h = 1.

5. Conclusions

Retailers need forecasts for a huge number of related time-series which can be organised into
an hierarchical structure. Sales at the SKU level can be naturally aggregated into categories, families,
areas, stores, and regions. To ensure aligned decision-making across the hierarchy, it is essential that
forecasts at the most disaggregated level add up to forecasts at the aggregate levels above. It is not
immediately clear if these aggregate forecasts should be generated independently or by using an
hierarchical forecasting method that ensures coherent decision-making at the different levels but does
not guarantee (at the least) the same accuracy. To give guidelines on this issue, our empirical study
investigates the relative performance of independent and reconciled forecasting approaches.

We use weekly data of SKU sales from one big store of a Portuguese retailer, spanning the period
between 3 January 2012 and 27 April 2015, and consider the hierarchical structure of products adopted
by the company from the top level to the bottom level, comprising six levels overall. We generate
the independent forecasts using two alternative forecasting model families; namely, ETS and ARIMA.
These are compared to the most commonly-used hierarchical forecasting approaches. We evaluate the
forecast accuracies of several competing methods, through the Average Relative Mean Squared Error,
by using a cross-validation based on a rolling forecast origin.

It is clear that MinT-Shrink forecasts generally improve on the accuracy of the ARIMA base
forecasts for all levels and for the complete hierarchy, across all forecast horizons. The accuracy gains
generally increase with the horizon, varying between 1.7% and 3.7% for the complete hierarchy.
That is not the case for all other reconciliation methods, attesting to the difficulty of producing
reconciled forecasts that are at least as accurate as base forecasts. The improvements on the accuracy
of MinT-Shrink forecasts, across all forecast horizons, are more pronounced with the ARIMA base
forecasts, compared to the ETS base forecasts (with the exception to horizon h = 1 at the bottom level);
although, the former is almost always more accurate than the latter.

To improve on the accuracy of the base forecasts, the reconciliation methods have to take
advantage of the combination of informative signals from all levels of aggregation. It is clear that
MinT-Shrink is able do this and, hence, improvements in forecast accuracy over the base forecasts are
attained. It is also evident that the gains in forecast accuracy are more substantial at higher levels of
aggregation, which means that the information about the individual dynamics of the series lost when
aggregating, is brought back again from the lower levels of aggregation to the higher levels by the
reconciliation process, substantially improving the forecast accuracy over the base forecasts.
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