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Abstract: Modern cars are equipped with plenty of electronic devices called Electronic Control Units
(ECU). ECUs collect diagnostic data from a car’s components such as the engine, brakes etc. These
data are then processed, and the appropriate information is communicated to the driver. From the
point of view of safety of the driver and the passengers, the information about the car faults is vital.
Regardless of the development of on-board computers, only a small amount of information is passed
on to the driver. With the data mining approach, it is possible to obtain much more information
from the data than it is provided by standard car equipment. This paper describes the environment
built by the authors for data collection from ECUs. The collected data have been processed using
parameterized entropies and data mining algorithms. Finally, we built a classifier able to detect
a malfunctioning thermostat even if the car equipment does not indicate it.

Keywords: car failure detection; entropy; data mining

1. Introduction

Car reliability degrades over time. The driven distance is important, but car parts wear out and
deteriorate even if a car stands unused for months. Rust builds up on brake rotors, rubber parts rot
and leak etc. Conditions in which the vehicle is being used are also vital. Driving in the city differs
a lot from driving on the highways. In the city a car is driven on different RPMs; it starts and stops
a lot. On the other hand, on the highway a car is forced to maintain constant speed for a considerable
amount of time. People rely on cars and cars break from time to time.

Modern cars equipped with plenty of Electronic Control Units (ECU) are able to detect a fault and
pass on the relevant information to the driver. Unfortunately, in most cases the message is reduced
to a warning light on the dashboard, and only an authorized car service is able to diagnose the fault
based on error codes. Thus, a question can be asked: if we had access to data read by sensors, could we
diagnose the situation ourselves? And even more, what additional knowledge about the car’s work
can be obtained from such data? For example, can we assess the driver’s driving style?

This article is meant to provide a partial answer to these questions. It describes a data acquisition
system that collects data from car’s ECUs and prepares them for further exploration with the data
mining techniques. The system was built with a minimum financial effort. Its components include
an Android based smartphone, Torque PRO application, and Akka HTTP framework. The data
acquisition system captures live stream of the data from a car, stores it and does not influence the
driver. The prototype versions of our system were presented in two conference papers [1,2]. The most
important step involved decoding the Torque protocol.

The presented system was successfully used to collect real data from Hyundai i30 vehicle. The data
set consists of 44 h of car driving. By collecting the first data set, we were able to obtain the data from a
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car with a malfunctioning thermostat and after the thermostat had been repaired. We then used this
data to build a classifier to detect the analyzed sample points in a malfunctioning thermostat. As it
turned out, the use of parameterized entropy significantly influenced the quality of the obtained results.

This paper is organized as follows: Section 2 presents related works. The data acquisition
system is presented in Section 3. Section 4 deals with a short introduction to parameterized entropies.
The collected data set is described in Section 5. Some results of the data exploration are presented in
Section 6. A short summary is given in the final section.

2. Related Work

One of the analyzed existing solutions is based on both machine learning and entropy [3].
Designed solution uses permutation entropy as a feature in a machine learning model. Entropy
has been calculated for normalized samples. Pipeline includes both failure detection and classification
which is even a step further, but classification requires more complex processing. What is noticeable is
that researchers used vibration signals to determine behavior of the rolling element.

The paper [4] describes an engine diagnosis based on acoustic signals that it emits. Because the
analyzed data set contained fairly complex signal the authors used different types of Artificial Neural
Networks to detect the fault type. Multiple samples were recorded for each engine ensuring first
that it operated normally. For proper fault detection it is required to obtain sound samples on certain
engine revolutions.

A very similar method to [3,4], presented in the paper [5], uses emitted signal, in this particular
example—vibrations. Unlike described earlier, only statistical measures were used to diagnose the
examined part—in this case planetary gearbox.

The approach described in [6] uses an expert system to diagnose potential faults of a single model
and make. The developed expert system is based on Bayesian approach. The main difference is
that a car user needs to select preset conditions by selecting applying options. Next, the application
calculates with amount of probability what is the fault reason. Another expert system described here
[7] also uses an expert system to diagnose subset of potential faults.

Multiple Bayesian neural networks were applied to increase diagnostic accuracy of ground-source
heat pump system in [8]. They are based on sensor data and human information. Each network
consists of two layers. The first layer is responsible for detecting faults, second one detects fault
symptoms. Human based information improved overall accuracy of this solution.

Object-oriented Bayesian networks (OOBNs) were used in real-time fault diagnosis [9]. Introduced
object-oriented approach allowed to reduce overall complexity. When modelling OOBN a first step is
an off-line feed with an expert knowledge and sensor historical data. Than in an on-line phase expert
knowledge is used along with real sensor data. Those information combined result in fault diagnosis.

In general, the solutions fall into two groups. The diagnosis requires either special tools [3,4],
or specialized knowledge or expertise [6,7]. In consequence, those techniques are hardly applicable by
day-to-day drivers.

This paper describes a system which acquires driving data from a car and is able to process
information in real time. The whole process includes both a live analysis and raw data persistence.
What is more, the analytical part uses machine learning algorithm to diagnose thermostat issues. As a
result, multiple models were developed, one of which is entropy based. One of the major challenges
was to find proper parameters for parameterized entropy. The synergy of machine learning and
parameterized entropy gave a compact model.

Main contributions can be summarized as follow:

• An online system was significantly improved to collect and analyze live data from a driven car.
• Using parameterized entropy as a feature in a machine learning model resulted in a compact and

accurate model.
• It was possible to diagnose not obvious car faults using cheap and widely available equipment;

no specialized tool was used in this research.
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• We build a system that does not require neither specialized knowledge nor prior preparations to
diagnose failures.

3. Data Acquisition

The data for the presented research were collected from Hyundai i30 CW manufactured in 2009
and equipped with ODB2 diagnostic interface. The amount of data produced by the car requires
an automated processing pipeline. Such data acquisition system was developed as part of this research.
The system needed to work on-line while the car was going and could not require interaction with
a driver.

The diagnostic data are collected by an ODB2 ELM327 microchip. The ODB2 reader connects
to a Xiaomi Redmi 4X smartphone equipped with Torque Pro Android application via Bluetooth.
The Torque application collects live data from the car. The captured interval is configurable and based
on the experiments it was set to 1 s.

Torque Pro application, apart from saving the collected data to a local file on the smartphone,
allows the user to set custom HTTP URL where the data are sent. It sends the data over the HTTP
encoded in a query string. In order to find out what parameters are being sent, configuration file from
the application were reverse-engineered. Identifiers along with labels are stored in the file named
torqueConf.dat. Example data is presented below:

• log_min46 = 0.0 – minimal value,
• log_max46 = 100.0 – maximal value,
• log_pid46 = 16716401 – identifier number,
• log_fullName46 = Fuel used (trip) – description,
• log_unit46 = l – unit.

The application stores parameter IDs in a decimal number format but sends them in
hexadecimal. What is more, it maps internally between its own parameter ordering and external IDs.
The above-mentioned parameter 46 with ID (decimal) 16716401 has hexadecimal FF5203. An example
URI sent by the application is presented in Listing 1 (Line breaking was used to make the text
more readable):

Listing 1. Example URI

?eml=bartekviper@gmail.com
&v=8
&session =1529270311928
&id=80 c9065bff55006e9f5f3d4f8d9456ae
&time =1529271850358
&kff1005 =20.00668569
&kff1006 =50.08636538
&kff1001 =0.0
&kff1007 =0.0
&kff129a =61.0
&k2d =99.21875
&k33 =98.0
&kb =98.0
&k23 =8560.0
&kff1267 =109.728
&kff1268 =438.995
&kff1266 =548.0
&kff1223 = -0.030030591
&kff1220 =0.2738867

&kff1222 =0.47763458
&kff1221 =0.7290559
&kff1239 =4.5509996
&kff1269 =49.0
&kff1005 =20.00668569
&kff1006 =50.08636538
&kff123b =0.0
&kff1203 =0.0
&kff5202 =5.5996585
&kff5203 =17.85786
&kff1201 =0.0
&kff5201 =15.818244
&kff1238 =13.0
&k42 =13.212
&k4=0.0
&kc=0.0
&k21 =0.0
&k31 =65535.0
&kff126b =2.0411227
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&kff126a =33.774616
&kff1204 =5.892079
&k10 =3.52
&kff1001 =0.0
&kd=0.0
&kff1237 =0.0
&kff123a =17.0
&k2c =4.7058825
&k46 =28.0
&kf =39.0

&k5 =95.0
&kff1202 =0.0
&kff1206 =7.2493286
&kff1010 =268.0
&kff1271 =1.289121
&kff125d =1.286436
&kff125a =21.4406
&kff1272 =22.889725
&kff1208 =13.794094

A performed request contains standard OBD data, such as engine coolant temperature and data
calculated by Torque Pro, for example, the fuel used. Meta information is also sent and it contains:

• eml—registered email address,
• v—protocol version,
• session—when measurement started in milliseconds since 1 January 1970 UTC,
• id—UUDI session identifier with stripped “-”,
• time—measurement time in milliseconds since 1 January 1970 UTC.

The server is capable of processing data with high throughput. It allows for creation of multiple
connections for different test drives. Torque Pro sends standard OBD2 PIDs (Parameter IDs) along
with the proprietary ones.

The server saves collected data into InfluxD—a time series database. It is designed to store
and query time-oriented data without delays. This feature is important from server’s perspective.
Each measured attribute is stored in a separate table with a tag assigned to it. Tags allow for
identification of test drives.

Data is not only saved to a database but also published on queues. There is one queue per each
measured attribute. The server publishes messages in JSON (JavaScript Object Notation) format.
Ther can be multiple independent subscribers for each queue so data can be processed in real time.

4. Entropy

This section provides theoretic fundamentals of entropy. It starts with a brief overview of Shannon
entropy and then the parameterized generalizations are presented.

Entropy as a measure of disorder has its origin in thermodynamic. The concept was proposed
in the early 1850s by Clausius [10]. Shannon [11] adopted entropy to information theory in 1948. In
information theory, the concept is used to measure the uncertainty of a random variable – the greater
entropy, the more random variable. Let X be a random variable that can take values {x1...xn}, and p(xi)

is the probability mass function of outcome xi. The Shannon entropy for variable X is defined as:

Hs(X) =
n

∑
i=1

p(xi) loga
1

p(xi)
(1)

Depending on the value of a parameter, different units can be used: bits (a = 2), nats (a = e) or
hurtleys (a = 10). For more details about the Shannon entropy see [12,13].

The Shannon entropy assumes a trade-off between contributions from the main mass of the
distribution and the tail [14]. In order to control the trade-off explicitly, we must use a generalization
of the Shannon entropy. Two such generalizations were proposed by Renyi [15] and Tsallis [16]
respectively. The Renyi entropy is defined as:

HRα(X) =
1

1− α
loga

(
n

∑
i=1

p(xi)
α

)
(2)
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while the Tsallis entropy is defined as:

HTα(X) =
1

1− α

(
n

∑
i=1

p(xi)
α − 1

)
(3)

If the parameter denoted as α has a positive value, it exposes the main mass (the concentration of
events that occur often), whereas, if the value is negative, it exposes the tail (the dispersion caused by
rare events). Both entropies converge to Shannon entropy for α→ 1. A more detailed comparison of
all the above-mentioned entropies can be found in [17].

Let us consider the data sample presented in Table 1. The table contains 50 values drawn from the
set presented in Table 2. Probability distribution for these values is also shown in Table 2.

Table 1. Data sample.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
xi 6.3 7.0 6.7 6.7 6.7 7.0 5.6 6.3 7.8 5.1 6.3 6.2 6.2
p(xi) 0.17 0.16 0.18 0.18 0.18 0.16 0.10 0.17 0.07 0.04 0.17 0.15 0.15
i 14 15 16 17 18 19 20 21 22 23 24 25 26
xi 6.2 5.6 6.3 6.7 7.0 5.6 7.8 6.7 6.2 6.7 6.7 7.0 6.3
p(xi) 0.15 0.10 0.17 0.18 0.16 0.10 0.07 0.18 0.15 0.18 0.18 0.16 0.17
i 27 28 29 30 31 32 33 34 35 36 37 38 39
xi 7.8 7.8 7.8 7.0 6.7 7.0 6.2 6.7 7.0 5.0 6.2 6.3 6.2
p(xi) 0.07 0.07 0.07 0.16 0.18 0.16 0.15 0.18 0.16 0.01 0.15 0.17 0.15
i 40 41 42 43 44 45 46 47 48 49 50
xi 7.4 7.4 8.0 7.0 6.7 7.0 7.0 6.3 7.0 6.7 6.2
p(xi) 0.10 0.10 0.02 0.16 0.18 0.16 0.16 0.17 0.16 0.18 0.15

Table 2. Probability distribution.

xi 5.0 5.1 5.6 6.2 6.3 6.7 7.0 7.4 7.8 8.0
p(xi) 0.01 0.04 0.10 0.15 0.17 0.18 0.16 0.10 0.07 0.02

Now, let us examine what is the impact of a rare event on the Renyi entropy with different values
of the α parameter. We used a sliding window with a length of 7, i.e., the first window contains values
with indices ranging from 1 to 7, the second window contains values with indices ranging from 2 to
8, etc. Figure 1 shows Reyni entropy values for six different values of the α parameter. It is worth
paying attention to the entropy values for window number 30 and six consecutive windows. These
windows contain the measurement number 36 containing a value with a very low probability (rarely
occurring). This fact is illustrated very well by a significant increase in the value of entropy with
negative coefficients.
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Figure 1. Reyni entropies for the data from Table 1.

5. Dataset

In order to verify if entropy-based approach is suitable to detect a car failure we used the
data acquisition system described in Section 3 to collect data from the mentioned Hyundai i30 CW.
We collected data corresponding to a total of 44 h of driving. The data are stored in text files using
Comma Separated Values format (CSV). Each file corresponds to a single drive. The first line of such
a file contains header (attributes names) and each of the other lines contains one data record. A snippet
of one of the files is shown in Listing 2. The data are displayed in columns instead of rows, to make
them more readable.

Listing 2. Example log file.

GPS Time , Wed Dec 27 20:58:49 GMT +01:00 2017
Device Time , 27-gru -2017 20:58:48.388
Longitude , 20.4570165
Latitude , 50.80177848
GPS Speed (Meters/second), 8.24
Horizontal Dilution of Precision , 3.0
Altitude , 318.0
Bearing , 109.7
G(x), 0.86602783
G(y), 7.83947754
G(z), 4.78611755
G(calibrated), 0.00805598
EGR Error(%), -
Barometric pressure (from vehicle)(psi), -
Intake Manifold Pressure(psi), 15.37400055
Fuel Rail Pressure(psi), -
Run time since engine start(s), -
Trip time(whilst stationary)(s), 0
Trip time(whilst moving)(s), 0
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Trip Time(Since journey start)(s), 0
GPS Bearing(◦), 109.69999695
Timing Advance(◦), -
Litres Per 100 Kilometer(Instant)(l/100km), -
Horsepower (At the wheels)(hp), -
Engine kW (At the wheels)(kW), -
Torque(Nm), -
Voltage (OBD Adapter)(V), -
Voltage (Control Module)(V), -
Engine Load(%), -
Engine RPM(rpm), -
Distance travelled with MIL/CEL lit(km), -
Distance travelled since codes cleared(km), -
Percentage of City driving(%), 100
Percentage of Highway driving(%), 0
Percentage of Idle driving(%), 0
Trip Distance(km), -
Trip distance (stored in vehicle profile)(km), 491.32943726
Mass Air Flow Rate(g/s), 17.04999924
Speed (OBD)(km/h), -
EGR Commanded(%), -
Ambient air temp(◦C), -
Intake Air Temperature(◦C), -
Engine Coolant Temperature(◦C), 68
Turbo Boost & Vacuum Gauge(psi), 0.67400074
Trip average KPL(kpl), -
Trip average Litres /100 KM(l/100km) -

Table 3 consists of all measured attributes with a short description. It is important to note
that either it was not possible to measure all of them, or their meaning differs based on the engine
type—either it is diesel or a gasoline engine. For example the timing advance is used in gasoline engines
to prevent the knock effect, by adjusting when a spark plug should give a spark. In diesel engines
a knock effect can also occur, but fuel injectors are used to eliminate this undesirable effect.

The collected data contains measurements performed on the car with a malfunctioning thermostat.
It remained half-open, causing the engine temperature to drop below the operating temperature. It also
led to cabin heating loss. For validation purposes, after replacing thermostat, new data were collected
describing how normally operating thermostat influences the engine coolant temperature.

Broken thermostat data set consists of 25 files. This amounts to around 16 driving hours of raw
data. The second data set with the working thermostat consists of 49 files which equal to around
27 driving hours.

The first step involved preprocessing phase to prepare data for further analysis. It is assumed
that for diagnostics purposes, engine must be running in order to produce heat and cause thermostat
to open and close. All data rows where engine revolutions per minute were indicating that engine
had not been running were discarded. Thus samples between around 10,000th and 12,000th second in
Figure 2 were discarder and consequently in every other dataset. However, it does not matter if engine
was idling or not because engine coolant flow is caused by water pump.
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Table 3. CSV headers with descriptions

Parameter Description

GPS Time time based on GPS satellites
Device Time smartphone based time
Longitude geographic coordinate
Latitude geographic coordinate
GPS Speed (Meters/second) speed measured based on GPS satellites
Horizontal Dilution of Precision horizontal dilution of precision
Altitude altitude measured based on GPS satellites
Bearing magnetic bearing based on smartphone magnetic field sensor
G(x) acceleration in x axis
G(y) acceleration in y axis
G(z) acceleration in z axis
G(calibrated) combined G value
EGR Error (%) calculated EGR error
Barometric pressure (from vehicle) (psi) barometric pressure
Intake Manifold Pressure (psi) intake pressure
Fuel Rail Pressure(psi) fuel rail pressure
Run time since engine start (s) run time since engine start
Trip time (whilst stationary) (s) trip time while stationary
Trip time (whilst moving) (s) trip time while moving
Trip Time (Since journey start) (s) total trip time
GPS Bearing (◦) bearing based on GPS satellites
Timing Advance (◦) timing advance
Litres Per 100 Kilometer (Instant) (l/100 km) instant fuel consumption
Horsepower (At the wheels) (hp) power delivery in horsepower
Engine kW (At the wheels) (kW) power delivery in kilowatts
Torque(Nm) torque in Newton meters
Voltage (OBD Adapter) (V) measured voltage on OBD adapter
Voltage (Control Module) (V) measured voltage on control module
Engine Load(%) engine load
Engine RPM (rpm) engine revolutions per minute
Distance traveled with MIL/CEL lit (km) distance traveled with check engine light
Distance traveled since codes cleared (km) how much kilometers were driven since error codes were cleared
Percentage of City driving (%) percentage of city driving
Percentage of Highway driving (%) percentage of highway driving
Percentage of Idle driving (%) percentage of idle driving
Trip Distance (km) distance since start for single measurement
Trip distance (stored in vehicle profile) (km) application specific value
Mass Air Flow Rate (g/s) amount of air
Speed (OBD) (km/h) speed measured by car
EGR Commanded (%) commanded EGR
Ambient air temp (◦C) ambient air temperature
Intake Air Temperature (◦C) intake air temperature
Engine Coolant Temperature (◦C) engine coolant temperature
Turbo Boost & Vacuum Gauge (psi) turbocharger boost
Trip average KPL(kpl) average kilometers traveled using 1 L of fuel
Trip average Liters/100 KM (L/100 km) average fuel burnt in liters per 100 km

Figure 2 presents the broken thermostat behavior. There are both engine coolant temperature and
engine RPM measurements. The engine is running when RPM readouts are above 0 and around 1000.
When it is stopped coolant does not circulate, thus sensor reads local temperature. Around 12,000th
second, since test drive had begun, engine was started again and temperature read dropped, because
the engine got colder. The engine water pump, which forces coolant to circulate, is propelled by either
timing mechanism or fan belt.

In comparison Figure 3 sets the engine coolant temperature together with the engine RPM for
a working thermostat. Before test drive started it already had some residual heat. Before engine
reached its operating temperature, thermostat remained closed. This is why the engine is required to
run.
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After completing the first step, all data was divided into batches. Each of them contains
600 samples which equal 10 min of data. Last but not least, those batches were enriched with calculated
entropies. Within batches, a sliding window of 10 samples was selected which amounting 10 s. Inside
selected time window both Tsallis and Renyi entropies were calculated for both negative and positive
values of the α parameter. Entropies rely on reference probability calculated based on a reference
model. We used the sample shown in Figure 3 to determine the probabilities of individual temperature
values. For values not present in the sample, it is assumed that the probability is equal to the least of
the calculated ones. The calculated probabilities are given in Table 4. The smallest value is equal to
0.004653044709690472.
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Figure 2. Engine coolant temperature and engine RPM for broken thermostat.
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Figure 3. Engine coolant temperature and engine RPM for working thermostat.
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Table 4. Probabilities in reference model.

Temperature Value

68 0.004653044709690472
69 0.003641513251062108
70 0.0020230629172567267
71 0.0020230629172567267
72 0.0010115314586283633
73 0.00303459437588509
74 0.0014161440420797087
75 0.0016184503338053813
76 0.0020230629172567267
77 0.0038438195427877805
78 0.02650212421606312
79 0.003641513251062108
80 0.0016184503338053813
81 0.0050576572931418165
82 0.01658911592150516
84 0.0414727898037629
85 0.06048958122597613
86 0.0540157798907546
87 0.0776856160226583
88 0.08436172364960551
89 0.10621080315597815
91 0.20149706655876998
90 0.10095083957111066
92 0.07647177827230427
83 0.036819745094072424
93 0.035201294760267045
94 0.030952862634027918
95 0.01294760267044305
96 0.002225369208982399

After many experiments following α parameters for Renyi and Tsallis entropies were selected and
are presented in Table 5.

Table 5. Selected α for each calculated entropy type.

Entropy Positive α Value Negative α Value

Renyi 4 -2.5
Tsallis 4 -2.5

Both Figures 4 and 5 correspond with temperature data presented in Figure 2.
Figures 6 and 7 correspond with temperature data presented in Figure 3.
Visual analysis of both Figures 2 and 3 allows to distinguish working thermostat from broken one.

A thermostat which operates correctly should maintain the engine temperature in given temperature
range, as show in Figure 3. A broken thermostat will either leak or not open. In this case, it leaked and
caused the engine to cool excessively. Undesirable behavior can be observed when analyzing entropies’
values. It is very noticeable when looking at Tsallis entropies. For working thermostat and negative α,
calculated value is almost always equal to 0 with some local aberrations—see Figure 7. The same can
be noticed for positive α when analyzing broken thermostat—see Figure 5. Renji entropy plots also
differ for working and broken thermostat. But differences for both positive and negative α are not that
significant as with Tsallis entropy.
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Figure 4. Renyi entropy for broken thermostat.
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Figure 5. Tsallis entropy for broken thermostat.
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Figure 6. Renyi entropy for working thermostat.
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Figure 7. Tsallis entropy for working thermostat.

6. Machine Learning Approach

It is possible to distinguish between broken and working thermostat characteristics on graphs.
One of the goals was to create an automated system which would support car diagnosis. It is especially
important because a standard diagnosis procedure is based on experiments which can possibly do
further damage to the engine if the thermostat do not open in the right moment. What is also important
is that such systems should spot advancing wear.

There are two ways of diagnosing. First is based on threshold, second on machine learning
algorithm. Threshold has major disadvantage. It assumes that there is a certain temperature range
in which thermostat should operate. Any temperature outside a given range is a sign of fault.
More advanced solution uses machine learning algorithms. Major advantage of ML over standard
algorithm is model’s ability to generalize. It also requires samples, which are diverse.
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In case of this study classification decision tree was used. It is a supervised machine learning
algorithm which is designed to, based on provided features (attributes), detect which sample belongs
to which group. In this experiment there were two groups: working and broken. Machine learning
process consists of two phases: training and testing. The entire data set was divided into two subsets
corresponding to each mentioned phase. Because training is more important than testing, testing only
validates quality of model, it contains 80% of all available samples.

Following experiments with different features were conducted:

1. Model A – temperature only,
2. Model B – Tsallis entropy,
3. Model C – Renji entropy, Tsallis entropy, mean and median temperature.

For model’s quality verification following measures were done:

• feature importance – in what percentage given feature has impact on a result,
• mean squared error (MSE) – measure which indicates how accurate is the model,
• model’s score – according to documentation it is mean error rate.

There were three experiments conducted with different parameters described in Table 6.
As a result of each experiment different models were created. There are based on machine learning
algorithm called decision tree. This algorithm labeled data from a test set as working or broken. For all
models, values are labeled based on to which leaf they belong to.

Table 6. Created models based on specific attributes.

Model Name Coolant Temperature Renji Entropy Tsallis Entropy Mean Median

Model A x - - - -
Model B - - x - -
Model C - x x x x

Decision tree created for model A, presented in Figure 8, has a broad structure. It would have less
nodes only if the subtree on the left do not contain nodes labeled as working. It scored 86.8% accuracy
and MSE equal to 13.2%.

Model B (see Figure 9) was based solely on Tsallis entropy values both for positive and negative
α. It is the least complicated when compared to all the performed experiments. It also confirms the
observed regularity that Tsallis entropy is sufficient to determine thermostat condition. The model
scores 88.9% and MSE is equal to 11.1%. Feature importance shows that positive α has 93.5% of impact
on a model’s prediction while negative α only 6.5%.

The last developed model C is based on both Tsallis and Renji entropies for positive and negative
α. For the sake of this experiment mean and median temperatures are also used. This makes it too
detailed and the number of contained nodes make it impossible to visualize. Renji entropy is irrelevant,
because both values calculated for positive and negative α have significance of 0.0%. Tsallis entropy
has performed similar to model B reaching significance of 92.5% for positive α and 5.6% for negative α.
Mean temperature is 1.8% relevant to overall performance and median has less than 0.1% importance.
Model scored 88.8% of correctness.
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Temperature <= 0.478
gini = 0.498

samples = 37200
value = [17400, 19800]

class = Working

Temperature <= 0.211
gini = 0.231

samples = 20026
value = [17357, 2669]

class = Broken

True

Temperature <= 0.531
gini = 0.005

samples = 17174
value = [43, 17131]

class = Working

False

Temperature <= -0.695
gini = 0.202

samples = 18209
value = [16134, 2075]

class = Broken

Temperature <= 0.424
gini = 0.44

samples = 1817
value = [1223, 594]

class = Broken

Temperature <= -1.867
gini = 0.316

samples = 6696
value = [5378, 1318]

class = Broken

Temperature <= -0.641
gini = 0.123

samples = 11513
value = [10756, 757]

class = Broken

Temperature <= -3.572
gini = 0.376

samples = 2275
value = [1705, 570]

class = Broken

Temperature <= -0.748
gini = 0.281

samples = 4421
value = [3673, 748]

class = Broken

gini = 0.0
samples = 37
value = [37, 0]
class = Broken

Temperature <= -2.506
gini = 0.38

samples = 2238
value = [1668, 570]

class = Broken

Temperature <= -2.932
gini = 0.401

samples = 1047
value = [756, 291]

class = Broken

Temperature <= -2.186
gini = 0.359

samples = 1191
value = [912, 279]

class = Broken

Temperature <= -3.412
gini = 0.346

samples = 543
value = [422, 121]

class = Broken

Temperature <= -2.613
gini = 0.447

samples = 504
value = [334, 170]

class = Broken

Temperature <= -3.518
gini = 0.46

samples = 78
value = [50, 28]
class = Broken

Temperature <= -3.305
gini = 0.32

samples = 465
value = [372, 93]
class = Broken

gini = 0.291
samples = 17
value = [14, 3]
class = Broken

Temperature <= -3.465
gini = 0.484

samples = 61
value = [36, 25]
class = Broken

gini = 0.493
samples = 25

value = [11, 14]
class = Working

gini = 0.424
samples = 36

value = [25, 11]
class = Broken

Temperature <= -3.359
gini = 0.381

samples = 82
value = [61, 21]
class = Broken

Temperature <= -3.039
gini = 0.305

samples = 383
value = [311, 72]
class = Broken

gini = 0.369
samples = 41

value = [31, 10]
class = Broken

gini = 0.393
samples = 41

value = [30, 11]
class = Broken

Temperature <= -3.252
gini = 0.273

samples = 257
value = [215, 42]
class = Broken

Temperature <= -2.986
gini = 0.363

samples = 126
value = [96, 30]
class = Broken

gini = 0.339
samples = 37
value = [29, 8]
class = Broken

Temperature <= -3.146
gini = 0.261

samples = 220
value = [186, 34]
class = Broken

Temperature <= -3.199
gini = 0.276

samples = 109
value = [91, 18]
class = Broken

Temperature <= -3.092
gini = 0.247

samples = 111
value = [95, 16]
class = Broken

gini = 0.258
samples = 46
value = [39, 7]
class = Broken

gini = 0.288
samples = 63

value = [52, 11]
class = Broken

gini = 0.238
samples = 58
value = [50, 8]
class = Broken

gini = 0.256
samples = 53
value = [45, 8]
class = Broken

gini = 0.335
samples = 61

value = [48, 13]
class = Broken

gini = 0.386
samples = 65

value = [48, 17]
class = Broken

Temperature <= -2.666
gini = 0.459

samples = 370
value = [238, 132]

class = Broken

Temperature <= -2.559
gini = 0.406

samples = 134
value = [96, 38]
class = Broken

Temperature <= -2.826
gini = 0.444

samples = 327
value = [218, 109]

class = Broken

gini = 0.498
samples = 43

value = [20, 23]
class = Working

Temperature <= -2.879
gini = 0.415

samples = 153
value = [108, 45]
class = Broken

Temperature <= -2.719
gini = 0.465

samples = 174
value = [110, 64]
class = Broken

gini = 0.41
samples = 66

value = [47, 19]
class = Broken

gini = 0.419
samples = 87

value = [61, 26]
class = Broken

Temperature <= -2.773
gini = 0.472

samples = 118
value = [73, 45]
class = Broken

gini = 0.448
samples = 56

value = [37, 19]
class = Broken

gini = 0.468
samples = 59

value = [37, 22]
class = Broken

gini = 0.476
samples = 59

value = [36, 23]
class = Broken

gini = 0.4
samples = 65

value = [47, 18]
class = Broken

gini = 0.412
samples = 69

value = [49, 20]
class = Broken

Temperature <= -2.24
gini = 0.299

samples = 606
value = [495, 111]

class = Broken

Temperature <= -2.08
gini = 0.409

samples = 585
value = [417, 168]

class = Broken

Temperature <= -2.293
gini = 0.314

samples = 482
value = [388, 94]
class = Broken

gini = 0.237
samples = 124

value = [107, 17]
class = Broken

Temperature <= -2.346
gini = 0.298

samples = 396
value = [324, 72]
class = Broken

gini = 0.381
samples = 86

value = [64, 22]
class = Broken

Temperature <= -2.4
gini = 0.32

samples = 280
value = [224, 56]
class = Broken

gini = 0.238
samples = 116

value = [100, 16]
class = Broken

Temperature <= -2.453
gini = 0.321

samples = 199
value = [159, 40]
class = Broken

gini = 0.317
samples = 81

value = [65, 16]
class = Broken

gini = 0.32
samples = 80

value = [64, 16]
class = Broken

gini = 0.322
samples = 119
value = [95, 24]
class = Broken

Temperature <= -2.133
gini = 0.499

samples = 148
value = [77, 71]
class = Broken

Temperature <= -2.027
gini = 0.345

samples = 437
value = [340, 97]
class = Broken

gini = 0.485
samples = 70

value = [41, 29]
class = Broken

gini = 0.497
samples = 78

value = [36, 42]
class = Working

gini = 0.269
samples = 219

value = [184, 35]
class = Broken

Temperature <= -1.92
gini = 0.407

samples = 218
value = [156, 62]
class = Broken

Temperature <= -1.973
gini = 0.44

samples = 138
value = [93, 45]
class = Broken

gini = 0.335
samples = 80

value = [63, 17]
class = Broken

gini = 0.451
samples = 67

value = [44, 23]
class = Broken

gini = 0.428
samples = 71

value = [49, 22]
class = Broken

Temperature <= -1.547
gini = 0.27

samples = 4258
value = [3573, 685]

class = Broken

gini = 0.474
samples = 163

value = [100, 63]
class = Broken

Temperature <= -1.6
gini = 0.19

samples = 1023
value = [914, 109]

class = Broken

Temperature <= -0.854
gini = 0.293

samples = 3235
value = [2659, 576]

class = Broken

Temperature <= -1.814
gini = 0.209

samples = 786
value = [693, 93]
class = Broken

gini = 0.126
samples = 237

value = [221, 16]
class = Broken

gini = 0.265
samples = 121

value = [102, 19]
class = Broken

Temperature <= -1.76
gini = 0.198

samples = 665
value = [591, 74]
class = Broken

gini = 0.205
samples = 147

value = [130, 17]
class = Broken

Temperature <= -1.654
gini = 0.196

samples = 518
value = [461, 57]
class = Broken

Temperature <= -1.707
gini = 0.194

samples = 312
value = [278, 34]
class = Broken

gini = 0.198
samples = 206

value = [183, 23]
class = Broken

gini = 0.199
samples = 134

value = [119, 15]
class = Broken

gini = 0.191
samples = 178

value = [159, 19]
class = Broken

Temperature <= -1.014
gini = 0.313

samples = 2486
value = [2004, 482]

class = Broken

Temperature <= -0.801
gini = 0.22

samples = 749
value = [655, 94]
class = Broken

Temperature <= -1.281
gini = 0.279

samples = 1901
value = [1582, 319]

class = Broken

Temperature <= -0.961
gini = 0.402

samples = 585
value = [422, 163]

class = Broken

Temperature <= -1.387
gini = 0.305

samples = 859
value = [698, 161]

class = Broken

Temperature <= -1.174
gini = 0.257

samples = 1042
value = [884, 158]

class = Broken

Temperature <= -1.441
gini = 0.28

samples = 512
value = [426, 86]
class = Broken

Temperature <= -1.334
gini = 0.339

samples = 347
value = [272, 75]
class = Broken

Temperature <= -1.494
gini = 0.305

samples = 336
value = [273, 63]
class = Broken

gini = 0.227
samples = 176

value = [153, 23]
class = Broken

gini = 0.267
samples = 189

value = [159, 30]
class = Broken

gini = 0.348
samples = 147

value = [114, 33]
class = Broken

gini = 0.381
samples = 86

value = [64, 22]
class = Broken

gini = 0.324
samples = 261

value = [208, 53]
class = Broken

Temperature <= -1.227
gini = 0.206

samples = 385
value = [340, 45]
class = Broken

Temperature <= -1.068
gini = 0.285

samples = 657
value = [544, 113]

class = Broken

gini = 0.228
samples = 183

value = [159, 24]
class = Broken

gini = 0.186
samples = 202

value = [181, 21]
class = Broken

Temperature <= -1.121
gini = 0.305

samples = 341
value = [277, 64]
class = Broken

gini = 0.262
samples = 316

value = [267, 49]
class = Broken

gini = 0.312
samples = 181

value = [146, 35]
class = Broken

gini = 0.297
samples = 160

value = [131, 29]
class = Broken

gini = 0.474
samples = 228

value = [140, 88]
class = Broken

Temperature <= -0.908
gini = 0.332

samples = 357
value = [282, 75]
class = Broken

gini = 0.306
samples = 159

value = [129, 30]
class = Broken

gini = 0.351
samples = 198

value = [153, 45]
class = Broken

gini = 0.252
samples = 270

value = [230, 40]
class = Broken

gini = 0.2
samples = 479

value = [425, 54]
class = Broken

gini = 0.016
samples = 3652

value = [3623, 29]
class = Broken

Temperature <= -0.322
gini = 0.168

samples = 7861
value = [7133, 728]

class = Broken

Temperature <= -0.482
gini = 0.265

samples = 1769
value = [1491, 278]

class = Broken

Temperature <= -0.268
gini = 0.137

samples = 6092
value = [5642, 450]

class = Broken

Temperature <= -0.588
gini = 0.292

samples = 903
value = [743, 160]

class = Broken

Temperature <= -0.428
gini = 0.235

samples = 866
value = [748, 118]

class = Broken

gini = 0.32
samples = 230

value = [184, 46]
class = Broken

Temperature <= -0.535
gini = 0.281

samples = 673
value = [559, 114]

class = Broken

gini = 0.28
samples = 250

value = [208, 42]
class = Broken

gini = 0.282
samples = 423

value = [351, 72]
class = Broken

gini = 0.177
samples = 315

value = [284, 31]
class = Broken

Temperature <= -0.375
gini = 0.266

samples = 551
value = [464, 87]
class = Broken

gini = 0.25
samples = 280

value = [239, 41]
class = Broken

gini = 0.282
samples = 271

value = [225, 46]
class = Broken

gini = 0.107
samples = 809

value = [763, 46]
class = Broken

Temperature <= -0.215
gini = 0.141

samples = 5283
value = [4879, 404]

class = Broken

gini = 0.225
samples = 380

value = [331, 49]
class = Broken

Temperature <= -0.162
gini = 0.134

samples = 4903
value = [4548, 355]

class = Broken

gini = 0.093
samples = 985

value = [937, 48]
class = Broken

Temperature <= -0.109
gini = 0.144

samples = 3918
value = [3611, 307]

class = Broken

gini = 0.191
samples = 422

value = [377, 45]
class = Broken

Temperature <= 0.051
gini = 0.139

samples = 3496
value = [3234, 262]

class = Broken

Temperature <= -0.002
gini = 0.126

samples = 1333
value = [1243, 90]

class = Broken

Temperature <= 0.158
gini = 0.146

samples = 2163
value = [1991, 172]

class = Broken

Temperature <= -0.055
gini = 0.14

samples = 794
value = [734, 60]
class = Broken

gini = 0.105
samples = 539

value = [509, 30]
class = Broken

gini = 0.129
samples = 418

value = [389, 29]
class = Broken

gini = 0.151
samples = 376

value = [345, 31]
class = Broken

Temperature <= 0.105
gini = 0.154

samples = 1534
value = [1405, 129]

class = Broken

gini = 0.127
samples = 629

value = [586, 43]
class = Broken

gini = 0.139
samples = 773

value = [715, 58]
class = Broken

gini = 0.169
samples = 761

value = [690, 71]
class = Broken

Temperature <= 0.318
gini = 0.416

samples = 1466
value = [1033, 433]

class = Broken

gini = 0.497
samples = 351

value = [190, 161]
class = Broken

Temperature <= 0.264
gini = 0.43

samples = 960
value = [659, 301]

class = Broken

Temperature <= 0.371
gini = 0.386

samples = 506
value = [374, 132]

class = Broken

gini = 0.426
samples = 539

value = [373, 166]
class = Broken

gini = 0.436
samples = 421

value = [286, 135]
class = Broken

gini = 0.31
samples = 198

value = [160, 38]
class = Broken

gini = 0.424
samples = 308

value = [214, 94]
class = Broken

gini = 0.179
samples = 342

value = [34, 308]
class = Working

Temperature <= 0.637
gini = 0.001

samples = 16832
value = [9, 16823]
class = Working

Temperature <= 0.584
gini = 0.017

samples = 1068
value = [9, 1059]
class = Working

gini = 0.0
samples = 15764
value = [0, 15764]
class = Working

gini = 0.009
samples = 452
value = [2, 450]
class = Working

gini = 0.022
samples = 616
value = [7, 609]
class = Working

Figure 8. Decision tree based on temperature value.
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Positive Tsallis entropy <= 0.473
gini = 0.498

samples = 36642
value = [17139, 19503]

class = Working

gini = 0.0
samples = 18321
value = [0, 18321]
class = Working

True

Negative Tsallis entropy <= 1.338
gini = 0.121

samples = 18321
value = [17139, 1182]

class = Broken

False

gini = 0.0
samples = 8865
value = [8865, 0]
class = Broken

Negative Tsallis entropy <= 1.422
gini = 0.219

samples = 9456
value = [8274, 1182]

class = Broken

gini = 0.0
samples = 591
value = [0, 591]
class = Working

gini = 0.124
samples = 8865

value = [8274, 591]
class = Broken

Figure 9. Decision tree based on Tsallis entropy.

7. Conclusions

Entropies allow the creation of a concise decision tree model. In particular, Tsallis entropy which
alone allowed the creation of model B with accuracy of 88.9%. Although, all models’ scores vary only
by a few percent, model B is the least complicated. Thus, it is most generic of all.

For an experienced car mechanic investigating a thermostat problem is a simple job. Lack of cabin
heating and significant engine temperature drop are noticeable symptoms for thermostat broken in an
open position. On the other hand, when thermostat is not able to open itself the engine overheats and
damages, for example, the engine block.

It is believed that self-driving cars will become popular on public roads within the next couple of
years. A lot of effort is put into artificial intelligence which drives those cars. It seems that undisturbed
operation has been put in second place. One of authors’ goals is to provide reliable solution which
improves day to day car usage and will have impact on self-driving cars in the future.

From drivers’ perspective solution should be intuitive and cheap. The developed system meets
both criteria although it has limited functionality for now. Mentioned criteria are crucial from the
adoption standpoint. Expensive or unintuitive solutions are unacceptable for the end user. In addition,
client-server solutions are universal as smartphones are responsible for collecting data and sending
them to the server. Battery life is not an issue here because it is assumed that device will be used only
for diagnostic purposes or will be connected to a charger.

Future works include developing a dedicated device powered by OBD2 plug. Such a device could
be kept hidden in a car and work automatically without human intervention. What is more important
further research includes machine learning model enhancements. We want to develop methods that
will not only detect failures or provide additional information compared to the on-board computer but
can also be used, for example, to assess the driver’s driving style, especially from an economic point
of view.
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