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Abstract: We consider the k-user successive refinement problem with causal decoder side information
and derive an exponential strong converse theorem. The rate-distortion region for the problem can
be derived as a straightforward extension of the two-user case by Maor and Merhav (2008). We show
that for any rate-distortion tuple outside the rate-distortion region of the k-user successive refinement
problem with causal decoder side information, the joint excess-distortion probability approaches
one exponentially fast. Our proof follows by judiciously adapting the recently proposed strong
converse technique by Oohama using the information spectrum method, the variational form of
the rate-distortion region and Hölder’s inequality. The lossy source coding problem with causal
decoder side information considered by El Gamal and Weissman is a special case (k = 1) of the
current problem. Therefore, the exponential strong converse theorem for the El Gamal and Weissman
problem follows as a corollary of our result.

Keywords: exponential strong converse; information spectrum method; successive refinement; causal
side information

1. Introduction

We consider the k-user successive refinement problem with causal decoder side information
shown in Figure 1, which we refer to as the k-user causal successive refinement problem. The decoders
aim to recover the source sequence based on the encoded symbols and causally available private side
information sequences. Specifically, given the source sequence Xn, each encoder f j where j ∈ {1, . . . , k}
compresses Xn into a codeword Sj. At time i ∈ {1, . . . , n}, for each j ∈ {1, . . . , k}, the j-th user aims to
recover the i-th source symbol using the codewords from encoders ( f1, . . . , f j), the side information
up to time i and a decoding function φj,i, i.e., X̂j,i = φj,i(S1, . . . , Sj, Yj,1, . . . , Yj,i). Finally, at time n,
for all j ∈ {1, . . . , k}, the j-th user outputs the source estimate X̂n

j which, under a distortion measure dj,
is required to be less than or equal to a specified distortion level Dj.

The causal successive refinement problem was first considered by Maor and Merhav in [1] who
fully characterized the rate-distortion region for the two-user version. Maor and Merhav showed
that, unlike the case with non-causal side information [2,3], no special structure e.g., degradedness,
is required between the side information Yn

1 and Yn
2 . Furthermore, Maor and Merhav discussed

the performance loss due to causal decoder side information compared with non-causal side
information [2,3]. In general, for the k-user successive refinement problem, the loss of performance
due to causal decoder side information can be derived using Theorem 1 of the present paper and the
results in [2,3] for the k-user case, under certain conditions on the degradedness of the side information
in [2,3].

Entropy 2019, 21, 410; doi:10.3390/e21040410 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5173-320X
https://orcid.org/0000-0002-2531-9670
http://dx.doi.org/10.3390/e21040410
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/4/410?type=check_update&version=2


Entropy 2019, 21, 410 2 of 27

f1-Xn S1 -

Y1,1, . . . , Y1,i

φ1,i

?
-(X̂1,i, D1)

- f2
S2 - φ2,i

?

Y2,1, . . . , Y2,i

(X̂2,i, D2)-

Z
Z
Z
Z

Z
Z

Z
ZZ~

sss
- fk

Sk - φk,i

?

Yk,1, . . . , Yk,i

(X̂k,i, Dk)-

Z
Z
Z
Z

Z
Z

Z
ZZ~

J
J
J
J
J
J
J
J
J
J
J
J
Ĵ

Figure 1. Encoder-decoder system model for the k-user successive refinement problem with causal
decoder side information at time i ∈ [n]. Each encoder f j where j ∈ [k] compresses the source
information into codewords Sj. Given accumulated side information (Yj,1, . . . , Yj,i) and the codewords
(S1, . . . , Sj), decoder φj,i reproduces the i-th source symbol as X̂j,i. At time n, for j ∈ [k], the estimate
X̂n

j for user j is required to satisfy distortion constraint Dj under a distortion measure dj.

However, Maor and Merhav only presented a weak converse in [1]. In this paper, we strengthen
the result in [1] by providing an exponential strong converse theorem for the full k-user causal
successive refinement problem, which states that the joint excess-distortion probability approaches
one exponentially fast if the rate-distortion tuple falls outside the rate-distortion region.

1.1. Related Works

We first briefly summarize existing works on the successive refinement problem. The successive
refinement problem was first considered by Equitz and Cover [4] and by Koshelev [5] who considered
necessary and sufficient conditions for a source-distortion triple to be successively refinable. Rimoldi [6]
fully characterized the rate-distortion region of the successive refinement problem under the joint
excess-distortion probability criterion while Kanlis and Narayan [7] derived the excess-distortion
exponent in the same setting. The second-order asymptotic analysis of No and Weissman [8],
which provides approximations to finite blocklength performance and implies strong converse
theorems, was derived under the marginal excess-distortion probabilities criteria. This analysis
was extended to the joint excess-distortion probability criterion by Zhou, Tan and Motani [9].
Other frameworks for successive refinement decoding include [10–13].

The study of source coding with causal decoder side information was initiated by Weissman and
El Gamal in [14] where they derived the rate-distortion function for the lossy source coding problem
with causal side information at the decoders (i.e., k = 1, see also [15], Chapter 11.2). Subsequently,
Timo and Vellambi [16] characterized the rate-distortion regions of the Gu-Effros two-hop network [17]
and the Gray-Wyner problem [18] with causal decoder side information; Maor and Merhav [19]
derived the rate-distortion region for the successive refinement of the Heegard-Berger problem [20]
with causal side information available at the decoders; Chia and Weissman [21] considered the
cascade and triangular source coding problem with causal decoder side information. In all the
aforementioned works, the authors used Fano’s inquality to prove a weak converse. The weak
converse implies that as the blocklength tends to infinity, if the rate-distortion tuple falls outside
the rate-distortion region, then the joint excess-distortion probability is bounded away from zero.
However, in this paper, we prove an exponential strong converse theorem for the k-user causal
successive refinement problem, which significantly strengthens the weak converse as it implies that
the joint excess-distortion probability tends to one exponentially fast with respect to the blocklength
if the rate-distortion tuple falls outside the rate-distortion region (cf. Theorem 3). As a corollary of
our result, for any ε ∈ [0, 1), the ε-rate-distortion region (cf. Definition 2) remains the same as the
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rate-distortion region (cf. Equation (27)). Please note that with weak converse, one can only assert
that the ε-rate-distortion region equals the rate-distortion region when ε = 0. See [22] for yet another
justification for the utility of a strong converse compared to a weak converse theorem.

As the information spectrum method will be used in this paper to derive an exponential strong
converse theorem for the causal successive refinement problem, we briefly summarize the previous
applications of this method to network information theory problems. In [23–25], Oohama used
this method to derive exponential strong converses for the lossless source coding problem with
one-helper [26,27] (i.e., the Wyner-Ahlswede-Körner (WAK) problem), the asymmetric broadcast
channel problem [28], and the Wyner-Ziv problem [29] respectively. Furthermore, Oohama’s
information spectrum method was also used to derive exponential strong converse theorems for
content identification with lossy recovery [30] by Zhou, Tan, Yu and Motani [31] and for Wyner’s
common information problem under the total variation distance measure [32] by Yu and Tan [33].

1.2. Main Contribution and Challenges

We consider the k-user causal successive refinement problem and present an exponential strong
converse theorem. For given rates and blocklength, define the joint excess-distortion probability as
the probability that any decoder incurs a distortion level greater than the specified distortion level
(see (3)) and define the probability of correct decoding as the probability that all decoders satisfy the
specified distortion levels (see (24)). Our proof proceeds as follows. First, we derive a non-asymptotic
converse (finite blocklength upper) bound on the probability of correct decoding of any code for the
k-user causal successive refinement problem using the information spectrum method. Subsequently,
by using Cramér’s inequality and the variational formulation of the rate-distortion region, we show
that the probability of correct decoding decays exponentially fast to zero as the blocklength tends
to infinity if the rate-distortion tuple falls outside the rate-distortion region of the causal successive
refinement problem.

As far as we are aware, this paper is the first to establish a strong converse theorem for any
lossy source coding problem with causal decoder side information. Furthermore, our methods can
be used to derive exponential strong converse theorems for other lossy source coding problems with
causal decoder side information discussed in Section 1.1. In particular, since the lossy source coding
problems with causal decoder side information in [1,14] are special cases of the k-user causal successive
refinement problem, the exponential strong converse theorems for the problems in [1,14] follow as a
corollary of our result.

To establish the strong converse in this paper, we must overcome several major technical
challenges. The main difficulty lies in the fact that for the causal successive refinement problem,
the side information is available to the decoder causally instead of non-causally. This causal nature of
the side information makes the design of the decoder much more complicated and involved, which
complicates the analysis of the joint excess-distortion probability. We find that classical strong converse
techniques like the image size characterization [34] and the perturbation approach [35] cannot lead to
a strong converse theorem due to the above-mentioned difficulty. However, it is possible that other
approaches different from ours can be used to obtain a strong converse theorem for the current problem.
For example, it is interesting to explore whether two recently proposed strong converse techniques
in [36,37] can be used for this purpose considering the fact that the methods in [36,37] have been
successfully applied to problems including the Wyner-Ziv problem [29], the Wyner-Ahlswede-Körner
(WAK) problem [26,27] and hypothesis testing problems with communication constraints [38–40].

2. Problem Formulation and Existing Results

2.1. Notation

Random variables and their realizations are in upper (e.g., X) and lower case (e.g., x) respectively.
Sets are denoted in calligraphic font (e.g., X ). We use X c to denote the complement of X and use
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Xn := (X1, . . . , Xn) to denote a random vector of length n. Furthermore, given any j ∈ [n], we use Xn\j

to denote (X1, . . . , Xj−1, Xj+1, . . . , Xn). We use R+ and N to denote the set of positive real numbers
and integers respectively. Given two integers a and b, we use [a : b] to denote the set of all integers
between a and b and use [a] to denote [1 : a]. The set of all probability distributions on X is denoted
as P(X ) and the set of all conditional probability distributions from X to Y is denoted as P(Y|X ).
For information-theoretic quantities such as entropy and mutual information, we follow the notation
in [34]. In particular, when the joint distribution of (X, Y) is PXY ∈ P(X ×Y), we use I(PX , PY|X) and
I(X; Y) interchangeably.

2.2. Problem Formulation

Let k ∈ N be a fixed finite integer and let PXYk be a joint probability mass function (pmf) on
the finite alphabet X × (∏j∈[k] Yj) with its marginals denoted in the customary way, e.g., PX, PXY1 .
Throughout the paper, we consider memoryless sources (Xn, Yn

1 , . . . , Yn
k ), which are generated i.i.d.

according to PXYk . Let a finite alphabet X̂j be the alphabet of the reproduced source symbol for user
j ∈ [k]. Recall the encoder-decoder system model for the k-user causal successive refinement problem
in Figure 1.

A formal definition of a code for the causal successive refinement problem is as follows.

Definition 1. An (n, M1, . . . , Mk)-code for the causal successive refinement problem consists of

• k encoding functions

f j : X n →Mj := {1, . . . , Mj}, j ∈ [k], (1)

• and kn decoding functions: for each i ∈ [n]

φj,i :(∏
l∈[j]
Ml)× (Yj)

i → X̂j, j ∈ [k]. (2)

For j ∈ [k], let dj : X × X̂j → [0, ∞) be a distortion measure. Given the source sequence xn

and a reproduced version x̂n
j , we measure the distortion between them using the additive distortion

measure dj(xn, x̂n
j ) := 1

n ∑i∈[n] dj(xi, x̂j,i). To evaluate the performance of an (n, M1, . . . , Mk)-code for
the causal successive refinement problem, given distortion specified levels (D1, . . . , Dk), we consider
the following joint excess-distortion probability

P(n)
e (D1, . . . , Dk) := Pr

{
∃ j ∈ [k] s.t. dj(Xn, X̂n

j ) > Dj
}

. (3)

For ease of notation, throughout the paper, we use Dk to denote (D1, . . . , Dk), Mk to denote
(M1, . . . , Mk) and Rk to denote (R1, . . . , Rk).

Given ε ∈ (0, 1), the ε-rate-distortion region for the k-user causal successive refinement problem
is defined as follows.

Definition 2. Given any ε ∈ (0, 1), a rate-distortion tuple (Rk, Dk) is said to be ε-achievable if there exists a
sequence of (n, Mk)-codes such that

lim sup
n→∞

1
n

log M1 ≤ R1, (4)

lim sup
n→∞

1
n

log Mj ≤ Rj − ∑
l∈[j−1]

Rl , ∀ j ∈ [2 : k], (5)

lim sup
n→∞

P(n)
e (Dk) ≤ ε. (6)
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The closure of the set of all ε-achievable rate-distortion tuples is called the ε-rate-distortion region and is denoted
asR(ε).

Please note that in Definition 2, Rj is the sum rate of the first j decoders. Using Definition 2,
the rate-distortion region for the problem is defined as

R :=
⋂

ε∈(0,1)

R(ε). (7)

2.3. Existing Results

For the two-user causal successive refinement problem, the rate-distortion region was fully
characterized by Maor and Merhav (Theorem 1 in [1]). With slight generalization, the result can be
extended to the k-user case.

For j ∈ [k], let Wj be a random variable taking values in a finite alphabet Wj. For simplicity,
throughout the paper, we let

T := (X, Yk, Wk, X̂k), (8)

and let (t, T ) be a particular realization of T and its alphabet set, respectively.
Define the following set of joint distributions:

P∗ :=
{

QT ∈ P(T ) : QXYk = PXYk , Wk − X−Yk, |W1| ≤ |X |+ 3, and ∀ j ∈ [k] :

|Wj| ≤ |X |
(

∏
l∈[j−1]

|Wl |
)
+ 1, X̂j = φj(W j, Yj) for some φj :

(
∏
l∈[j]
Wl

)
×Yj → X̂j

}
.

(9)

Given any joint distribution QT ∈ P(T ), define the following set of rate-distortion tuples

R(QT) :=
{
(Rk, Dk) : R1 ≥ I(QX , QW1|X), D1 ≥ E[d1(X, φ1(W1, Y1))], and ∀ j ∈ [2 : k] :

Rj − ∑
l∈[j−1]

Rl ≥ I(QX|W j−1 , QWj |XW j−1 |QWj−1), Dj ≥ E[dj(X, φj(W j, Yj))]
}

.
(10)

For k = 2, Maor and Merhav [1] defined the following information theoretical sets of
rate-distortion tuples

R∗ :=
⋃

QT∈P∗
R(QT). (11)

Theorem 1. The rate-distortion region for the causal successive refinement problem satisfies

R = R∗. (12)

We remark that in [1], Maor and Merhav considered the average distortion criterion for k = 2, i.e.,

lim sup
n→∞

E[dj(Xn, X̂n
j )] ≤ Dk, ∀ j ∈ [k], (13)

instead of the vanishing joint excess-distortion probability criterion (see (6)) in Definition 2. However,
with slight modification to the proof of [1], it can be verified (see Appendix A) that the rate-distortion
region R under the vanishing joint excess-distortion probability criterion, is identical to the
rate-distortion regionR∗ derived by Maor and Merhav under the average distortion criterion.

Theorem 1 implies that if a rate-distortion tuple falls outside the rate-distortion region,
i.e., (Rk, Dk) /∈ R, then the joint excess-distortion probability P(n)

e (Dk) is bounded away from zero.
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We strengthen the converse proof of Theorem 1 by showing that if (Rk, Dk) /∈ R, then the joint
excess-distortion probability P(n)

e (Dk) approaches one exponentially fast as the blocklength n tends
to infinity.

3. Main Results

3.1. Preliminaries

In this subsection, we present necessary definitions and a key lemma before stating our
main result.

Define the following set of distributions

Q :=
{

QT ∈ P(T ) : |Wj| ≤
(
|X ||Y||Z||X̂1||X̂2|

)j, ∀ j ∈ [k]
}

. (14)

Throughout the paper, we use αk to denote (α1, . . . , αk) and use βk similarly. Given any
(µ, αk, βk) ∈ R+ × [0, 1]2k such that

∑
i∈[k]

(αi + βi) = 1, (15)

for any QT ∈ Q, define the following linear combination of log likelihoods

ω
(µ,αk ,βk)
QT

(t) := log
QX(x)
PX(x)

+ log
QYk |XWk (yk|x, wk)

PYk |X(yk|x)
+ log

QXYk\1Wk\1|Y1W1X̂1
(x, yk\1, wk\1|y1, w1, x̂1)

QXYk\1Wk\1|Y1W1
(x, yk\1, wk\1|y1, w1)

+ ∑
j∈[2:k]

log
QX̂j |XYkWkX̂ j−1(x̂j|x, yk, wk, x̂j−1)

QX̂j |YjW j(x̂j|yj, wj)
+ µα1 log

QX|W1
(x|w1)

PX(x)

+ ∑
j∈[2:k]

µαj log
QX|W j(x|wj)

QX|W j−1(x|wj−1)
+ ∑

j∈[k]
µβ jdj(x, x̂j).

(16)

Given any θ ∈ R+ and any QT ∈ Q, define the negative cumulant generating function of ω
(µ,αk ,βk)
QT

(·) as

Ω(θ,µ,αk ,βk)(QT) := − logEQT

[
exp

(
− θω

(µ,αk ,βk)
QT

(T)
)]

. (17)

Furthermore, define the minimal negative cumulant generating function over distributions in Q as

Ω(θ,µ,αk ,βk) := min
QT∈Q

Ω(θ,µ,αk ,βk)(QT). (18)

Finally, given any rate-distortion tuple (Rk, Dk), define

κ(α
k ,βk)(Rk, Dk) := α1R1 + β1D1 + ∑

j∈[2:k]
(αj(Rj − ∑

l∈[j−1]
Rl) + β jDj), (19)

F(θ,µ,αk ,βk)(Rk, Dk) :=
Ω(θ,µ,αk ,βk) − θµκ(α

k ,βk)(Rk, Dk)

1 + (2k + 2)θ + ∑j∈[k] 2θµαj
, (20)

F(Rk, Dk) := sup
(θ,µ,αk ,βk)∈R2

+×[0,1]2k : ∑i∈[k](αi+βi)=1
F(θ,µ,αk ,βk)(Rk, Dk). (21)

With the above definitions, we have the following lemma establishing the properties of the
exponent function F(Rk, Dk).

Lemma 1. The following holds.
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(i) For any rate-distortion tuple outside the rate-distortion region, i.e., (Rk, Dk) /∈ R, we have

F(Rk, Dk) > 0, (22)

(ii) For any rate-distortion tuple inside the rate-distortion region, i.e., (Rk, Dk) ∈ R, we have

F(Rk, Dk) = 0. (23)

The proof of Lemma 1 is inspired by Property 4 in [25], Lemma 2 in [31] and is given in Section 5.
As will be shown in Theorem 2, the exponent function F(Rk, Dk) is a lower bound on the exponent of
the probability of correct decoding for the k-user causal successive refinement problem. Thus, Claim (i)
in Lemma 1 is crucial to establish the exponential strong converse theorem which states that the joint
excess-distortion probability (see (3)) approaches one exponentially fast with respect to the blocklength
of the source sequences.

3.2. Main Result

Define the probability of correct decoding as

P(n)
c (Dk) := 1− P(n)

e (Dk) = Pr
{
∀ j ∈ [k], dj(Xn, X̂n

j ) ≤ Dj
}

. (24)

Theorem 2. Given any (n, Mk)-code for the k-user causal successive refinement problem such that

log M1 ≤ nR1, and ∀ j ∈ [2 : k], log Mj ≤ n
(

Rj − ∑
l∈[j−1]

Rl

)
, (25)

we have the following non-asymptotic upper bound on the probability of correct decoding

P(n)
c (Dk) ≤ (2k + 3) exp(−nF(Rk, Dk)). (26)

The proof of Theorem 2 is given in Section 4. Several remarks are in order.
First, our result is non-asymptotic, i.e., the bound in (26) holds for any n ∈ N. To prove Theorem 2,

we adapt the recently proposed strong converse technique by Oohama [25] to analyze the probability
of correct decoding. We first obtain a non-asymptotic upper bound using the information spectrum

of log-likelihoods involved in the definition of ω
(µ,αk ,βk)
QT

(see (16)) and then apply Cramér’s bound
on large deviations (see e.g., Lemma 13 in [31]) to obtain an exponential type non-asymptotic upper
bound. Subsequently, we apply the recursive method [25] and proceed similarly as in [31] to obtain
the desired result. Our method can also be used to establish similar results for other source coding
problems with causal decoder side information [16,19,21].

Second, we do not believe that classical strong converse techniques including the image size
characterization [34] and the perturbation approach [35] can be used to obtain a strong converse
theorem for the causal successive refinement problem (e.g., Theorem 3). The main obstacle is that the
side information is available causally and thus complicates the decoding analysis significantly.

Invoking Lemma 1 and Theorem 2, we conclude that the exponent on the right hand side of (26)
is positive if and only if the rate-distortion tuple is outside the rate-distortion region, which implies
the following exponential strong converse theorem.

Theorem 3. For any sequence of (n, Mk)-codes satisfying the rate constraints in (25), given any distortion
levels Dk, we have that if (Rk, Dk) /∈ R, then the probability of correct decoding P(n)

c (Dk) decays exponentially
fast to zero as the blocklength of the source sequences tends to infinity.
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As a result of Theorem 3, we conclude that for every ε ∈ (0, 1), the ε-rate distortion region (see
Definition 2) satisfies that

R(ε) = R, (27)

i.e., a strong converse holds for the k-user causal successive refinement problem. Using the strong
converse theorem and Marton’s change-of-measure technique [41], similarly to Theorem 5 in [31],
we can also derive an upper bound on the exponent of the joint excess-distortion probability.
Furthermore, applying the one-shot techniques in [42], we can also establish a non-asymptotic
achievability bound. Applying the Berry-Esseen theorem to the achievability bound and analyzing the
non-asymptotic converse bound in Theorem 2, similarly to [25], we conclude that the backoff from the
rate-distortion region at finite blocklength scales on the order of Θ( 1√

n ). However, nailing down the
exact second-order asymptotics [43,44] is challenging and is left for future work.

Our main results in Lemma 1, Theorems 2 and 3 can be specialized to the settings in [1,14] with
k = 1 and k = 2 decoders (users) respectively.

4. Proof of the Non-Asymptotic Converse Bound (Theorem 2)

4.1. Preliminaries

Given any (n, Mk)-code with encoding functions ( f1, . . . , fk) and and decoding functions
{(φ1,i, . . . , φk,i)}i∈[n], we define the following induced conditional distributions on the encoders and
decoders: for each j ∈ [k],

PSj |Xn(sj|xn) := 1{sj = f j(xn)}, (28)

PX̂n
j |SjYn

j
(x̂n

j |sj, yn
j ) := ∏

i∈[n]
1{x̂j,i = φj,i(sj, yj,1, . . . , yj,i)}. (29)

For simplicity, in the following, we define

G := (Xn, Yn
1 , . . . , Yn

k , Sk, X̂n
1 , . . . , X̂n

k ), (30)

and let (g,G) be a particular realization and the alphabet of G respectively. With above definitions, we
have that the distribution PG satisfies that for any g ∈ G,

PG(g) := Pn
XYk (xn, yn

1 , . . . , yn
k )
(

∏
j∈[k]

PSj |Xn(sj|xn)
)(

∏
j∈[k]

PX̂n
j |SjYn

j
(x̂n

j |sj, yn
j )
)
. (31)

In the remaining part of this section, all distributions denoted by P are induced by the joint
distribution PG.

To simplify the notation, given any (i, j) ∈ [n]× [k], we use Y j,i
j,1 to denote (Yj,1, . . . , Yj,i) and we

use Yk,i
1,i to denote (Y1,i, . . . , Yk,i). Similarly, we use Wk,i

1,i and X̂k,i
1,i . For each i ∈ [n], let auxiliary random

variables be W1,i := (Xi−1, Y1,i−1
1,1 , . . . , Yk,i−1

k,1 , S1) and Wj,i = Sj for all j ∈ [2 : k]. Please note that as a

function of i ∈ [n], the Markov chain (Wk,i
1,i )↔ Xi ↔ (Yi, Zi) holds under PG. Throughout the paper,

for each i ∈ [n], we let

Ti := (Xi, Yk,i
1,i , Wk,i

1,i , X̂k,i
1,i), (32)

and let (ti, Ti) be a particular realization of Ti and the alphabet of Ti, respectively.
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For each i ∈ [n], let QCi |Di
be arbitrary distributions where Ci ∈ Ti and Di ∈ Ti. Given any

positive real number η and rate-distortion tuple (Rk, Dk), define the following subsets of G:

B1 :=
{

g : 0 ≥ 1
n ∑

i∈[n]
log

QXi (xi)

PX(xi)
− η

}
, (33)

B2 :=
{

g : 0 ≥ 1
n ∑

i∈[n]
log

QYk,i
1,i |XiW

k,i
1,i
(yk,i

1,i|xi, wk,i
1,i)

PYk |X(y
k,i
1,i|xi)

− η
}

, (34)

B3 :=
{

g : 0 ≥ 1
n ∑

i∈[n]
log

QXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i X̂1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i, x̂1,i)

PXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i)

− η

}
, (35)

B4 :=
{

g : 0 ≥ 1
n ∑

i∈[n]
log

Q
X̂j,i |XiY

k,i
1,i Wk,i

1,i X̂ j−1,i
1,i

(x̂j,i|xi, yk,i
1,i, wk,i

1,i, x̂j−1,i
1,i )

P
X̂j,i |Yj,iW

j,i
1,i
(x̂j,i|yj,i, wj,i

1,i)
− η, ∀ j ∈ [2 : k]

}
, (36)

B5 :=
{

g : R1 ≥
1
n ∑

i∈[n]
log

PXi |W1,i
(xi|w1,i)

PX(xi)
− η

}
, (37)

B6 :=
{

g : Rj − ∑
l∈[j−1]

Rl ≥
1
n ∑

i∈[n]
log

P
Xi |W

j,i
1,i
(xi|w

j,i
1,i)

P
Xi |W

j−1,i
1,i

(xi|w
j−1,i
1,i )

− η, ∀ j ∈ [2 : k]
}

(38)

B7 :=
{

g : Dj ≥
1
n ∑

i∈[n]
log exp(dj(xi, x̂j,i)), ∀ j ∈ [k]

}
. (39)

4.2. Proof Steps of Theorem 2

We first present the following non-asymptotic upper bound on the probability of correct decoding
using the information spectrum method.

Lemma 2. For any (n, Mk)-code satisfying (25), given any distortion levels Dk, we have

P(n)
c (Dk) ≤ Pr

{ ⋂
i∈[7]
Bi

}
+ (2k + 2) exp(−nη). (40)

The proof of Lemma 2 is given in Appendix B and is divided into two steps. First, we derive a
n-letter non-asymptotic upper bound which holds for certain arbitrary n-letter auxiliary distributions.
Subsequently, we single-letterize the derived bound by proper choice of auxiliary distributions and
careful decomposition of induced distributions of PG.

Subsequently, we will apply Cramér’s bound on Lemma 2 to obtain an exponential type
non-asymptotic upper bound on the probability of correct decoding. For simplicity, we will use
Pi to denote PTi and use Qi to denote QTi . To present our next result, we need the following definitions.

Given any µ ∈ R+ and any (αk, βk) ∈ [0, 1]2k satisfying (15), let f (α
k ,βk)

Qi ,Pi
(ti) be the weighted sum of log

likelihood terms in the summands to the right of the inequalities in {Bi}i∈[7], i.e.,
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f (α
k ,βk)

Qi ,Pi
(ti) := log

QXi (xi)

PX(xi)
+ log

QYk,i
1,i |XiW

k,i
1,i
(yk,i

1,i|xi, wk,i
1,i)

PYk |X(y
k,i
1,i|xi)

+ log
QXiY

k,i
2,i Wk,i

2,i |Y1,iW1,i X̂1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i, x̂1,i)

PXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i)

+ ∑
j∈[2:k]

log
Q

X̂j,i |XiY
k,i
1,i Wk,i

1,i X̂ j−1
i

(x̂j,i|xi, yk,i
1,i, wk,i

1,i, x̂j−1,i
1,i )

P
X̂j,i |Yj,iW

j,i
1,i
(x̂j,i|yj,i, wj,i

1,i)
+ µα1 log

PXi |W1,i
(xi|w1,i)

PX(xi)

+ ∑
j∈[2:k]

µαj log
P

Xi |W
j,i
1,i
(xi|w

j,i
1,i)

P
Xi |W

j−1,i
1,i

(xi|w
j−1,i
1,i )

+ ∑
j∈[k]

µβ jdj(xi, x̂j,i).

(41)

Furthermore, given any non-negative real number λ ∈ R+, define the following negative
cumulant generating function

Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n]) := − logE
[

exp
(
− λ ∑

i∈[n]
f (µ,αk ,βk)
Qi ,Pi

(Ti)
)]

. (42)

Recall the definition of κ(α
k ,βk)(Rk, Dk) in (19). Please note that κ(α

k ,βk)(Rk, Dk) is a linear combination
of the rate-distortion tuple. Using Lemma 2 and Cramér’s bound (Lemma 13 in [31]), we obtain
the following non-asymptotic exponential type upper bound on the probability of correct decoding,
whose proof is given in in Appendix D.

Lemma 3. For any (n, Mk)-code satisfying the conditions in Lemma 2, given any distortion levels Dk, we have

P(n)
c (Dk) ≤ (2k + 3) exp

(
− n

1
n Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n])− λµκ(α

k ,βk)(Rk, Dk)

1 + λ(k + 2 + ∑j∈[k] µαj)

)
. (43)

For subsequent analyses, let Ω(λ,µ,αk ,βk)({Pi}i∈[n]) be the lower bound on the Q-maximal negative

cumulant generating function Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n]) obtained by optimizing over the choice of
auxiliary distributions {Qi}i∈[n], i.e.,

Ω(λ,µ,αk ,βk)({Pi}i∈[n]) := inf
n∈N

sup
{Qi}i∈[n]

Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n]). (44)

Here the supremum over {Qi}i∈[n] is taken since we want the bound to hold for favorable auxiliary
distributions and the infimum over n ∈ N is taken to yield a non-asymptotic bound.

In the following, we derive a relationship between Ω(λ,µ,αk ,βk)({Pi}i∈[n]) and Ω(θ,µ,αk ,βk) (cf. (18)),
which, as we shall see later, is a crucial step in proving Theorem. For this purpose, given any
(λ, µ, αk) ∈ R2

+ × [0, 1]k such that

λ(k + ∑
j∈[k]

µαj) ≤ 1, (45)

let

θ :=
λ

1− kλ−∑j∈[k] λµαj
. (46)

Then we have the following lemma which shows that Ω(λ,µ,αk ,βk)({Pi}i∈[n]) in Equation (44) can be

lower bounded by a scaled version of Ω(θ,µ,αk ,βk) in Equation (18).
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Lemma 4. Given any (λ, µ, αk, βk) ∈ R2
+ × [0, 1]3 satisfying (15) and (45), for θ defined in (46), we have:

Ω(λ,µ,αk ,βk)({Pi}i∈[n]) ≥
nΩ(θ,µ,αk ,βk)

1 + kθ + ∑j∈[k] θµαj
. (47)

The proof of Lemma 4 uses Hölder’s inequality and the recursive method in [25] and is given in
Appendix E.

Combining Lemmas 3 and 4, we conclude that for any (n, Mk)-code satisfying the conditions in
Lemma 2 and for any (µ, αk, βk) ∈ R+ × [0, 1]3, given any λ ∈ R+ satisfying (45), we have

P(n)
c (Dk) ≤ (2k + 3) exp

(
− n

1
n Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n])− λµκ(α

k ,βk)(Rk, Dk)

1 + λ(k + 2 + ∑j∈[k] µαj)

)
(48)

≤ (2k + 3) exp
(
− n

Ω(θ,µ,αk ,βk) − θµκ(α
k ,βk)(Rk, Dk)

1 + (2k + 2)θ + ∑j∈[k] 2θµαj

)
(49)

≤ (2k + 3) exp
(
− nF(θ,µ,αk ,βk)(Rk, Dk)

)
, (50)

where (49) follows from the definitions of κ(α
k ,βk)(·) in (19) and θ in (46), and (50) is simply due to the

definition of F(θ,µ,αk ,βk)(·) in (20).

5. Proof of Properties of Strong Converse Exponent: Proof of Lemma 1

5.1. Alternative Expressions for the Rate-Distortion Region

In this section, we present preliminaries for the proof of Lemma 1, including several definitions
and two alternative characterizations of the rate-distortion regionR (cf. (7)).

Recall that we use Yk\j to denote (Y1, . . . , Yj−1, Yj+1, . . . , Yk). First, paralleling (9), we define the
following set of joint distributions

P :=
{

QT ∈ P(T ) : QXYk = PXYk , Wk ↔ X ↔ Yk, and ∀ j ∈ [k] :

|Wj| ≤ (|X |+ 1)j, X̂j ↔ (W j, Yj)↔ (X, Yk\j, Wk
j+1, X̂ j−1)

}
.

(51)

Please note that compared with (9), the deterministic decoding functions φj are now replaced by
stochastic functions, which are characterized by transition matrices and induce Markov chains, and the
cardinality bounds on auxiliary random variables are changed accordingly. Using the definitions of P
and R(QT) (cf. (10)), we can define the following rate-distortion region denoted by Rran where the
subscript “ran” refers to the randomness of the stochastic functions in the definition of P :

Rran :=
⋃

QT∈P
R(QT). (52)

As we shall see later,Rran = R∗.
To present the alternative characterization of the rate-distortion region using supporting

hyperplanes, we need the following definitions. First, we let Psh be the following set of
joint distributions

Psh :=
{

QT ∈ P(T ) : QXYk = PXYk , Wk − X−Yk, and ∀ j ∈ [k],

|Wj| ≤ (|X |)j, X̂j − (W j, Yj)− (X, Yk\j, Wk
j+1, X̂ j−1)

}
.

(53)
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Please note that Psh are the same as P (cf. (51)) except that the cardinality bounds are reduced.
Given any (αk, βk) ∈ [0, 1]2k satisfying (15), define the following linear combination of achievable
rate-distortion tuples

R(αk ,βk) := min
QT∈Psh

{
α1 I(QX , QW1|X) + ∑

j∈[2:k]
αj I(QX|W j−1 , QWj |XW j−1 |QW j−1) + ∑

j∈[k]
β jE[dj(X, X̂j)]

}
. (54)

Recall the definition of linear combination of rate-distortion tuples κ·(·) in (19) and letRsh be the
following collection of rate-distortion tuples defined using supporting hyperplane R(αk ,βk):

Rsh :=
⋂

(αk ,βk)∈[0,1]2k : ∑i∈[k](αi+βi)=1

{
(Rk, Dk) : κ(α

k ,βk)(Rk, Dk) ≥ R(αk ,βk)
}

. (55)

Finally, recall the definitions of the rate-distortion region R in (7) and the characterization R∗ in
(11). Similarly to Properties 2 and 3 in [25], one can establish the following lemma, which states that:
(i) the rate-distortion regionR for the k-user causal successive refinement problem remains unchanged
even if one uses stochastic decoding functions; and (ii) the rate-distortion region R has alternative
characterizationRsh in terms of supporting hyperplanes in (54).

Lemma 5. The rate-distortion region for the causal successive refinement problem satisfies

R = R∗ = Rran = Rsh. (56)

5.2. Proof of Claim (i)

Recall that we use T (cf. (8)) to denote the collection of random variables (X, Yk, Sk, X̂k) and use
t, T similarly to denote a realization of T and its alphabet, respectively. For any PT ∈ Psh (recall (53)),
any (αk, βk) ∈ [0, 1]2k satisfying (15) and any λ ∈ R+, for any t ∈ T , paralleling (16) and (17), define
the following linear combination of log likelihoods and its negative cumulative generating function:

ω̃
(αk ,βk)
PT

(t) := α1 log
PX|W1

(x|w1)

PX(x)
+ ∑

j∈[2:k]
αj log

PX|W j(x|wj)

PX|Wj−1
(x|wj−1)

+ ∑
j∈[k]

β jdj(x, x̂j), (57)

Ω̃(λ,αk ,βk)(PT) := − logEPT

[
exp(−λω̃

(αk ,βk)
PT

(T))
]
. (58)

For simplicity, we let

α+ := max
j∈[k]

αj. (59)

Furthermore, paralleling the steps used to go from (18) to (21) and recalling the definition of
κ(α

k ,βk)(·) in (19), let

Ω̃(λ,αk ,βk) := min
PT∈Psh

Ω̃(λ,αk ,βk)(PT), (60)

F̃(λ,αk ,βk)(Rk, Dk) :=
Ω̃(λ,αk ,βk) − λκ(α

k ,βk)(Rk, Dk)

2k + 3 + λα+ + ∑j∈[2:k] λ(2k + 3)αj + ∑l∈[k] 2λαl
, (61)

F̃(Rk, Dk) := sup
(λ,αk ,βk)∈R+×[0,1]2k : ∑i∈[k](αi+βi)=1

F̃(λ,αk ,βk)(Rk, Dk). (62)
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To prove Claim (i), we will need the following two definitions of the tilted distribution and the
dispersion function:

P(λ,αk ,βk)
T (t) :=

PT(t) exp(−λω̃
(αk ,βk)
PT

(t))

EPT

[
exp(−λω̃

(αk ,βk)
PT

(T))
] , (63)

ρ := sup
PT∈Psh

sup
(λ,αk ,βk)∈R+×[0,1]2k : ∑i∈[k](αi+βi)=1

Var
P(λ,αk ,βk)

T

[
ω̃
(αk ,βk)
PT

(T)
]
. (64)

Please note that ρ is positive and finite.
The proof of Claim (i) in Lemma 1 is completed by the following lemma which relates F(Rk, Dk)

in Equation (21) to F̃(Rk, Dk) in Equation (62).

Lemma 6. The following holds.

(i) For any rate-distortion tuple (Rk, Dk),

F(Rk, Dk) ≥ F̃(Rk, Dk). (65)

(ii) For any rate-distortion tuple (Rk, Dk) outside the rate-distortion region, i.e., (Rk, Dk) /∈ R, there
exists δ ∈ (0, ρ] such that:

F̃(Rk, Dk) ≥ δ2

2(2k + 9)ρ
> 0. (66)

The proof of Lemma 6 is inspired by [25,31] and given in Appendix F. To prove Lemma 6,
we use the alternative characterizations of the rate-distortion regionR in Lemma 5 and analyze the
connections between the two exponent functions F(Rk, Dk) and F̃(Rk, Dk).

5.3. Proof of Claim (ii)

Recall the definition of the linear combination of rate-distortion tuple κ(α
k ,βk)(Rk, Dk) in

Equation (19). If a rate-distortion tuple falls inside the rate-distortion region, i.e., (Rk, Dk) ∈ R,
then there exists a distribution Q∗T ∈ Psh (see (53)) such that for any (αk, βk) ∈ [0, 1]2k satisfying (15),
we have the following lower bound on κ(α

k ,βk)(Rk, Dk):

κ(α
k ,βk)(Rk, Dk) ≥ α1 I(Q∗X1

, Q∗W1|X1
) + β∗1E[d1(X, X̂1)]

+ ∑
j∈[2:k]

(α∗j I(Q∗X1|W j−1 , Q∗Wj |XW j−1 |Q∗W j−1) + β∗j E[dj(X, X̂j)]).
(67)

Recall the definition of Ω(θ,µ,αk ,βk)(QT) in (17). Simple calculation establishes

Ω(0,µ,αk ,βk)(QT) = 0, (68)

∂Ω(θ,µ,αk ,βk)(QT)

∂θ

∣∣∣∣
θ=0

= EQT

[
ω

µ,αk ,βk

QT
(T)
]
. (69)

Combining (68) and (69), by concavity of Ω(θ,µ,αk ,βk)(QT) in θ, it follows that for any (θ, µ, αk, βk) ∈
R2
+ × [0, 1]2k,

Ω(θ,µ,αk ,βk)(QT) ≤ θEQT

[
ω

µ,αk ,βk

QT
(T)
]
. (70)
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Using the definition of Ω(θ,µ,αk ,βk) in (18), it follows that

Ω(θ,µ,αk ,βk) ≤ min
QT∈Psh

Ω(θ,µ,αk ,βk)(QT) (71)

≤ min
QT∈Psh

θEQT

[
ω

µ,αk ,βk

QT
(T)
]

(72)

≤ α1 I(Q∗X1
, Q∗W1|X1

) + β∗1E[d1(X, X̂1)]

+ ∑
j∈[2:k]

(α∗j I(Q∗X1|W j−1 , Q∗Wj |XW j−1 |Q∗W j−1) + β∗j E[dj(X, X̂j)]) (73)

≤ µκ(α
k ,βk)(Rk, Dk), (74)

where (71) follows from Psh ⊆ Q (recall (14)), (72) follows from the result in (70), (73) follows from the

definitions of ω
µ,αk ,βk

QT
(t) in (17) and Psh in (53), and (74) follows from the result in (67).

Using the definition of F(θ,µ,αk ,βk)(Rk, Dk) in (21) and the result in (74), we conclude that for any
(Rk, Dk) ∈ R,

F(θ,µ,αk ,βk)(Rk, Dk) ≤ 0. (75)

The proof of Claim (ii) is completed by noting that

lim
θ→0

F(θ,µ,αk ,βk)(Rk, Dk) = 0. (76)

6. Conclusions

We considered the k-user causal successive refinement problem [1] and established an exponential
strong converse theorem using the strong converse techniques proposed by Oohama [25]. Our work
appears to be the first to derive a strong converse theorem for any source coding problem with causal
decoder side information. The methods we adopted can also be used to obtain exponential strong
converse theorems for other source coding problems with causal decoder side information. This paper
further illustrates the usefulness and generality of Oohama’s information spectrum method in deriving
exponential strong converse theorems. The discovered duality in [45] between source coding with
decoder side information [46] and channel coding with encoder state information [47] suggests that
Oohama’s techniques [25] can also be used to establish the strong converse theorem for channel coding
with causal encoder state information, e.g., [48–50].

There are several natural future research directions. In Theorem 2, we presented only a lower
bound on the strong converse exponent. It would be worthwhile to obtain an exact expression for the
strong converse exponent and thus characterize the speed at which the probability of correct decoding
decays exponentially fast with respect to the blocklength of source sequences when the rate-distortion
tuple falls outside the rate-distortion region. Furthermore, one can explore whether the methods in this
paper can be used to establish strong converse theorems for causal successive refinement under the
logarithmic loss [51,52], which corresponds to soft decoding of each source symbol. Finally, one can
also explore extensions to continuous alphabet by considering Gaussian memoryless sources under
bounded distortion measures and derive second-order asymptotics [44,53–56] for the causal successive
refinement problem.
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Appendix A. Proof of Theorem 1

Replacing (6) with Definition 2, we can define the ε-rate-distortion region Rad(ε) under the
average distortion criterion. Furthermore, let

Rad :=
⋂

ε∈[0,1)

Rad(ε). (A1)

Maor and Merhav [1] showed that for k = 2,

Rad = R∗. (A2)

Actually, in Section 7 of [1], in order to prove thatR∗ ⊆ Rad, it was already shown thatR∗ ⊆ R.
Furthermore, it is straightforward to show that the above results hold for any finite k ∈ N. Thus,
to prove Theorem 1, it suffices to show

R ⊆ R∗ = Rad. (A3)

For this purpose, given any j ∈ [k], let

d̄j := max
(x,x̂j)∈X×X̂j

dj(x, x̂j). (A4)

From the problem formulation, we know that d̄j < ∞ for all j ∈ [k]. Now consider any
rate-distortion tuple (Rk, Dk) ∈ R, then we have (4) to (6). Therefore, for any j ∈ [k],

lim sup
n→∞

E[dj(Xn, X̂n
j )] ≤ lim sup

n→∞

(
E[dj(Xn, X̂n

j )1{dj(Xn, X̂n
j ) ≤ Dj}] + d̄j Pr{dj(Xn, X̂n

j ) > Dj}
)

(A5)

≤ Dj. (A6)

As a result, we have (Rk, Dk) ∈ Rad. Thus establishes thatR ⊆ Rad = R∗.

Appendix B. Proof of Lemma 2

Recall the definition of G and G in (30). Given any C ∈ G and D ∈ G, let QC|D be arbitrary
distributions. For simplicity, given each j ∈ [k], we use Yj to denote (Yn

1 , . . . , Yn
j ) and use Yj\l to denote

(Yn
1 , . . . , Yn

l−1, Yn
l+1, . . . , Yn

l ) where l ∈ [j]. Similarly we use X̂j and X̂j\l .
Given any positive real number η, define the following sets:

A1 :=
{

g :
1
n

log
Pn

X(xn)

QXn(xn)
≥ −η

}
, (A7)

A2 :=
{

g :
1
n

log
Pn

Yk |X(y
k|xn)

QYk |XnSk (yk|xn, sk)
≥ −η

}
, (A8)

A3 :=
{

g :
1
n

log
PXnYk\1Sk\1|Yn

1 S1
(xn, yk\1, sk\1|yn

1 , s1)

QXnYk\1Sk\1|Yn
1 S1X̂n

1
(xn, yk\1, sk\1|yn

1 , s1, x̂n
1 )
≥ −η

}
, (A9)

A4 :=
{

g :
1
n

log
PX̂n

j |Y
n
j Sj(x̂n

j |yn
j , sj)

QX̂n
j |XnYkSkX̂j−1(x̂n

j |xn, yk, sk, x̂j−1)
≥ −η, ∀ j ∈ [2 : k]

}
, (A10)
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A5 :=
{

g : R1 ≥
1
n

log
PXn |S1

(xn|s1)

Pn
X(xn)

− η
}

, (A11)

A6 :=
{

g : Rj − ∑
l∈[j−1]

Rl ≥
1
n

log
PXn |Sj(xn|sj)

PXn |Sj−1(xn|sj−1)
− η, ∀ j ∈ [2 : k]

}
, (A12)

A7 :=
{

g : Dj ≥ dj(xn, x̂n
j ) ∀ j ∈ [k]

}
=
{

g : Dj ≥
1
n ∑

i∈[n]
dj(xi, x̂j,i) ∀ j ∈ [k]

}
. (A13)

Then we have the following non-asymptotic upper bound on the probability of correct decoding.

Lemma A1. Given any (n, Mk)-code satisfying (25) and any distortion levels Dk, we have

P(n)
c (Dk) ≤ Pr

{ ⋂
i∈[7]
Ai

}
+ (2k + 2) exp(−nη). (A14)

The proof of Lemma A1 is given in Appendix C.
In the remainder of this subsection, we single-letterize the bound in Lemma A1. Recall that given

any (i, j) ∈ [n]× [k], we use Y j,i
j,1 to denote (Yj,1, . . . , Yj,i).Recalling that the distributions starting with P

are all induced by the joint distribution PG in (31) and using the choice of auxiliary random variables
(W1,i, . . . , Wk,i, Vi), we have

PXnYk\1Sk\1|Yn
1 S1

(xn, yk\1, sk\1|yn
1 , s1)

= ∏
i∈[n]

PXiY
k,i
2,i Sk\1|Xi−1,Y2,i−1

2,1 ,...,Yk,i−1
k,1 ,Yn

1 ,S1
(xi, yk,i

2,i, sk\1|xi−1, y2,i−1
2,1 , . . . , yk,i−1

k,1 , yn
1 , s1) (A15)

= ∏
i∈[n]

PXiY
k,i
2,i Sk\1|Xi−1,Y1,i−1

1,1 ,...,Yi−1
k,1 ,Y1,i ,S1

(xi, yk,i
2,i, sk\1|xi−1, y1,i−1

1,1 , . . . , yk,i−1
k,1 , y1,i, s1) (A16)

= ∏
i∈[n]

PXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i) (A17)

PX̂n
j |Y

n
j Sj(x̂n

j |yn
j , sj) = ∏

i∈[n]
P

X̂j,i |Y
j,i
j,1Sj(x̂j,i|y

j,i
j,1, sj) (A18)

= ∏
i∈[n]

PX̂j,i |Xi−1,Y1,i−1
1,1 ,...,Yk,i−1

k,1 ,Yj,i ,Sj(x̂j,i|xi−1, y1,i−1
1,1 , . . . , yk,i−1

k,1 , yj,i, sj) (A19)

= ∏
i∈[n]

PX̂j,i |Yj,iW
k,i
1,i
(x̂j,i|yj,i, wk,i

1,i), (A20)

PXn |S1
(xn|s1) = ∏

i∈[n]
PXi |Xi−1S1

(xi|xi−1, S1) (A21)

= ∏
i∈[n]

PXi |Xi−1Y1,i−1
1,1 ,...,Yk,i−1

k,1 S1
(xi|xi−1y1,i−1

1,1 , . . . , yk,i−1
k,1 , S1) (A22)

= ∏
i∈[n]

PXi |W1,i
(xi|w1,i) (A23)

PXn |Sj−1(xn|sj−1) = ∏
i∈[n]

PXi |Xi−1Sj−1(xi|xi−1, sj−1) (A24)

= ∏
i∈[n]

PXi |Xi−1Y1,i−1
1,1 ,...,Yk,i−1

k,1 ,Sj−1(xi|xi−1, y1,i−1
1,1 , . . . , yk,i−1

k,1 , sj−1) (A25)

= ∏
i∈[n]

P
Xi |W

j−1,i
1,i

(xi, wj−1,i
1,i ), (A26)

PXn |Sj(xn|sj) = ∏
i∈[n]

P
Xi |W

j,i
1,i
(xi, wj,i

1,i), (A27)
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where (A16) follows from the Markov chain (Xi, Yk,i
2,i , Sk

2)− (Xi−1, Y1,i−1
1,1 , . . . , Yk,i−1

k,1 , Y1,i, S1)− Y1,n
1,i+1,

(A19) follows from the Markov chain X̂j,i − (Y j,i
j,1, Sj)− (Xi−1, Y1,i−1

1,1 , . . . , Y j−1,i−1
j−1,1 , Y j+1,i−1

j+1,1 , . . . , Yk,i−1
k,1 ),

(A22) follows from the Markov chain Xi − (Xi−1, S1)− (Yi−1
1 , . . . , Yi−1

k ), and (A25) follows from the
Markov chain Xi − (Xi−1, Sj−1)− (Y1,i−1

1,1 , . . . , Yk,i−1
k,1 ).

Furthermore, recall that for i ∈ [n], QCi |Di
are arbitrary distributions where Ci ∈ Ti and Di ∈ Ti.

Please note that Lemma A1 holds for arbitrary choices of distributions QC|D where C ∈ G and D ∈ G.
The proof of Lemma 2 is completed by using Lemma A1 with the following choices of auxiliary
distributions and noting that B7 = A7:

QXn(xn) := ∏
i∈[n]

QXi (xi), (A28)

QYk |XnSk (yk|xn, sk) := ∏
i∈[n]

QYk,i
1,i |Xi ,W

k,i
1,i
(yk,i

1,i|xi, wk,i
1,i), (A29)

QXnYk\1Sk
2|Yn

1 S1X̂n
1
(xn, yk\1, sk

2|yn
1 , s1, x̂n

1 ) := ∏
i∈[n]

QXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i X̂1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i, x̂1,i) (A30)

QX̂n
j |XnYkSkX̂j−1(x̂n

j |xn, yk, sk, x̂k\j) := ∏
i∈[n]

Q
X̂j,i |Xi ,Y

k,i
1,i ,Wk,i

1,i ,X̂ j−1,i
1,i

(x̂j,i|xi, yk,i
1,i, wk,i

1,i, x̂j−1,i
1,i ). (A31)

Appendix C. Proof of Lemma A1

Recall the definition of the probability of correct decoding P(n)
c (Dk) in (24) and the definitions of

sets {Aj}j∈[7] in (A7) to (A13). For any (n, Mk)-code, we have that

P(n)
c (Dk) = Pr{A7} (A32)

= Pr
{
A7

⋂
(
⋂

j∈[6]
Aj)

}
+ Pr

{
A7

⋂
(
⋃

j∈[6]
Ac

j )

}
(A33)

≤ Pr
{ ⋂

j∈[7]
Aj

}
+ ∑

j∈[6]
Pr{Ac

j}, (A34)

where (A34) follows from the union bound and the fact that Pr{A ∩ B} ≤ Pr{B} for any two sets A
and B. The proof of Lemma A1 is completed by showing that

∑
j∈[6]

Pr{Ac
j} ≤ (2k + 2) exp(−nη). (A35)

In the remainder of this subsection, we show that (A35) holds. Recall the joint distribution of G in
(31). In the following, when we use a (conditional) distribution starting with P, we mean that the
(conditional) distribution is induced by the joint distribution PG in (31).

Using the definition of A1 in (A7),

Pr{Ac
1} = ∑

xn∈X n
Pn

X(xn)1{Pn
X(xn) ≤ exp(−nη)QXn(xn)} (A36)

≤ exp(−nη). (A37)
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Similarly to (A37), it follows that

Pr{Ac
2} = ∑

g∈Ac
2

PG(g) (A38)

= ∑
xn ,sk ,yk

PXYk (xn, yk)
(

∏
j∈[k]

PSj |Xn (sj|xn)
)
1{Pn

Yk |X(y
k|xn) ≤ exp(−nη)QYk |XnSk (yk|xn, sk)} (A39)

≤ exp(−nη) ∑
xn ,sk ,yk

Pn
X(xn)QYk |XnSk (yk|xn, sk)

(
∏
j∈[k]

PSj |Xn (sj|xn)
)

(A40)

≤ exp(−nη), (A41)

Pr{Ac
3} = ∑

g∈Ac
3

PG(g) (A42)

≤ exp(−nη) ∑
xn ,yk ,sk ,x̂n

1

PYn
1 S1 (y

n
1 , s1)PX̂n

1 |Yn
1 S1

(x̂n
1 |yn

1 , s1)QXnYk\1Sk
2|Yn

1 S1X̂n
1
(xn, yk\1, sk

2|yn
1 , s1, x̂n

1 ) (A43)

≤ exp(−nη), (A44)

Furthermore, using the definition of A4 in (A10) and the union bound,

Pr{Ac
4} ≤ ∑

j∈[2:k]
exp(−nη) ∑

xn ,yk ,sk ,x̂j

Pn
XYk (xn, yk)

(
∏

l∈[k]
PSl |Xn(sl |xn)

)(
∏

l∈[j−1]
PX̂n

l |Y
n
l Sl (x̂n

l |y
n
l , sl)

)
(A45)

×QX̂n
j |XnYkSkX̂j−1(x̂n

j |xn, yk, sk, x̂j−1) (A46)

≤ (k− 1) exp(−nη). (A47)

Furthermore, using the definition of A5 in (A11),

Pr{Ac
5} ≤ ∑

xn ,s1

PS1|Xn(s1|xn) exp(−n(R1 + η))PXn |S1
(xn|s1) (A48)

≤ ∑
xn ,s1

exp(−n(R1 + η))PXn |S1
(xn|s1) (A49)

= ∑
s1

exp(−n(η + R1)) (A50)

≤ exp(−nη), (A51)

where (A49) follows since PS1|Xn(s1|xn) ≤ 1 for all (xn, s1), and (A51) follows since ∑s1
= |W1| =

M1 ≤ exp(nR1).
Using the definition of A6 in (A12) and the union bound similarly to (A47), it follows that

Pr{Ac
6} ≤ ∑

j∈[2:k]
∑

xn ,sj

PSj−1(sj−1) exp(−nη)PXn |Sj(xn|sj) exp(−n(Rj − ∑
l∈[j−1]

Rl))PSj |Xn(sj|xn) (A52)

≤ ∑
j∈[2:k]

exp(−nη) ∑
xn ,sj

PSj−1(sj−1)PXn |Sj(xn|sj) exp(−n(Rj − ∑
l∈[j−1]

Rl)) (A53)

≤ ∑
j∈[2:k]

exp(−nη)∑
sj

exp(−n(Rj − ∑
l∈[j−1]

Rl)) (A54)

≤ (k− 1) exp(−nη), (A55)

where (A53) follows since PSj |Xn(sj|xn) ≤ 1 for all (xn, sj) and (A55) follows since ∑sj
= |Mj| = Mj ≤

exp(n(Rj −∑l∈[j−1] Rl)).
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Appendix D. Proof of Lemma 3

For any (µ, αk, βk) ∈ R+ × [0, 1]2k satisfying (15), for i ∈ [4], define Fi = Bi (cf. (33) to (36)) and
for i ∈ [5 : 7], define

F5 :=
{

g : µα1R1 ≥
µα1

n ∑
i∈[n]

log
QXi |W1,i

(xi|w1,i)

PX(xi)
− µα1η

}
, (A56)

F6 :=
{

g : µαj(Rj − ∑
l∈[j−1]

Rl) ≥ ∑
i∈[n]

µαj

n
log

QXi |W1,iW2,i
(xi|w1,i, w2,i)

PXi |W1,i
(xi|w1,i)

− µαjη, ∀ j ∈ [2 : k]
}

, (A57)

F7 :=
{

g : µβ jDj ≥
µβ j

n ∑
i∈[n]

log exp(d1(xi, x̂1,i)), ∀j ∈ [k]
}

. (A58)

Furthermore, let

c(µ, αk) := k + 2 + ∑
j∈[k]

µαj. (A59)

Using Lemma 2 and definitions in (A56) to (A59), we obtain that

P(n)
c (Dk)− (2k + 2) exp(−nη)

≤ Pr
{ ⋂

i∈[7]
Fi

}
(A60)

≤ Pr
{

n(µκ(α
k ,βk)(Rk, Dk) + c(µ, αk)η) ≥ ∑

i∈[n]
f (µ,αk ,βk)
Qi ,Pi

(Ti)
}

(A61)

≤ exp
{

nλ(µκ(α
k ,βk)(Rk, Dk) + c(µ, αk)η) + logE

[
exp

(
− λ ∑

i∈[n]
f (µ,αk ,βk)
Qi ,Pi

(Ti)
)]}

(A62)

= exp
{

n
(

λµκ(α
k ,βk)(Rk, Dk) + λc(µ, αk)η − 1

n
Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n])

)}
, (A63)

where (A62) follows from Cramér’s bound in Lemma 13 of [31] and (A63) follows from the definition
of Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n]) in (42).

Choose η such that

−η = λµκ(α
k ,βk)(Rk, Dk) + λc(µ, αk)η − 1

n
Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n]), (A64)

i.e.,

η =
1
n Ω(λ,µ,αk ,βk)({Pi, Qi}i∈[n])− λµκ(α

k ,βk)(Rk, Dk)

1 + λc(µ, αk)
. (A65)

The proof of Lemma 3 is completed by combining (A63) and (A65).

Appendix E. Proof of Lemma 4

Recall that for each i ∈ [n], we use ti to denote (xi, yk,i
1,i, wk,i

1,i, x̂k,i
1,i) and use Ti similarly. Recall

that the auxiliary random variables are chosen as w1,i = (xi−1, yi−1
1 , . . . , yi−1

k , s1) and wj,i = sj for all

j ∈ [2 : k]. Using the definition of f (µ,αk ,βk)
Qi ,Pi

in (41), define

h(λ,µ,αk ,βk)
Qi ,Pi

(ti) := exp
(
− λ f (µ,αk ,βk)

Qi ,Pi
(ti)
)

. (A66)
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Recall the joint distribution of G in (31). For each j ∈ [n], define

C̃j := ∑
g

PG(g) ∏
i∈[j]

h(λ,µ,αk ,βk)
Qi ,Pi

(ti), (A67)

P(λ,µ,αk ,βk)|j
G (g) :=

PG(g)∏i∈[j] h(λ,µ,αk ,βk)
Qi ,Pi

(ti)

C̃i
, (A68)

Λ(λ,µ,αk ,βk)
j ({Qi, Pi}i∈[n]) :=

C̃j

C̃j−1
. (A69)

Combining (42) and (A69),

exp
(
−Ω(λ,µ,αk ,βk)

({Pi ,Qi}i∈[n])

)
= E

[
∏

i∈[n]
h(λ,µ,αk ,βk)

Qi ,Pi
(Ti)

]
(A70)

= ∑
g∈G

PG(g) ∏
i∈[n]

h(λ,µ,αk ,βk)
Qi ,Pi

(ti) (A71)

= ∏
i∈[n]

Λ(λ,µ,αk ,βk)
i ({Qi, Pi}). (A72)

Furthermore, similar to Lemma 5 of [25], we obtain the following lemma, which is critical in the
proof of Lemma 4.

Lemma A2. For each j ∈ [n],

Λ(λ,µ,αk ,βk)
j ({Qi, Pi}i∈[n]) = ∑

g∈G
P(λ,µ,αk ,βk)|j−1

G (g)h(µ,αk ,βk)
Qj ,Pj

(ti). (A73)

Furthermore, for each j ∈ [n], define

P(λ,µ,αk ,βk)(tj) := ∑
xn

j+1,yn
1,j+1,...,yn

k,j+1,

x̂j−1
1 ,...,x̂j−1

k ,x̂n
1,j+1,...,x̂n

k,j+1

P(λ,µ,αk ,βk)|j−1
G (g). (A74)

Using Lemma A2 and (A74), it follows that for each j ∈ [n],

Λ(λ,µ,αk ,βk)
j ({Qi, Pi}i∈[n]) = ∑

tj

P(λ,µ,αk ,βk)(tj)h
(µ,αk ,βk)
Qj ,Pj

(tj). (A75)

Recall that the auxiliary distributions {Qi}i∈[n] can be arbitrary distributions. Following the
recursive method in [25], for each i ∈ [n], we choose Qi such that

Qi(ti) = P(λ,µ,αk ,βk)(ti). (A76)

Let QCi |Di
, where Ci ∈ Ti and Di ∈ Ti, be induced by Qi. Using the definition of h(λ,µ,αk ,βk)

Qi ,Pi
(ti)

in (A66), we define
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ξ
(λ,µ,αk ,βk)
Qi ,Pi

(ti) := h(λ,µ,αk ,βk)
Qi ,Pi

(ti)

( PXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i)

QXiY
k,i
2,i Wk,i

2,i |Y1,iW1,i
(xi, yk,i

2,i, wk,i
2,i|y1,i, w1,i)

)−λ

×
(

∏
j∈[2:k]

P
X̂j,i |Yj,iW

j,i
1,i
(x̂j,i|yj,i, wj,i

1,i)

Q
X̂j,i |Yj,iW

j,i
1,i
(x̂j,i|yj,i, wj,i

1,i)

)−λ( PXi |W1,i
(xi|w1,i)

QXi |W1,i
(xi|w1,i)

)−λµα1

× ∏
j∈[2:k]

( P
Xi |W

j−1,i
1,i

(xi, wj−1,i
1,i )

Q
Xi |W

j−1,i
1,i

(xi, wj−1,i
1,i )

)−λµαj

.

(A77)

In the following, for simplicity, we let Ψ := 1− kλ− ∑j∈[k] λµαj. Combining (A74) and (A75),
we obtain that for each l ∈ [n],

Λ(λ,µ,αk ,βk)
l ({Qi, Pi}i∈[n])

= EQl

[
h(µ,αk ,βk)

Ql ,Pl
(Tl)

]
(A78)

= EQl

[
ξ
(µ,αk ,βk)
Ql ,Pl

(Tl)

( PXlY
k,l
2,l Wk,l

2,l |Y1,lW1,l
(xl , yk,l

2,l , wk,l
2,l |y1,l , w1,l)

QXlY
k,l
2,l Wk,l

2,l |Y1,lW1,l
(xl , yk,l

2,l , wk,l
2,l |y1,l , w1,l)

)λ(
∏

j∈[2:k]

P
X̂j,l |Yj,lW

j,l
1,l
(x̂j,l |yj,l , wj,l

1,l)

Q
X̂j,l |Yj,lW

j,l
1,l
(x̂j,l |yj,l , wj,l

1,l)

)λ

×
(

PXl |W1,l
(xl |w1,l)

QXl |W1,l
(xl |w1,l)

)λµα1

∏
j∈[2:k]

( P
Xl |W

j−1,l
1,l

(xl , wj−1,l
1,l )

Q
Xl |W

j−1,l
1,l

(xl , wj−1,l
1,l )

)λµαj]
(A79)

≤
(
EQl

[(
ξ
(µ,αk ,βk)
Ql ,Pl

(Tl)
]) 1

Ψ
)Ψ
(
E
[ PXlY

k,l
2,l Wk,l

2,l
|Y1,lW1,l(xl , yk,l

2,l , wk,l
2,l |y1,l , w1,l)

QXlY
k,l
2,l Wk,l

2,l
|Y1,lW1,l(xl , yk,l

2,l , wk,l
2,l |y1,l , w1,l)

])λ

× ∏
j∈[2:k]

(
E
[ P

X̂j,l |Yj,lW
j,l
1,l
(x̂j,l |yj,l , wj,l

1,l)

Q
X̂j,l |Yj,lW

j,l
1,l
(x̂j,l |yj,l , wj,l

1,l)

])λ(
E
[

PXl |W1,l
(xl |w1,l)

QXl |W1,l
(xl |w1,l)

])λµα1

× ∏
j∈[2:k]

(
E
[ P

Xl |W
j−1,l
1,l

(xl , wj−1,l
1,l )

Q
Xl |W

j−1,l
1,l

(xl , wj−1,l
1,l )

])λµαj

(A80)

≤ exp
(
−ΨΩ( λ

Ψ ,µ,αk ,βk)(Qj)

)
(A81)

= exp
(
−

Ω(θ,µ,αk ,βk)(Qj)

1 + kθ + ∑j∈[k] θµαj

)
(A82)

≤ exp
(
− min

Qj∈P(Tj)

Ω(θ,µ,αk ,βk)(Qj)

1 + kθ + ∑j∈[k] θµαj

)
(A83)

= exp
(
− Ω(θ,µ,αk ,βk)

1 + kθ + ∑j∈[k] θµαj

)
(A84)

where (A80) results from Hölder’s inequality, (A81) follows from the definitions of Ω(θ,µ,αk ,βk)(·) in (17)

and ξ
(µ,αk ,βk)
Qj ,Pj

(·) in (A77), (A82) follows from the result in (46), and (A84) follows from the definition

of Ω(θ,µ,αk ,βk) in (18) and the fact it is sufficient to consider distributions Qj with cardinality bounds
W1,j ≤ |X | and W2,j ≤ |X |2 for the optimization problem in (A83) (the proof of this fact is similar to
Property 4(a) in [25] and thus omitted).

The proof of Lemma 4 is completed by combining (A72) and (A84).
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Appendix F. Proof of Lemma 6

Appendix F.1. Proof of Claim (i)

For any QT ∈ Q (see (14)), let PT ∈ Psh (see (53)) be chosen such that PWk |X = QWk |X and
PX̂j |YjW j = QX̂j |YjW j for all j ∈ [k].

In the following, we drop the subscript of distributions when there is no confusion. For any
(θ, µ, αk, βk) ∈ R2

+ × [0, 1]2k satisfying (15) and

∑
j∈[2:k]

µαj ≤ 1 and ∀ l ∈ [k], θ ≤ 1
1 + µαl

, (A85)

using the definition of Ω(θ,µ,αk ,βk)(QT) in (17), we obtain

exp
(
−Ω(θ,µ,αk ,βk)(QT)

)
= EQT

[( P(X, Yk)Q(X, Yk\1, Wk\1|Y1, W1)
(

∏j∈[2:k] Q(X̂j |Y, W j)
)

Q(X)Q(Yk |X, Wk)Q(X, Yk\1, Wk\1|Y1, W1, X̂1)
(

∏j∈[2:k] Q(X̂j |X, Yk , Wk , X̂ j−1)
) )θ

×
(

P(X)

Q(X|W1)

)θµα1(
∏

j∈[2:k]

(
Q(X|W j−1)

Q(X|W j)

)θµαj)
exp

(
− θµ

(
∑

j∈[k]
β jdj(X, X̂j)

))] (A86)

= EQT

[(
P(T)
Q(T)

)θ( P(X)

Q(X|W1)

)θµα1(
∏

j∈[2:k]

(
Q(X|W j−1)

Q(X|W j)

)θµαj)
exp

(
− θµ

(
∑

j∈[k]
β jdj(X, X̂j)

))] (A87)

= EQT

[(
P(T)
Q(T)

)θ( P(X)

P(X|W1)

)θµα1(
∏

j∈[2:k]

(
Q(X|W j−1)

P(X|W j)

)θµαj)
exp

(
− θµ

(
∑

j∈[k]
β jdj(X, X̂j)

))]

×
(

∏
j∈[k]

(
P(X|W j)

Q(X|W j)

)θµαj)
(A88)

≤
(
EQT

[(
P(T)
Q(T)

)(
P(X)

P(X|W1)

)µα1(
∏

j∈[2:k]

(
Q(X|W j−1)

P(X|W j)

)µαj)
exp

(
− µ

(
∑

j∈[k]
β jdj(X, X̂j)

))])θ

× ∏
j∈[k]

(
EQT

[(
P(X|W j)

Q(X|W j)

) θµαj
1−θ
])1−θ

(A89)

≤
(
EPT

[(
P(X)

P(X|W1)

)µα1(
∏

j∈[2:k]

(
Q(X|W j−1)

P(X|W j)

)µαj)
exp

(
− µ

(
∑

j∈[k]
β jdj(X, X̂j)

))])θ

(A90)

=

(
EPT

[(
P(X)

P(X|W1)

)µα1(
∏

j∈[2:k]

(
P(X|W j−1)

P(X|W j)

)µαj)
exp

(
− µ

(
∑

j∈[k]
β jdj(X, X̂j)

))

× ∏
j∈[2:k]

(
Q(X|W j−1)

P(X|W j−1)

)µαj
])θ

(A91)

=

(
EPT

[((
P(X)

P(X|W1)

)µα1(
∏

j∈[2:k]

(
P(X|W j−1)

P(X|W j)

)µαj)
exp

(
− µ

(
∑

j∈[k]
β jdj(X, X̂j)

))) 1
1−∑j∈[2:k] µαj

])θ(1−∑j∈[2:k] µαj)

× ∏
j∈[2:k]

(
EPT

[(
Q(X|W j−1)

P(X|W j−1)

)])θµαj

(A92)

= exp
(
− θ(1− ∑

j∈[2:k]
µαj)Ω̃

( µ

1−∑j∈[2:k] µαj
, αk , βk

))
, (A93)

where (A87) follows since (i) with our choice of PT ∈ Psh, we have

P(T) = P(X, Yk)P(Wk|X)
(

∏
j∈[k]

P(X̂j|Yj, W j)
)

(A94)

and (ii) the following equality holds

Q(X, Yk\1, Wk\1|Y1, W1)

Q(X, Yk\1, Wk\1|Y1, W1, X̂1)
=

Q(X̂1|Y1, W1)

Q(X̂1|X, Yk, Wk)
, (A95)
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Equation (A89) follows from Hölder’s inequality, (A90) follows from the concavity of Xa for a ∈ [0, 1]

and the choice of θ which ensures
θµαj
1−θ ≤ 1 for all j ∈ [k], (A92) follows by applying Hölder’s inequality

and recalling that ∑j∈[2:k] µαj ≤ 1, and (A93) follows from the definition of Ω̃(λ,αk ,βk)(PT) in (58).
Therefore, for any (θ, µ, αk, βk) ∈ R2

+ × [0, 1]2k satisfying (15) and (A85), using the definition of
Ω(θ,µ,αk ,βk) in (18) and the result in (A93), we have that

Ω(θ,µ,αk ,βk) ≥ θ(1− ∑
j∈[2:k]

µαj)Ω̃
( µ

1−∑j∈[2:k] µαj
, αk, βk

)
. (A96)

Recalling the definition of F(Rk, Dk) in (21) and using the result in (A96), we have

F(Rk , Dk)

= sup
(θ,µ,αk ,βk)∈R2

+×[0,1]2k : ∑i∈[k](αi+βi)=1

Ω(θ,µ,αk ,βk) − θµκ(α
k ,βk)(Rk , Dk)

1 + (2k + 2)θ + ∑j∈[k] 2θµαj
(A97)

≥ sup
(θ,µ,αk ,βk)∈R2

+×[0,1]2k :

(15) and (A85)

θ(1−∑j∈[2:k] µαj)Ω̃
(

µ
1−∑j∈[2:k] µαj

, αk , βk
)
− θµκ(α

k ,βk)(Rk , Dk)

1 + (2k + 2)θ + ∑j∈[k] 2θµαj
(A98)

= sup
(µ,αk ,βk)∈R+×[0,1]2k :

(15) and µ≤ 1
∑j∈[2:k] αj

sup
θ∈R+ :maxj∈[k] θ(1+µαj)≤1

θ(1−∑j∈[2:k] µαj)Ω̃
(

µ
1−∑j∈[2:k] µαj

, αk , βk
)
− θµκ(α

k ,βk)(Rk , Dk)

1 + (2k + 2)θ + ∑j∈[k] 2θµαj
(A99)

= sup
(µ,αk ,βk)∈R+×[0,1]2k :

(15) and µ≤ 1
∑j∈[2:k] αj

(1−∑j∈[2:k] µαj)Ω̃
(

µ
1−∑j∈[2:k] µαj

, αk , βk
)
− µκ(α

k ,βk)(Rk , Dk)

2k + 3 + µα+ + ∑l∈[k] 2µαl
(A100)

= sup
(λ,αk ,βk)∈R+×[0,1]2k :

(15)

Ω̃(λ,αk ,βk) − λκ(α
k ,βk)(Rk , Dk)

2k + 3 + λα+ + ∑j∈[2:k] λ(2k + 3)αj + ∑l∈[k] 2λαl
(A101)

= F̃(Rk , Dk), (A102)

where (A100) follows since

sup
θ∈R+ :maxj∈[k] θ(1+µαj)≤1

θ

1 + (2k + 2)θ + ∑j∈[k] 2θµαj
= min

j∈[k]

1
2k + 3 + µαj + ∑l∈[k] 2µαl

(A103)

=
1

2k + 3 + µα+ + ∑l∈[k] 2µαl
, (A104)

and (A101) follows by choosing λ = µ
1−∑j∈[2:k] µαj

and (A102) follows from the definition of F̃ in (62).

Appendix F.2. Proof of Claim (ii)

Recall the definitions of Ω̃(λ,αk ,βk)(PT) in (57) and P(λ,αk ,βk)
T in (63). By simple calculation, one can

verify that

∂Ω̃(λ,αk ,βk)(PT)

∂λ
= E

P(λ,αk ,βk)
T

[
ω̃
(αk ,βk)
PT

(T)
]
, (A105)

∂2Ω̃(λ,αk ,βk)(PT)

∂λ2 = −Var
P(λ,αk ,βk)

T

[
ω̃
(αk ,βk)
PT

(T)
]
. (A106)
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Applying Taylor expansion to Ω̃(λ,αk ,βk)(PT) at around λ = 0 and combining (A105), (A106), we
have that for any PT ∈ Psh and any λ ∈ [1, 1

∑j∈[k] αj
], there exists τ ∈ [0, λ] such that

Ω̃(λ,αk ,βk)(PT) = Ω̃(0,αk ,βk)(PT) + λE
P(0,αk ,βk)

T

[
ω̃
(αk ,βk)
PT

(T)
]
− λ2

2
Var

P(τ,αk ,βk)
T

[
ω̃
(αk ,βk)
PT

(T)
]

(A107)

≥ λEPT

[
ω̃
(αk ,βk)
PT

(T)
]
− λ2ρ

2
, (A108)

where (A108) follows from the definitions in (57), (63) and (64).
Using the definitions in (54), (57) and (60) and the result in (A108), we have that for any

λ ∈ [0, 1
∑j∈[k] αj

],

Ω̃(λ,αk ,βk) = min
PT∈Psh

Ω̃(λ,αk ,βk)(PT) (A109)

≥ λR(αk ,βk) − λ2ρ

2
. (A110)

For any rate-distortion tuple outside the rate-distortion region, i.e., (Rk, Dk) /∈ R, from Lemma 5,
we conclude that there exists (αk,∗, βk,∗) ∈ [0, 1]2k satisfying (15) such that for some positive δ ∈ [0, ρ]

κ(α
k,∗ ,βk,∗)(Rk, Dk) ≤ R(αk,∗ ,βk,∗) − δ. (A111)

Using the definition of F̃(Rk, Dk) in (62), we have

F̃(Rk, Dk) = sup
(λ,αk ,βk)∈R+×[0,1]2k : (15)

Ω̃(λ,αk ,βk) − λκ(α
k ,βk)(Rk, Dk)

2k + 3 + λα+ + ∑j∈[2:k] λ(2k + 3)αj + ∑l∈[k] 2λαl
(A112)

≥ sup
λ∈[0,1]

Ω̃(λ,αk,∗ ,βk,∗) − λκ(α
k,∗ ,βk,∗)(Rk, Dk)

2k + 3 + λ maxj∈[k] α∗j + ∑j∈[2:k] λ(2k + 3)α∗j + ∑l∈[k] 2λα∗l
(A113)

≥ sup
λ∈[0,1]

λδ− λ2ρ
2

2k + 9
(A114)

=
δ2

2(2k + 9)ρ
, (A115)

where (A114) follows from the results in (A110), (A111) and the inequality

2k + 3 + λ max
j∈[k]

α∗j + ∑
j∈[2:k]

λ(2k + 3)α∗j + ∑
l∈[k]

2λα∗l ≤ 2k + 9, (A116)

resulting from the constraints that (αk,∗, βk,∗) ∈ [0, 2]2k satisfying (15) and λ ∈ [0, 1].
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