

Article

MDPI

A Chaotic Electromagnetic Field Optimization Algorithm Based on Fuzzy Entropy for Multilevel Thresholding Color Image Segmentation

Suhang Song, Heming Jia * D and Jun Ma

College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150040, China; songsuhang@nefu.edu.cn (S.S.); majun@nefu.edu.cn (J.M.)

* Correspondence: jiaheming@nefu.edu.cn

Received: 1 April 2019; Accepted: 12 April 2019; Published: 15 April 2019

Abstract: Multilevel thresholding segmentation of color images is an important technology in various applications which has received more attention in recent years. The process of determining the optimal threshold values in the case of traditional methods is time-consuming. In order to mitigate the above problem, meta-heuristic algorithms have been employed in this field for searching the optima during the past few years. In this paper, an effective technique of Electromagnetic Field Optimization (EFO) algorithm based on a fuzzy entropy criterion is proposed, and in addition, a novel chaotic strategy is embedded into EFO to develop a new algorithm named CEFO. To evaluate the robustness of the proposed algorithm, other competitive algorithms such as Artificial Bee Colony (ABC), Bat Algorithm (BA), Wind Driven Optimization (WDO), and Bird Swarm Algorithm (BSA) are compared using fuzzy entropy as the fitness function. Furthermore, the proposed segmentation method is also compared with the most widely used approaches of Otsu's variance and Kapur's entropy to verify its segmentation accuracy and efficiency. Experiments are conducted on ten Berkeley benchmark images and the simulation results are presented in terms of peak signal to noise ratio (PSNR), mean structural similarity (MSSIM), feature similarity (FSIM), and computational time (CPU Time) at different threshold levels of 4, 6, 8, and 10 for each test image. A series of experiments can significantly demonstrate the superior performance of the proposed technique, which can deal with multilevel thresholding color image segmentation excellently.

Keywords: fuzzy entropy; electromagnetic field optimization; chaotic strategy; color image segmentation; multilevel thresholding

1. Introduction

Image segmentation is an important technology in image processing, which is a frontier research direction in computer vision, as well as one of the key preprocessing steps in image analysis [1,2]. It has been widely adopted in medicine, agriculture, industrial production, and various other fields. Image segmentation can be defined as the procedure of dividing an image into different regions [3]. In the subsequent research, the relevant regions can be extracted from the segmented image expediently according to specific requirements. Nowadays, the common image segmentation methods include threshold-based, cluster-based, edge-based methods and so on. Thresholding is extensively applied due to its simplicity, efficiency, and robustness. Depending on the number of thresholds, it can be classified as bi-level segmentation and multilevel segmentation [4]. Bi-level thresholding techniques use one threshold to partition an image into two segments; whereas multilevel segmentation determines several thresholds to separate an image into more than two classes. Many thresholding approaches have been proposed by scholars around the world in the past few years, Otsu's (between-class

variance criterion) [5,6] technique pushes the thresholding segmentation to an upsurge and inspires the scholars constantly in this field. Then diverse entropy-based criteria have emerged in the thresholding segmentation study, such as maximum entropy (Kapur's) [7], minimum cross entropy [8], fuzzy entropy [9], etc.

Gray-scale image thresholding technology is relatively popular and mature. Compared with the segmentation of gray-scale images, color image segmentation plays a more beneficial role in practical applications, which separates an image into several disjoint and homogenous components based on the information of texture, color or histogram [10]. Color image segmentation is more complex and challenging than gray-scale images. Nevertheless, considering that color images contain more characteristics and they are closer to human visual effects [11], the research of color image segmentation is more meaningful. There will appear some problems when a traditional segmentation method is adopted to segment a color image, for example, the computation is massive and accuracy of segmented images cannot be guaranteed [12,13]. In this paper, fuzzy entropy is one of the research objects with high segmentation accuracy. In the fuzzy entropy thresholding technique, each threshold needs to be determined by three fuzzy parameters. Hence the calculation of thresholds is more accurate, at the same time the process is more complicated and the running time of the program will be longer. With the improvement of the threshold level, the computation of fuzzy entropy will exponentially increase for searching the optimal thresholds and the efficiency of segmentation will gradually decrease [14–16]. In order to enhance the practicability of fuzzy entropy thresholding technique, this paper combines fuzzy entropy thresholding with intelligent optimization algorithms to improve the performance with respect to accuracy and efficiency.

Meta-heuristic algorithms are utilized to obtain the optimal solution of the problem [17]. Generally, they are inspired by nature and try to handle the problems from mimicking ethology, biology or physics [18]. For instance, Bird Swarm Algorithm (BSA) [19], Firefly Algorithm (FA) [20], and Flower Pollination Algorithm (FPA) [21] are inspired by ethology or biology; Electromagnetic Optimization (EMO) [22], Wind Driven Optimization (WDO) [23], and Gravitational Search Algorithm (GSA) [24] are inspired by physics. At present, a number of scholars have coupled the optimization algorithms with the field of image segmentation in the literature. For instance, Sowjanya et al. [25] combined a WDO algorithm with Otsu's method for the segmentation of brain MRI images, it has shown the superior performance in the experiment results. Wasim et al. [26] proposed an improved Bee Algorithm (BA) for multilevel image segmentation, whereby they embedded Levy fight into a Bees Algorithm (the Levy Bees Algorithm, LBA), and the results show that LBA is more stable than BA in this field. Rakoth et al. [27] tried to combine Dragonfly Optimization with Self-Adaptive weight (SADFO) and used SADFO for image segmentation experiments with satisfying results. These references confirm the feasibility of applying optimization algorithms to image thresholding segmentation. However, the above experiments all concentrate on gray-scale images and do not extend the experiments to the analysis of color images. Applying meta-heuristic algorithms to the field of multilevel image segmentation can enhance the convergence speed and efficiency [28]. Therefore, in this paper, Electromagnetic Field Optimization algorithm (EFO) [29] is modified and combined with fuzzy entropy thresholding method to eliminate the complex computation, which is used into the multilevel color image segmentation field for searching the best threshold values.

Electromagnetic Field Optimization is a new meta-heuristic algorithm inspired by the electromagnetic theory developed in physics. EFO algorithm has been applied in several applications, for example, Behnam et al. [30] created a method using EFO for hiding sensitive rules simultaneously, which has fewer lost rules than other well-known algorithms. Bouchekara et al. [31] proposed the optimal coordination of directional overcurrent relays based on EFO, and the results show that EFO is better than other optimization algorithms such as Particle Swarm Optimization (PSO) [32], or the Differential Evolution (DE) algorithm [33], etc. This paper embeds a new chaos strategy into standard EFO algorithm according to the specific problem of color image segmentation named as Chaotic Electromagnetic Field Optimization (CEFO). Employing the CEFO algorithm to optimize the fuzzy

parameters which determine the optimal thresholds of an image in fuzzy entropy. To the best of our knowledge, this topic has not been investigated yet. The rest of this paper is organized as follows: in Section 2, the concept of EFO algorithm is elaborated. In Section 3, the chaotic strategy in CEFO algorithm is introduced and explained. In Section 4, the problem definitions and formulas of the Otsu's, Kapur's entropy, and the fuzzy entropy are illustrated. In Section 5, the experimental environment is reported. In Section 6, the experimental results and discussions are provided and analyzed. Finally, a brief conclusion of this paper and future works are drawn in Section 7.

2. Electromagnetic Field Optimization

Electromagnetic Field Optimization is a novel meta-heuristic intelligent algorithm proposed by Hosein in 2016 [29]. In contrast to the swarm-based meta-heuristic algorithms widely inspired by biology, the EFO algorithm is based on the electromagnetic field principle used in physics. In the EFO algorithm, due to the forces of attraction and repulsion in the electromagnetic field, the electromagnetic particle (EMP) keeps away from the worst solution and moves towards the best solution. In the end, all the electromagnetic particles (EMPs) gather around the optimal solution.

A magnetic field is generated around the electrified iron core, which is made of an electromagnet. An electromagnet has only one polarity and it is contingent on the direction of the electric current. Hence, an electromagnet has two characteristics of attraction or repulsion, electromagnets with the different polarity attract each other, and those with identical polarity repel each other. The intensity of attraction is 5-10% higher than repulsion and the ratio between attraction and repulsion is set as golden ratio [29,31], which can promote the algorithm to explore the optimal solution effectively in the search space. The essence of the optimization problem is to find the pole (maximum or minimum) about the objective function and the corresponding fitness in the prescriptive range [34]. Each potential solution of the problem is represented with an electromagnetic particle composed of a group of electromagnets. The electromagnetic field comprises several electromagnetic particles and it can be defined as a space in 1-D (dimension), 2-D, 3-D, or hyperdimensional space [35]. The number of electromagnets of an electromagnetic space. Moreover, all electromagnets of one electromagnetic particle have the same polarity. Therefore, an electromagnetic particle has the same polarity with its electromagnets.

$$EMPs = \begin{bmatrix} P_{1,1} & P_{1,2} & \cdots & P_{1,d} \\ P_{2,1} & P_{2,2} & \cdots & P_{2,d} \\ \vdots & \vdots & \vdots & \vdots \\ P_{n,1} & P_{n,2} & \cdots & P_{n,d} \end{bmatrix}$$
(1)

where *n* is the number of electromagnetic particles and *j* is the number of variables (dimension). The mechanism of the EFO algorithm can be described as follows:

- Step 1: A certain number of electromagnetic particles are generated randomly in the electromagnetic field, and the fitness of each electromagnetic particle is evaluated by the objective function. Then the electromagnetic particles are sorted on the basis of their fitness.
- *Step 2*: The electromagnetic field is divided into three regions: positive, negative and neutral. Then all electromagnetic particles are classified into these three groups. The first group consists of the best particles with positive polarity. The second group consists of the worst particles with negative polarity. The third group consists of neutral particles which have a little negative polarity almost near zero. And all electromagnetic particles are located in the corresponding electromagnetic regions.
- Step 3: In each iteration of the algorithm, a new electromagnetic particle (EMP^{New}) is generated. If the fitness of EMP^{New} is better than the original worst particle, the EMP^{New} will remain and its fitness and polarity will depend on the list of fitness, furthermore, the original worst particle

will be eliminated. If else, the will be eliminated directly. This process continues until the algorithm reaches the maximum number of iterations.

The core of the EFO is the method of generating EMP^{New} in each iteration, and each electromagnet in EMP^{New} is shaped separately. The main process can be described as follows: three electromagnetic particles are randomly extracted from three electromagnetic regions (one EMP from each region), and then three electromagnets are randomly extracted from three electromagnetic particles obtained just now (one electromagnet from each EMP). Consequently, there are three electromagnets with different polarities. The neutral electromagnet is attracted and repelled by positive and negative electromagnets. Owing to the intensity of attraction is stronger than repulsion and the neutral electromagnet has a slight negative polarity, the neutral electromagnet moves a distance away from the negative electromagnet and approaches towards the positive electromagnet. In other words, each electromagnet in EMP^{New} is a result of interaction between attraction and repulsion, which is shown in Figure 1.

Figure 1. Schematic diagram of the electromagnetic field. The relationship between the electromagnetic particle (EMP) and electromagnet. The method of generating the new electromagnetic particle

Figure 1 shows the process of generating EMP^{New} , in this figure, each electromagnetic particle contains three electromagnets for example, and positive, neutral and negative electromagnets are colored as green, blue and red respectively. In accordance with the above mechanism, three electromagnets of EMP^{New} is selected from nine original electromagnets, which increases randomness and enhances the strength of the optimization algorithm. Establishing a mathematical model to describe the update mechanism of EMP^{New} as below:

$$D_i^{P_j K_j} = EMP_i^{P_j} - EMP_i^{K_j}$$
⁽²⁾

$$D_i^{N_j K_j} = EMP_i^{N_j} - EMP_i^{K_j}$$
(3)

$$EMP_{j}^{New} = EMP_{j}^{K_{j}} + [(\varphi * r) * D_{j}^{P_{j}K_{j}}] - (r * D_{j}^{N_{j}K_{j}})$$
(4)

where *j* is the number of electromagnets in EMP; $EMP_j^{P_j}$ is the positive electromagnet; $EMP_j^{N_j}$ is the negative electromagnet; $EMP_j^{K_j}$ is the neutral electromagnet; $D_j^{P_jK_j}$ is the distance between positive and neutral electromagnets. $D_j^{N_jK_j}$ is the distance between negative and neutral electromagnets; *r* is the random value between 0 and 1; φ is the golden ratio of $(\sqrt{5} + 1)/2$.

In order to preserve the diversity of particles in the electromagnetic field and reduce the probability of falling into local optima [36], randomness is an indispensable part in EFO algorithm. Therefore, the probability of *Ps_rate* about the new position is determined by the selected electromagnet from a positive field, which accelerates the convergence rate and improves the accuracy of the optimum. Additionally, the probability of *R_rate* is used to replace one electromagnet in *EMP^{New}* with randomly generated electromagnet within the space. The most important feature of EFO algorithm is the high

degree of cooperation among particles. Another pivotal characteristic is high randomization, which avoids obtaining the local optimum. Meanwhile, the application of the golden ratio makes EFO more efficient. All of the above strategies lead EFO to a robust optimization algorithm.

3. Proposed Algorithm

One of the essential points in the EFO algorithm is the degree of chaos about the electromagnetic particles in the electromagnetic field; if the degree of chaos is higher, the search power will be stronger. In the literature, the initial position of electromagnetic particles is processed by a chaotic strategy, which disturbs the distribution of particles and increases the unpredictability of the system.

Chaotic phenomena refer to the external complex behavior in a non-linear deterministic system due to the inherent randomness [37]. Almost all meta-heuristic algorithms need to be initialized randomly, and usually it is achieved by using probability distribution, which can advantageous to replace such randomness with chaotic map [38]. Owing to the dynamic behavior of chaos, chaotic maps have been commonly acknowledged in the field of optimization, which can promote algorithms in exploring optima more effective globally in the search space. Table 1 lists some common chaotic maps, which are expressed by mathematical equations.

Name	Chaotic Map
Logistic	$x_{i+1} = ax_i(1 - x_i)$
Sine	$x_{i+1} = \frac{a}{4}\sin(\pi x_i)$
Cubic	$x_{i+1} = ax_i(1 - x_i^2)$
Circle	$x_{i+1} = mod(x_i + b - (\frac{a}{2\pi})\sin(2\pi x_i), 1)$
Iterative	$x_{i+1} = \sin(\frac{a\pi}{x_i})$
Tent	$x_{i+1} = a - (1 - a) x_i $

Table 1. Chaotic maps.

For instance, logistic chaos is widely used because of its simple expression and good performance, and it is shown in Figure 2. As can be seen, the logistic system has missed certain values. In consideration of the multilevel color image segmentation problem, this paper proposes a new chaotic map as follows:

$$x_{n+1} = rand() \times \sin(2\pi x_n) + x_n \tag{5}$$

where *rand*() is the random value between 0 and 1.

Figure 2. Logistic Chaotic Map.

The new chaotic map is shown in Figure 3 and its distribution is more symmetrical than Logistic chaotic map. Taking advantage of this chaos strategy in EFO, the total performance of the algorithm will be improved and it is known as CEFO. The pseudo-code of the CEFO algorithm is presented in Algorithm 1.

Figure 3. Chaotic Map in this paper.

Algorithm 1. Pseudo-code of CEFO algorithm

/* Part 1: Algorithm parameters initialization */

 N_var : The number of electromagnets in each electromagnetic particle. N_emp : The number of electromagnetic particles in population.

```
Ps_rate: The probability of changing one electromagnet with a random electromagnet.
```

R_rate: The probability of selecting electromagnets from the positive field.

```
P_field: The portion of particles belonging to positive.
```

N_field: The portion of particles belonging to negative.

```
min = lower boundary; max = upper boundary
/* Part 2: Main loop of the algorithm */
for i = 1 to N_emp do
```

```
for j = 1 to N_var do
```

```
position [i, j] = \min + \operatorname{rand} ()*(\max - \min)
```

end for

```
end for
```

```
Update position by using the chaotic map of Equation (5)
```

```
fitness = function (position)
```

```
while t (current iteration) < max iterations
```

Divide the electromagnetic field into three regions

```
for i = 1 to N_var do

if rand (0,1) > Ps_rate

Generate the EMP^{New} by Equation (4)

else

Generate the EMP^{New} from positive particles

end if

Check if any particle beyond the search space

end for

if rand (0,1) < R_rate

Change one electromagnet of EMP^{New} randomly

end if

Compare the fitness of EMP^{New} with worst particle

t = t + 1

end while

Or is still be in a till.
```

```
Output the best particle
```

4. Thresholding Segmentation Methods

The process of multilevel thresholding color image segmentation is to find more than two optimal thresholds to segment three components (red, green, and blue) respectively. In RGB images, each color component consists of *P* pixels and *L* number of gray levels. The obtained thresholds are within the range of [0, L - 1], *L* is considered as 256 and each gray-level is associated with the histogram representing the frequency of its gray level pixel used by g(x, y).

4.1. Between-Class Variance Thresholding

Between-class variance (Otsu's) [5] thresholding method can be defined as follows:

Assuming that n - 1 thresholds form the threshold vector $T = [t_1, t_2, \dots, t_{n-1}]$ to split an image into n classes:

$$\begin{cases} C_1 = \{(x, y) | 0 \le g(x, y) \le t_1 - 1\} \\ C_2 = \{(x, y) | t_1 \le g(x, y) \le t_2 - 1\} \\ \vdots \\ C_n = \{(x, y) | t_{n-1} \le g(x, y) \le L - 1\} \end{cases}$$
(6)

Constructing image histogram $\{f_0, f_1, \dots, f_{L-1}\}$, where f_i is the frequency of gray-level *i*. Then, the probability of gray-level *i* can be represented as:

$$p_i = \frac{f_i}{\sum\limits_{i=0}^{L-1} f_i}, \sum\limits_{i=0}^{L-1} p_i = 1$$
(7)

For every class C_k , the cumulative probability ω_k and average gray level μ_k in every region can be defined as:

$$\omega_k = \sum_{i \in C_k} p_i, \ \mu_k = \sum_{i \in C_k} \frac{i \cdot p_i}{\omega_k}$$
(8)

and Otsu's function can be expressed as:

$$\sigma_B^2 = \sum_{k=0}^{K} \omega_k \cdot (\mu_k - \mu_T)^2, \ \mu_T = \sum_{i=0}^{L-1} i \cdot p_i$$
(9)

where μ_k is the average gray intensity of the image.

Therefore, the optimal threshold vector is as follows:

$$T^* = \operatorname{argmax}(\sigma_B^2) \tag{10}$$

4.2. Kapur's Entropy Thresholding

Kapur's entropy method maximizes the entropy value of the segmented histogram such that each separated region has more centralized distribution [39]. Extending Kapur's entropy for multilevel image segmentation problem:

$$H_{1} = -\sum_{i=0}^{t_{1}-1} \frac{p_{i}}{\omega_{1}} \ln \frac{p_{i}}{\omega_{1}}, \quad \omega_{1} = \sum_{i=0}^{t_{1}-1} p_{i}$$

$$H_{2} = -\sum_{i=t_{1}}^{t_{2}-1} \frac{p_{i}}{\omega_{2}} \ln \frac{p_{i}}{\omega_{2}}, \quad \omega_{2} = \sum_{i=t_{1}}^{t_{2}-1} p_{i}$$

$$H_{j} = -\sum_{i=t_{j-1}}^{t_{j}-1} \frac{p_{i}}{\omega_{j}} \ln \frac{p_{i}}{\omega_{j}}, \quad \omega_{j} = \sum_{i=t_{j-1}}^{t_{j}-1} p_{i}$$

$$H_{n} = -\sum_{i=t_{n}}^{L-1} \frac{p_{i}}{\omega_{n}} \ln \frac{p_{i}}{\omega_{n}}, \quad \omega_{n} = \sum_{i=t_{n}}^{L-1} p_{i}$$
(11)

where H_j represents the entropy value of *j*-th region in the image.

There are *n* thresholds which can be configured as the *n* dimensional optimization problem. And the optimal threshold vector is obtained analogously by:

$$T^* = \operatorname{argmax}(\sum_{i=0}^{m} H_i)$$
(12)

4.3. Fuzzy Entropy Thresholding

fuzzy entropy technique, let an original In the image be D = $\{(i, j) | i = 0, \dots, M-1; j = 0, \dots, N-1\}$, where M and N represent the width and height of an image. Supposed that t_1 and t_2 are two thresholds to divide the original image into 3 parts named as E_d , E_m , E_b [10]. E_d consists of pixels of low gray levels; E_m is made of pixels with middle gray levels; E_b is composed of pixels of high gray levels. Usually, using (13) to calculate the image histogram:

$$h_k = \frac{n_k}{M * N} \tag{13}$$

where $k = 0, 1, \dots, 255$; n_k is the number of the *k*-th pixel in D_k ; h_k is the histogram of the image at gray-level k, $\sum_{k=0}^{255} h_k = 1$.

Consider $\Pi_3 = \{E_d, E_m, E_b\}$ as an unknown probabilistic partition of *D*, whose probability distribution can be expressed as:

$$p_d = P(E_d); \quad p_m = P(E_m); \quad p_b = P(E_b)$$
 (14)

For each $(i, j) \in D$, let:

$$D_{d} = \{(i, j) | 0 \le g(i, j) \le t_{1}\}, D_{m} = \{(i, j) | t_{1} \le g(i, j) \le t_{2}\}, D_{b} = \{(i, j) | t_{2} \le g(i, j) \le L - 1\}$$
(15)

Utilizing μ_d , μ_m , μ_b as the membership functions of E_d , E_m , E_b , which is shown in Figure 4 [40]. There are six fuzzy parameters of u_1 , v_1 , w_1 , u_2 , v_2 , w_2 in the membership functions, in other words, t_1 and t_2 are determined by these six parameters. According to the above statement, we can have the probability distribution of three regions expressed as:

$$p_{d} = \sum_{\substack{k=0\\255}}^{255} p_{k} \cdot p_{d|k} = \sum_{\substack{k=0\\255}}^{255} p_{k} \cdot \mu_{d}(k)$$

$$p_{m} = \sum_{\substack{k=0\\k=0}}^{255} p_{k} \cdot p_{m|k} = \sum_{\substack{k=0\\k=0}}^{255} p_{k} \cdot \mu_{m}(k)$$

$$p_{b} = \sum_{\substack{k=0\\255}}^{255} p_{k} \cdot p_{b|k} = \sum_{\substack{k=0\\255}}^{255} p_{k} \cdot \mu_{b}(k)$$
(16)

where $p_{d|k}$, $p_{m|k}$, $p_{b|k}$ are the conditional probability of a pixel partitioned into three classes. Moreover, a pixel of k in an image satisfies the constraint of $p_{d|k} + p_{m|k} + p_{b|k} = 1$.

Figure 4. Membership function graph.

Entropy 2019, 21, 398

The three membership functions have been shown in Figure 4. And these mathematical formulas are defined as follows: $\begin{pmatrix}
1 & 1 \\
1 & 1
\end{pmatrix}$

$$\mu_{d}(k) = \begin{cases} 1 & k \leq u_{1} \\ 1 - \frac{(k-u_{1})^{2}}{(w_{1}-u_{1})\cdot(v_{1}-u_{1})} & u_{1} \leq k \leq v_{1} \\ \frac{(k-w_{1})^{2}}{(w_{1}-u_{1})\cdot(w_{1}-v_{1})} & v_{1} \leq k \leq w_{1} \\ 0 & k > w_{1} \end{cases}$$
(17)

$$\mu_{m}(k) = \begin{cases} 0 & k \le u_{1} \\ \frac{(k-u_{1})^{2}}{(w_{1}-u_{1})\cdot(v_{1}-u_{1})} & u_{1} \le k \le v_{1} \\ 1 - \frac{(k-w_{1})^{2}}{(w_{1}-u_{1})\cdot(w_{1}-v_{1})} & v_{1} \le k \le w_{1} \\ 1 & w_{1} \le k \le u_{2} \end{cases}$$
(18)

$$\mu_{b}(k) = \begin{cases} 0 & k \le u_{2} \\ \frac{(k-u_{2})^{2}}{(w_{2}-u_{2})\cdot(v_{2}-u_{2})} & u_{2} \le k \le v_{2} \\ 1 - \frac{(k-w_{2})^{2}}{(w_{2}-u_{2})\cdot(w_{21}-v_{2})} & v_{2} \le k \le w_{2} \\ 1 & k \ge w_{2} \end{cases}$$
(19)

where $u_1, v_1, w_1, u_2, v_2, w_2$ should meet the condition of $0 \le u_1 < v_1 < w_1 < u_2 < v_2 < w_2 \le 255$. Then the fuzzy entropy of each part is as follows:

Then, the fuzzy entropy of each part is as follows:

$$H_{d} = -\sum_{k=0}^{255} \frac{p_{k} \cdot \mu_{d}(k)}{p_{d}} \cdot \ln(\frac{p_{k} \cdot \mu_{d}(k)}{p_{d}})$$

$$H_{m} = -\sum_{k=0}^{255} \frac{p_{k} \cdot \mu_{m}(k)}{p_{m}} \cdot \ln(\frac{p_{k} \cdot \mu_{m}(k)}{p_{m}})$$

$$H_{b} = -\sum_{k=0}^{255} \frac{p_{k} \cdot \mu_{b}(k)}{p_{b}} \cdot \ln(\frac{p_{k} \cdot \mu_{b}(k)}{p_{b}})$$
(20)

The whole fuzzy entropy function is defined as:

$$H(u_1, v_1, w_1, u_2, v_2, w_2) = H_d + H_m + H_b$$
⁽²¹⁾

Equation (21) is determined by six variables which are called fuzzy parameters. Seeking the optimal group of u_1 , v_1 , w_1 , u_2 , v_2 , w_2 when (21) reach the maximum value. Therefore, the most applicable threshold can be calculated as:

$$\mu_d(t_1) = \mu_m(t_1) = 0.5$$

$$\mu_m(t_2) = \mu_b(t_2) = 0.5$$
(22)

As is shown in Figure 4, according to the above equation, t_1 and t_2 can be defined by (17)–(19), and the result is as follows:

$$t_{1} = \begin{cases} u_{1} + \sqrt{(w_{1} - u_{1}) \cdot (v_{1} - u_{1})/2} & (u_{1} + w_{1})/2 < v_{1} < w_{1} \\ w_{1} - \sqrt{(w_{1} - u_{1}) \cdot (w_{1} - v_{1})/2} & u_{1} < v_{1} < (u_{1} + w_{1})/2 \\ t_{2} = \begin{cases} u_{2} + \sqrt{(w_{2} - u_{2}) \cdot (v_{2} - u_{2})/2} & (u_{2} + w_{2})/2 < v_{2} < w_{2} \\ w_{2} - \sqrt{(w_{1} - u_{2}) \cdot (w_{2} - v_{2})/2} & u_{2} < v_{2} < (u_{2} + w_{2})/2 \end{cases} \end{cases}$$
(23)

Fuzzy entropy thresholding can meet the requirement from single threshold segmentation to multiple thresholds segmentation, and the optimal threshold vector obtained is more precise. However, each threshold should be determined by three parameters in fuzzy entropy thresholding, and thresholds need to be defined by 3*n* fuzzy parameters [41,42].

With the increase of threshold level gradually, the degree of the computation will be significantly risen, which diminish the speed of the process and the practicability will be reduced. In order to improve the convergence efficiency, it is necessary to use the optimization algorithm for searching the optimal threshold vector. This paper takes advantage of the CEFO to ensure the segmentation accuracy and greatly decrease the execution time. The general flow of fuzzy entropy thresholding based on the CEFO algorithm is presented in Figure 5.

Figure 5. Flow chart of fuzzy entropy thresholding method based on the Chaotic Electromagnetic Field Optimization (CEFO) algorithm.

5. Experimental Environment

In order to verify the superiority of the CEFO algorithm in dealing with the multilevel color image segmentation problem, this section will introduce the description of our benchmark images and then select several other algorithms for comparison. The parameters of each algorithm will be described firstly and a series of quality metrics used to evaluate the quality of segmented images will be calculated at the end.

5.1. Benchmark Images

In this experiment, ten images are chosen from the Berkeley segmentation data set, which is shown in Figure 6. It has presented the histogram of three components about every color image. Among these images, Test 1–3 are animal images; Test 4 and 5 are about human; Test 7 and 8 are landmark buildings; Test 6 and 9 are images related to landscape architecture; Test 10 is the normal scenery image.

Figure 6. Experimental images of Berkeley. Ten classical images and their histograms of three component (red, green, and blue) are exhibited.

5.2. Experimental Settings

When applied to solve the problem of multilevel color image segmentation, different meta-heuristic algorithms have different optimization performances due to their strategies and mathematical formulations [43]. Therefore, it is essential to compare the CEFO algorithm with other different

algorithms such as EFO, ABC [44], BA [10], BSA [19], WDO [23]. Among these algorithms, ABC, BA, and BSA are proposed from biology; EFO and WDO are inspired from physics. The number of maximum iterations of each algorithm is set to 500, and the initial population is set to 15, with a total of 30 runs per algorithm, other specific parameters are presented in Table 2.

Algorithm	Parameter	Explanation	Value
EFO	P _{field}	The portion of particles belonging to the positive field.	0.1
	Ń _{field}	The portion of particles belonging to the negative field.	0.45
	Ps _{field}	The probability of selecting electromagnets directly from the positive field.	0.3
	R _{rate}	The probability of changing one electromagnet directly from the positive field.	0.2
ABC	limit	The value of the max trial limit.	10
BA	r_i	The rate of pulse emission.	[0, 1]
	A_i	The value of loudness.	[1, 2]
WDO	а	A constant.	0.4
	8	The constant of gravitation.	0.2
	RT	A coefficient.	3
	С	Coriolis coefficient.	0.4
BSA	a_1, a_2	The values of indirect and direct effects on the birds' vigilance behaviors.	2
	c_1, c_2	The values of the cognitive coefficient and social coefficient.	2
	FL	The frequency of birds' flight behaviors.	0.6

Table 2. Specific values of parameters used in selected algorithms.

All the algorithms are programmed in Matlab R2016a (The Mathworks Inc., Natick, MA, USA) and implemented on a Windows 7 – 64 bit with 8 GB RAM environment.

5.3. Segmented Image Quality Metrics

To evaluate the quality of segmented images under different algorithms at selected threshold levels, four metrics are selected as follows [45,46]:

Peak Signal to Noise Ratio (PSNR)

The index is used to measure the difference between the original image and the segmented image, and a higher value is gained when the segmented image has a better effect. It can be defined as:

$$PSNR(x, y) = 20 \cdot \log_{10}(\frac{255}{\sqrt{MSE}})$$

$$MSE = \frac{1}{MN} \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} \left\| x(i, j) - y(i, j) \right\|^2$$
(24)

where *M* and *N* represent the size of the image; *x* is the original image; *y* is the segmented image.

Mean Structural Similarity (MSSIM)

The index evaluates the overall image quality, which is in the range of [-1, 1]. The higher value of MSSIM is obtained when it represents the segmented image is more similar to the original image. The MSSIM is the average of every component and SSIM can be calculated as:

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$
(25)

• Feature similarity (FSIM)

The index is in the range of [0,1], and the segmented image is better when the value is closer to 1. The FSIM can be expressed as:

$$FSIM(x, y) = \frac{\sum_{x \in \Omega} S_L(X) P C_m(x)}{\sum_{x \in \Omega} P C_m(x)}$$
(26)

• Computation Time (CPU Time)

The index measures the convergence rate of each algorithm. The algorithm is more efficient when the time is shorter.

6. Results and Discussions

6.1. Comparison of Other Meta-Heuristic Algorithms

Utilizing 6 algorithms based on fuzzy entropy criterion to conduct the experiment on 10 images at the threshold level of 4, 6, 8, and 10 (K = 4, 6, 8, 10). The results of the optimal threshold vector are presented in Tables 3–5 exhibiting each threshold level of three component about every image. And the results of segmented images are presented in Figures 7–16, which take each Test image as a group. Furthermore, the results of the four metrics are shown in Tables 6 and 7.

Entropy 2019, 21, 398

14 of 36

Entropy **2019**, 21, 398

Table 3. Comparison of optimal threshold values between Chaotic Electromagnetic Field Optimization (CEFO) and Electromagnetic Field Optimization (EFO) at *K* = 4, 6, 8, 10 based on fuzzy entropy.

Image	к		CEFO			EFO	
8*	ĸ	R	G	В	R	G	В
	4	56 93 153 187	57 88 132 191	59 10 157 197	61 90 144 188	18 74 115 170	58 87 148 202
Test 1	6	20 59 92 128 167 199	26 47 81 114 161 203	25 48 76 111 138 195	26 60 95 128 162 198	19 47 80 119 171 210	18 57 85 122 154 212
	8	11 31 58 82 107 132 168 211	12 42 64 92 114 149 181 210	18 50 73 97 143 168 196 223	17 47 71 90 115 138 171 209	12 39 67 93 130 170 205 223	26 56 78 100 113 162 190 216
	10	14 37 55 75 90 111 130 159 182	11 41 61 95 122 146 168 185 208	14 40 64 80 105 136 161 189 212	10 26 56 82 102 133 148 167 192	11 32 59 76 90 107 134 166 198	24 41 56 72 93 126 156 181 203
	4	10 93 114 171	86 143 194 226	91 110 137 189	80 116 149 183	93 113 146 216	104 124 170 206
_	6	18 41 75 107 147 177	87 101 133 153 192 234	54 72 97 121 156 192	73 83 108 139 176 219	94 114 135 162 197 231	16 50 85 129 156 199
Test 2	8	15 27 44 59 96 127 171 204	14 22 43 65 117 144 190 222	39 61 82 117 148 176 195 223	7 34 55 78 107 135 166 199	49 65 76 139 168 193 211 232	45 61 82 101 129 154 182 213
	10	32 55 75 108 144 171 195 215 226 239	5 50 65 85 102 121 139 167 197 228	31 47 64 87 108 125 158 179 209 239	4 24 47 67 102 122 147 180 204 223	19 33 53 71 99 119 144 170 195 224	19 36 57 80 108 141 154 177 201 230
	4	44 92 139 188	31 92 139 188	27 97 138 185	33 80 126 181	37 87 142 206	29 106 154 188
	6	32 62 93 128 173 199	19 53 90 119 162 206	36 71 105 136 183 208	32 76 116 150 177 207	50 69 101 143 190 216	15 46 70 113 153 197
Test 3	8	22 43 68 91 112 138 172 208	17 51 73 98 123 148 181 207	11 36 58 88 106 141 170 213	19 54 94 125 141 164 190 214	25 49 72 96 126 156 192 223	15 49 71 95 128 159 187 214
	10	26 39 55 69 86 110 131 154 175 207	42 29 56 79 104 121 141 163 197 219	9 25 49 82 109 132 154 176 199 222	17 31 45 62 93 124 168 194 212 229	14 39 56 76 95 114 148 176 196 224	16 13 34 58 82 115 150 180 199 223
	4	52 84 127 164	67 102 141 204	49 74 111 155	59 88 129 164	64 105 153 199	61 101 145 203
Test 4	6	38 62 97 137 172 195	48 71 111 144 175 213	43 77 109 147 178 235	40 65 89 112 147 184	44 67 105 126 167 211	39 63 98 134 160 190
1051 4	8	13 31 54 92 110 142 175 198	35 60 86 114 137 169 200 226	24 41 64 94 129 156 193 224	15 26 46 68 97 134 160 189	18 43 73 100 128 155 190 225	23 57 105 137 169 195 221 237
	10	6 25 43 64 84 106 132 152 172 189	7 27 39 52 75 99 130 157 190 221	15 25 48 78 103 130 157 178 219 240	8 18 31 48 74 100 124 153 181 211	8 23 39 57 80 104 127 157 188 215	10 27 50 87 117 146 171 194 218 234
	4	52 98 149 198	55 89 164 215	77 125 162 209	87 122 152 190	38 58 106 162	80 120 160 194
Test 5	6	22 63 93 131 179 225	16 69 97 125 158 204	15 61 97 131 166 207	23 64 90 140 183 213	26 75 114 134 169 211	20 59 84 132 169 205
	8	16 59 77 94 116 134 162 199	20 58 75 98 129 155 185 214	19 56 77 115 145 173 196 227	14 56 75 104 127 162 191 225	37 37 60 76 111 135 175 214	17 39 66 97 122 171 205 234
	10	13 29 57 77 93 107 130 165 188 214	14 30 62 78 94 126 132 179 205 231	19 44 56 72 89 109 129 159 176 205	11 26 50 72 92 115 149 180 201 224	16 25 48 64 85 106 127 142 175	24 41 56 70 96 125 150 177 202 229
	4	55 97 158 195	64 99 153 190	46 75 131 179	52 100 144 192	56 92 123 178	52 88 149 176
-	6	43 60 91 118 165 202	25 38 76 119 165 205	47 69 97 133 155 190	44 75 112 150 176 211	60 87 109 135 167 196	32 51 85 125 172 207
Test 6	8	16 42 73 91 129 157 190 221	10 34 52 79 108 136 168 207	23 39 64 86 120 137 172 202	28 45 74 91 120 150 191 225	15 26 55 85 111 141 176 205	23 38 57 87 119 159 183 214
	10	10 32 50 77 99 134 162 192 209 228	13 36 47 69 107 140 164 185 200 223	14 33 60 82 101 130 156 183 208 228	8 30 46 72 99 125 145 166 189 221	10 28 53 72 100 125 146 172 187 206	14 31 51 68 86 115 134 167 190 221
	4	66 95 139 176	25 66 108 157	23 88 134 220	26 89 132 179	43 89 133 178	30 94 137 208
Test 7	6	17 33 80 120 168 205	20 80 108 133 164 189	13 59 84 102 128 151	20 41 60 92 131 180	21 54 86 111 144 183	31 67 101 138 196 223
	8	20 54 79 106 126 146 169 209	13 50 80 102 132 166 197 223	19 40 63 88 119 148 200 228	14 58 80 98 122 146 167 207	18 55 82 105 128 161 193 228	18 36 67 91 128 149 200 220
	10	10 30 41 63 89 110 129 154 178 216	14 54 68 82 106 132 169 197 220 243	15 41 66 85 105 133 151 190 214 233	12 28 59 82 115 146 179 199 215 227	12 31 57 76 92 117 141 168 200 223	10 34 63 95 120 140 157 185 212 232
	4	48 73 173 212	62 107 141 207	43 79 124 215	22 83 139 199	55 105 149 201	37 102 183 234
Test 8	6	38 64 101 141 181 224	32 61 85 126 155 196	38 61 91 126 197 218	40 66 96 151 182 212	40 66 97 140 175 209	34 54 88 117 182 230
	8	15 41 64 85 110 133 175 213	44 34 74 110 135 158 179 203	25 40 69 104 136 182 207 231	31 55 77 93 108 135 178 217	25 51 80 117 155 179 206 227	30 32 60 103 117 141 179 215
	10	18 39 58 87 115 137 172 186 210 230	21 36 63 79 111 129 150 180 208 227	28 47 74 90 116 131 153 178 208 226	22 42 69 84 109 133 158 182 208 227	39 91 103 127 146 159 176 193 208 225	21 35 65 98 119 140 165 184 211 231
	4	47 74 107 149	55 90 132 167	42 66 117 149	33 67 109 155	53 87 123 165	45 89 155 211
Test 9	6	13 43 62 92 126 165	15 50 89 125 160 195	19 45 81 115 151 230	12 42 59 96 127 160	24 33 76 115 143 190	28 48 80 116 149 167
	8	14 30 33 73 92 123 132 173 12 22 41 50 82 106 126 159 191	11 40 55 77 101 126 151 183	20 41 00 91 128 155 200 233	11 30 34 81 113 139 166 187 9 41 60 92 116 121 150 167 195	17 00 00 105 125 145 172 197	20 31 70 104 132 134 172 207
	10	13 23 41 39 82 106 126 138 181 198	11 43 54 72 89 105 134 165 188 213	24 47 71 94 118 140 160 177 208 237	9 41 60 92 116 131 150 167 185 203	13 30 47 67 86 108 131 150 183 212	20 43 71 92 113 153 175 190 226
	4	48 76 132 175	31 69 117 169	53 86 116 200	62 101 132 190	45 70 123 186	52 83 139 193
T 110	6	34 57 90 127 166 196	53 90 116 142 180 214	42 56 104 136 169 220	33 56 87 127 162 198	43 76 118 155 190 225	42 70 100 133 164 226
Test 10	8	19 33 62 91 133 165 195 214	20 26 57 90 112 150 195 220	12 38 55 88 113 150 186 229	34 60 98 128 148 170 194 221	17 38 58 87 119 147 187 216	10 23 49 79 121 149 170 189
	10	16 35 54 71 93 119 141 169 196 231	9 26 36 51 72 106 132 166 195 224	10 26 41 61 77 108 134 160 185 213	14 33 56 86 106 129 159 189 212 235	8 29 43 75 99 118 141 168 196 226	10 33 48 69 90 113 144 169 194 230

Image	к		ABC			BA	
	ĸ	R	G	В	R	G	В
	4	55 103 154 201	69 104 156 207	40 96 165 219	49 78 150 214	66 92 128 195	78 116 176 213
Tect 1	6	24 63 109 149 184 220	47 74 111 152 183 218	39 84 126 154 188 220	31 58 81 105 150 195	20 45 85 115 165 212	29 71 118 154 190 230
lest 1	8	24 51 81 113 142 177 211 226	20 54 77 108 150 174 200 223	15 47 75 107 143 171 207 237	12 51 80 98 117 155 193 225	13 48 77 109 159 181 205 225	33 63 94 110 143 168 203 242
	10	16 41 59 85 113 142 167 187 211	15 43 62 88 112 139 167 189 209	13 39 62 83 113 139 165 192 221	20 50 82 99 125 149 168 190 211	15 41 88 107 129 146 158 177 206	31 51 72 84 99 129 162 191 227
	10	236	232	236	231	232	242
	4	63 108 164 216	78 119 159 231	72 98 171 224	117 150 188 275	129 152 182 231	88 113 140 189
Test 2	6	49 76 112 149 196 236	52 79 125 159 189 223	56 78 124 148 182 219	81 107 143 173 205 232	83 97 112 130 212 233	83 114 153 178 206 238
lest 2	8	38 51 73 110 143 182 221 240	37 56 90 122 143 170 195 222	31 51 79 109 149 175 207 246	35 48 68 89 140 181 210 236	51 85 120 156 182 214 242 250	5 20 45 82 113 149 177 217
	10	22 37 57 85 112 142 167 192 223	6 45 60 80 109 133 160 188 218	23 40 65 88 115 144 163 188 218	64 69 75 81 98 120 155 187 210	30 50 70 92 120 147 171 193 214	28 58 79 98 135 162 186 206 234
	10	237	244	239	230	238	248
	4	31 103 162 206	60 102 151 209	44 103 157 206	53 99 141 197	53 121 164 203	23 100 143 191
Test 3	6	34 68 103 140 190 226	29 66 101 140 186 217	31 67 98 138 186 217	29 66 116 154 185 215	39 72 122 154 181 210	45 86 116 143 173 219
10010	8	18 51 79 111 138 173 205 232	28 56 84 108 140 168 194 231	20 50 77 103 141 168 199 222	20 43 75 97 136 181 205 236	25 51 80 108 136 177 203 231	12 56 86 110 138 175 202 227
	10	19 37 63 87 112 137 170 195 222	22 46 65 92 118 141 165 194 216	21 52 71 96 110 136 157 196 214	19 40 64 90 117 147 174 206 227	36 62 88 105 116 135 162 196 216	30 51 74 100 113 135 146 160 184
		244	237	230	244	239	214
	4	40 90 136 172	63 118 170 210	63 96 146 208	68 110 141 168	60 112 161 208	49 109 189 234
Test 4	6	32 69 114 155 190 219	42 66 111 161 201 237	35 65 104 146 186 235	38 59 116 147 173 197	37 78 135 168 193 223	40 74 108 137 155 226
	8	21 45 78 107 137 169 206 227	32 56 83 120 142 177 212 241	26 49 80 116 156 182 213 233	8 36 61 92 125 197 222 241	26 52 84 112 135 160 198 228	26 58 91 121 146 170 198 228
	10	25 45 60 84 114 140 168 191 217	26 43 62 86 108 136 161 191 216	22 38 63 85 113 137 159 193 223	8 33 64 96 128 156 174 195 217	38 63 84 105 129 145 168 192 206	25 41 54 67 96 130 152 186 209
	4	232	245	241 75 119 170 221	234	231	233
	4	54 94 107 222 56 75 07 138 187 555	29 93 139 220	75 118 109 251	55 107 160 196	29 75 154 225	72 106 149 208
Test 5	0	26 / 2 9/ 138 18/ 223	21 73 108 140 188 228	20 / 1 118 155 191 251	59 66 122 165 202 226 27 61 85 117 142 171 201 228	19 62 94 144 164 254	52 101 156 176 215 254
	0	10 52 64 117 141 175 202 229	13 62 66 117 145 176 203 226	18 36 77 103 133 172 200 234	27 01 05 117 142 171 201 250	09 124 141 157 171 105 190 225	16 42 69 09 120 127 107 199 234
	10	10 30 00 99 124 147 107 103 200	12 30 68 88 114 144 169 192 219	241	17 37 34 72 104 138 160 178 191 221	14 00 00 104 110 141 100 197 210	10 45 00 90 120 154 177 190 220 241
	4	72 116 162 197	59 92 142 177	60 91 143 196	60 121 178 210	55 91 135 174	241 59 94 128 166
	-	35 54 103 142 184 222	31 66 111 161 192 228	36 74 114 158 197 218	12 59 96 121 156 201	61 110 147 175 204 233	44 74 103 131 190 227
Test 6	8	16 45 79 113 151 189 210 231	13 51 85 119 156 182 212 234	21 44 84 120 148 176 206 224	13 33 48 60 119 152 190 236	41 64 98 119 158 183 203 222	11 40 62 125 165 183 213 234
	U	15 42 60 86 114 144 164 194 214	11 41 60 81 101 130 155 181 212	26 46 64 80 110 131 164 185 201	11 47 75 102 121 134 150 178 204	14 39 58 84 108 138 161 186 210	21 38 51 71 90 115 144 172 191
	10	231	233	220	227	235	228
	4	55 97 147 210	45 96 148 216	41 92 139 220	67 96 125 171	84 112 163 244	24 76 173 219
	6	33 72 111 153 177 219	19 75 110 147 181 227	25 71 109 148 190 227	57 75 92 122 166 212	27 87 118 141 185 234	21 67 100 140 192 235
Test 7	8	24 59 79 102 129 157 188 221	29 65 87 113 145 166 195 231	24 56 86 113 147 189 211 234	41 72 92 116 138 154 169 212	22 45 79 104 133 162 200 226	14 45 72 111 154 188 212 244
	10	15 39 68 98 125 142 166 195 220	13 40 69 87 110 140 170 202 223	17 44 71 89 113 138 158 193 214	21 62 94 122 144 163 183 200 217	43 80 102 121 140 159 175 196	20 50 84 111 131 167 180 205 223
	10	237	242	234	242	223 237	239
	4	55 86 183 220	60 104 153 225	33 85 121 226	32 78 163 226	63 106 148 222	54 97 126 192
Test 9	6	38 82 126 154 193 229	44 74 114 152 181 230	35 57 76 105 130 235	46 87 148 181 215 237	53 78 119 144 184 227	27 42 65 90 112 141
lest o	8	14 48 81 105 142 175 212 239	24 55 90 116 146 174 208 236	29 62 80 110 133 172 208 236	28 71 98 124 149 179 204 233	24 54 81 104 142 177 211 236	9 21 42 84 113 132 192 240
	10	11 34 57 78 101 133 167 191 216 234	17 35 64 85 109 134 155 183 210 239	20 40 72 99 116 135 167 186 218 240	16 51 79 103 126 144 169 194 224 239	18 50 66 83 101 121 147 172 207 227	18 47 82 105 127 145 169 194 220 240
	4	64 110 138 182	43 96 149 194	52 101 145 221	68 104 122 151	35 73 109 182	38 92 144 208
	6	19 62 101 131 157 197	39 74 106 145 183 212	30 65 102 135 166 234	39 63 90 116 141 181	12 51 100 129 161 198	40 54 72 101 129 158
Test 9	8	21 56 98 134 154 173 194 214	16 43 67 99 141 175 197 216	22 50 83 115 146 168 205 239	38 58 74 104 128 145 175 198	40 60 105 141 163 187 213 236	15 29 60 96 126 167 210 239
	-	12 42 63 87 114 141 169 197 223	15 46 66 86 110 137 160 187 214	25 45 60 85 111 136 164 193 227	23 66 88 123 142 154 164 179 199	14 42 64 84 111 135 159 184 203	16 32 48 99 135 158 174 202 227
	10	238	236	242	216	226	243
	4	58 104 164 221	70 110 161 213	77 122 159 215	74 134 165 199	70 109 164 238	78 104 163 193
-	6	38 76 125 159 192 229	53 79 111 139 176 218	48 71 101 135 182 221	26 80 137 166 196 233	51 96 118 138 169 209	42 74 121 155 198 229
Test 10	8	31 49 76 110 142 169 202 240	32 52 86 117 148 180 206 226	29 52 83 114 146 171 195 234	32 67 94 119 147 174 199 240	47 75 90 103 117 159 187 219	35 67 108 136 162 185 215 243
	10	27 47 69 94 120 143 164 185 212	26 43 66 95 117 142 165 192 221	22 39 62 89 110 135 157 185 214	33 66 88 111 125 143 156 180 201	11 29 53 84 114 136 166 193 220	13 39 58 105 132 166 183 207 230
	10	242	239	238	239	234	247

Table 4. Comparison of optimal threshold values between Artificial Bee Colony (ABC) and Bat Algorithm (BA) at *K* = 4, 6, 8, 10 based on fuzzy entropy.

Entropy **2019**, 21, 398

R G B R G Test 1 6 44 74 109 134 172 205 53 84 120 149 175 205 61 95 131 154 186 218 22 90 100 165 239 255 63 07 81 58 214 239 35 58 93 153 10 45 67 93 115 131 142 161 176 194 51 68 29 81 14 133 152 171 195 25 45 65 80 95 113 139 164 194 12 27 46 70 102 136 153 178 198 17 37 49 72 95 132 155 194 213 12 33 69 91 210 217 223 28 226 243 4 123 146 174 202 128 154 183 216 98 131 170 208 7 39 194 232 24 112 145 227 71 105 128 1 10 27 23 28 226 243 249 170 212 141 10 117 195 225 87 103 128 164 181 214 17 51 79 129 191 230 3 18 55 104 145 223 26 70 90 142 123 12 36 190 122 123 12 35 194 213 12 376 97 91 122 190 225 255 29 90 100 120 122 137 195 225 27 39 112 131 141 161 145 223 26 70 91 142 145 227 71 105 128 1 10 70 82 95 1007 122 134 150 168 189 80 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 12 0 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 53 227 39 01 23 255 239 9 255 239 9 <t< th=""><th></th></t<>	
4 68 107 150 192 65 103 156 198 77 115 164 196 54 119 190 243 12 57 174 243 24 93 175 23 7 Est 1 6 44 74 109 134 172 205 53 84 120 149 175 205 61 95 131 154 186 218 22 90 100 165 239 255 63 078 158 214 239 35 58 93 153 10 45 67 93 115 131 142 161 176 194 48 75 10 1429 149 170 192 213 46 68 91 110 131 156 174 212 75 7108 118 129 158 216 251 95 76 97 181 209 241 255 43 278 123 12 210 210 217 23 228 226 236 236 237 87 97 29 51 32 155 194 213 23 67 99 112 23 145 1145 115 1142 112 75 179 129 191 230 31 85 70 1145 223 26 70 90 142 6 100 117 138 160 185 205 109 129 153 171 195 225 87 103 128 164 181 214 17 51 79 129 191 230 31 85 50 141 52 23 26 70 90 142 70 82 95 107 122 134 150 168 189 80 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 17 05 28 123 181 142 179 211 17 52 83 123 181 216 230 247 18 37 39 119 1230 255 252 59 010 127 27 39 102 70 82 95 107 122 134 150 168 189 80 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 10 07 57 9 82 87 118 142 179 211 17 52 83 1	В
Test 1 6 44 74 109 134 172 205 53 84 120 149 175 205 61 95 131 154 186 218 22 90 100 165 239 255 63 078 158 214 239 35 58 93 153 8 47 72 101 121 144 168 188 211 48 75 104 129 149 170 192 213 46 68 91 110 131 156 174 212 757 108 118 129 158 1216 251 95 56 89 7181 209 241 255 432 78 1231 10 210 210 217 223 228 226 241 12 145 227 71 105 128 1 4 123 146 174 202 128 154 183 216 98 131 170 208 739 194 232 24 112 145 227 71 105 128 1 6 100 117 138 160 185 205 109 129 153 171 195 225 87 103 128 164 181 214 17 51 79 129 191 230 31 85 701 412 523 26 70 90 142 8 78 93 104 118 134 146 169 200 93 111 131 147 165 182 202 228 62 74 92 111 131 154 176 9211 17 52 83 123 181 216 230 247 18 73 92 119 152 109 025 252 59 90 102 12 8 78 93 104 118 134 146 169 200 93 111 121 201 30 142 157 70 83 103 118 137 147 166 182 120 75 79 82 87 118 142 179 211 16 38 73 3114 130 163 196 248 253 22 73 90 123 9 90 101 112 120 130 142 157 70 81 03 113 18 137 147 166 182 99 94 147 214 42 117 173 201 44 170 708 225 59 80 70 122 129 156	18
8 47 /2 101 121 144 168 188 211 48 /5 104 129 149 17/0192 213 46 68 91 110 131 156 174 212 7 57 108 118 129 158 216 251 9 55 68 97 181 209 241 255 4 32 78 1231 10 45 67 93 115 131 142 161 176 194 51 65 82 98 114 133 152 171 195 25 45 65 80 95 113 139 164 194 12 27 46 70 102 136 153 178 198 7 37 49 72 95 132 155 194 213 12 33 63 99 1 210 217 223 228 226 24 12 27 46 70 102 136 153 178 198 12 37 49 72 95 132 155 194 213 12 33 63 99 1 4 123 146 174 202 128 154 183 216 98 131 170 208 7 39 194 232 24 112 145 227 71 105 128 1 6 100 117 138 160 185 205 109 129 153 171 195 225 87 103 128 164 181 214 17 51 79 129 191 230 3 18 55 104 145 223 26 70 90 142 8 70 82 95 107 122 134 150 168 189 90 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 120 75 79 82 87 118 142 179 211 16 38 73 31 14 130 163 196 248 253 22 73 90 123 10 70 82 95 107 122 134 150 168 189 90 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 39 94 147 214 42 117 173 201 24 107 208 2 10 209 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201	186 227
10 45 67 93 115 131 142 161 176 194 51 65 89 98 114 133 152 171 195 25 45 65 80 95 113 139 164 194 12 27 46 70 102 136 153 178 198 17 37 49 72 99 132 155 194 213 12 33 63 99 12 4 123 146 174 202 128 154 183 216 98 131 170 208 73 91 94 232 24 112 145 227 71 105 128 1 6 100 117 138 160 185 205 109 129 153 171 195 225 87 103 128 164 181 214 17 51 79 129 191 230 31 85 51 04 145 223 26 70 90 142 78 7 93 104 118 134 146 169 200 93 111 131 147 165 182 202 228 62 74 92 111 131 154 179 211 17 52 83 123 181 216 230 247 18 73 91 191 52 190 225 252 59 90 102 12 10 70 82 95 107 122 134 150 168 189 80 90 101 112 120 103 142 157 70 83 103 118 137 147 166 182 200 218 12 30 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 253 22 73 90 123 209 170 190 200 218 120 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 253 227 39 01 23 4 48 104 158 199 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 22 4 48 104 133 148 176 212 47 77 105 141 180 214 56 83 114 136 168 211 62 96 128 176 199 223 16 42 63 76 122 219 12 34 67 122 <	152 179 196 247
Test 2 210 220 220 220 220 240 4 123 146 174 202 128 154 183 216 98 131 170 208 7 39 194 232 2410 145 227 71 105 128 1 6 100 117 138 160 185 205 109 129 153 171 195 225 87 103 128 164 181 214 17 51 79 129 191 230 3 18 55 104 145 223 26 70 90 142 8 78 93 104 118 134 146 169 200 93 111 131 147 165 182 202 228 62 74 92 111 131 154 179 211 17 52 83 123 181 216 230 247 18 73 92 119 152 190 225 252 59 90 102 12 10 70 82 95 107 122 134 150 168 189 80 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 12 0 75 79 82 87 118 142 179 211 16 38 73 314 130 163 196 248 253 22 73 90 123 209 170 190 200 218 12 0 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 253 23 9 4 48 104 158 199 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 2 8 37 67 92 112 135 163 189 217 38 59 82 102 129 156 188 213 46 70 91 117 140 162 190 213 13 75 177 115 159 209 237 19 60 102 149 177 203 223 251 20 57 73 95 17 125 149 149 10 36 69 100 120 142 156 172 190 30 54 73 96 119 137 158 178 198	132 161 189 212 228
Test 2 120 1471202 121 111 149 149 120 120 151 110 510 170 151 110 120 170 171 120 171 1145 120 171 105 120 120 171 105 120 120 171 105 120 120	83
Test 2 8 78 93 104 118 134 146 169 200 93 111 131 147 165 182 202 228 67 74 92 111 131 154 179 211 17 57 83 123 181 216 230 247 18 73 92 119 152 190 225 252 59 90 102 12 10 70 82 95 107 122 134 150 168 189 80 90 101 112 120 130 142 157 70 83 103 118 137 147 166 182 120 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 253 22 73 90 123 209 4 48 104 158 199 68 121 166 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 2 4 48 104 158 199 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 2 5 8 37 67 92 112 135 163 189 217 38 59 82 102 129 156 188 213 46 70 91 117 140 162 190 213 13 75 177 115 159 209 237 19 60 102 149 177 203 223 251 20 57 73 95 17 10 36 69 100 120 142 156 172 190 30 54 73 96 119 137 158 178 198 24 49 67 83 104 120 143 170 192 877 109 140 164 179 202 207 231 12 58 298 109 164 178 196 230 17 56 80 97 12 514 10 36 69 100 120 142 156 172 190 30 54 73 96 119 137 158 178 198 24 49 67 83 104 120 143 170 192 877 109 140 164 179 202 207 231 12 58 298 109 164 178 196 230 17 56 80 97 12 514 204 223 222 224 70 19 147 207 <th>217 240</th>	217 240
10 70 82 95 107 122 134 150 168 189 209 80 90 101 112 120 130 142 157 170 190 70 83 103 118 137 147 166 182 200 218 120 75 79 82 87 118 142 179 211 16 38 73 114 130 163 196 248 253 255 22 73 90 123 255 4 48 104 158 199 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 2 6 44 80 113 148 176 212 47 77 105 141 180 214 56 83 114 136 168 211 62 96 147 619 9223 16 42 63 76 122 219 12 34 67 126 8 37 67 92 112 135 163 189 217 38 59 82 102 129 156 188 213 46 70 91 117 140 162 190 213 13 75 177 115 159 209 237 19 60 102 149 177 203 223 251 20 57 73 95 17 10 36 69 100 120 142 156 172 190 30 54 73 96 119 137 158 178 198 24 49 67 83 104 120 143 170 192 877 109 140 164 179 202 207 231 12 58 298 109 164 178 196 230 17 56 80 97 12 35 163 189 217 10 204 223 222 214 254 255 251 214 254 254 255 251 251 251 214 214 217 200 70 19 147 207 168 91 145 214 195 184 214 264 27 120 21	21 142 198 224 240
4 48 104 158 199 68 121 163 196 77 119 161 201 39 94 147 214 42 117 173 201 24 107 208 2 Test 3 6 44 80 113 188 176 212 47 77 105 141 180 214 56 83 114 136 168 21 6 29 6 29 10 164 26 37 61 22 219 12 34 67 10 24 107 208 2 10 39 94 147 214 42 17 73 201 24 107 208 2 10 37 67 92 112 15 188 213 46 70 91 117 140 12 137 17 15 109 100 102 142 1	137 148 179 205 215
6 44 80 113 148 176 212 47 77 105 141 180 214 56 83 114 136 168 211 62 96 128 176 199 223 16 42 63 76 122 219 12 34 67 126 8 37 67 92 112 135 163 189 217 38 59 82 102 129 156 188 213 46 70 91 117 140 162 190 213 1 37 51 77 115 159 209 237 19 60 102 149 177 203 223 251 20 57 73 95 1 10 36 69 100 120 142 156 172 190 30 54 73 96 119 137 158 178 198 24 49 67 83 104 120 143 170 192 877 109 140 164 179 202 207 231 1 25 82 98 109 164 178 196 230 17 56 80 97 120 147 56 80 97 120 140 143 170 192 204 223 222 214 254 255 251 40 13 169 71 117 154 200 78 109 147 207 46 89 145 214 18 95 184 244 267 71 100 147	21
10873 8 37 67 92 112 135 163 189 217 38 59 82 102 129 156 188 213 46 70 91 117 140 162 190 213 1 37 51 77 115 159 209 237 19 60 102 149 177 203 223 251 20 57 73 95 1 10 36 69 100 120 142 156 172 190 30 54 73 96 119 137 158 178 198 24 49 67 83 104 120 143 170 192 8 77 109 140 164 179 202 207 231 1 25 82 98 109 164 178 196 230 17 56 80 97 1 204 223 222 214 254 255 251 4 54 104 132 169 71 117 154 200 78 109 147 207 46 89 145 214 18 95 184 244 267 71 20 1	183 212
36 69 100 120 142 156 177 19 107 107 108 107 108 109	125 159 188 221
20 204 223 222 214 254 255 251 4 54 04 123 169 71 117 154 200 78 109 147 207 46 89 145 214 18 95 184 244 26 77 120 21	119 146 172 216 229
A 54 94 122 169 77 117 154 200 78 109 147 207 46 89 145 214 18 05 184 244 245 26 77 120 21	-
4 0 - 9 - 9 1 0 2 10 9 7 1 11 / 10 2 0 0 7 1 0 1 1 - 2 0 0 7 1 0 2 1 + 2 0 7 1 0 2 1 + 2 0 7 1 0 2 1 + 10 0 7 1 0 2 1 + 10 0 7 1 0 2 1 + 10 0 7 1 0 2 1 + 10 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0	3
Test 4 6 49 / 2 101 128 156 183 56 8 / 109 143 181 212 51 89 115 152 194 223 55 26 55 128 167 195 41 / 1095 146 203 231 18 94 89 128	169 221
6 40 0 7 41 00 17 20 000 160 160 160 160 160 160 17 100 160 17 100 160 17 100 160 17 100 160 17 100 160 160 160 160 160 160 160 160 160	103 204 223 230
$\begin{array}{c} 10 \\ 198 \\ 273 \\ 277 \\ 276 \\ 277 \\ 246 \\ 246 \\ 240 \\ 240 \\ 240 \\ 240 \\ 240 \\ 238 \\ 278 \\ 288 \\ $	115 150 150 165 212
4 86 123 161 198 88 123 165 203 75 118 159 199 8 55 142 203 82 107 159 198 22 57 114 22	26
6 71 90 116 154 188 218 78 103 127 157 186 211 65 101 133 162 190 222 42 106 138 203 227 253 11 41 110 152 204 248 75 133 164 1	94 214 237
lest 5 8 33 67 88 114 131 158 183 212 59 76 97 114 135 164 192 222 58 78 97 121 142 168 192 227 11 33 86 110 175 195 211 247 3 63 123 177 197 216 239 255 26 54 85 123	150 178 211 230
10 57 77 100 116 132 148 166 181 36 52 70 88 109 128 146 160 183 64 87 101 115 128 144 161 179 32 46 62 94 121 149 171 188 209 8 21 50 87 104 138 148 166 192 9 36 88 110 1	123 142 163 182 216
201 223 201 196 217 238 229 249	
4 59 104 157 197 69 106 147 193 59 100 130 177 25 127 153 246 16 78 149 224 28 98 172 23	1
Test 6 6 54 81 108 141 175 202 55 83 115 151 177 209 41 71 104 137 165 199 36 100 122 148 178 204 29 87 116 142 165 198 13 28 69 91 1 $328 69 91$	137 228
6 40 / 41 / 00 / 41 / 201 / 62 / 62 / 62 / 62 / 62 / 62 / 62 / 6	0 137 108 207 240
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0 149 175 208 219
4 74 110 145 176 85 107 145 184 75 100 136 182 28 95 224 255 43 70 135 235 46 134 198 2	47
6 63 84 114 143 170 201 22 76 100 132 169 221 48 79 107 130 151 191 7 30 49 115 157 194 30 71 107 144 183 242 4 55 137 166	205 251
lest 7 8 41 68 97 120 139 165 184 216 43 76 97 119 140 164 181 220 34 57 82 109 129 151 200 233 16 37 65 85 108 141 169 222 13 44 70 118 144 157 177 236 13 57 95 117	' 145 183 214 230
53 70 89 109 122 141 159 176 195 25 44 66 81 103 123 142 158 180 55 80 105 123 133 144 156 164 14 35 57 75 88 120 141 154 173 11 38 58 76 100 126 149 172 189 17 37 74 100	124 155 175 210 227
217 227 184 234 214 240 242	
4 69 124 160 207 62 118 152 207 44 92 122 189 48 83 156 213 22 81 125 216 61 98 114 21	2
Test 8 6 50 85 114 157 184 213 54 85 116 149 176 216 38 71 103 128 192 221 6 31 73 108 214 254 49 103 122 161 190 255 14 55 109 16	3 195 234
6 41 61 60 111 130 101 105 220 41 67 60 110 130 137 125 224 35 06 91 130 125 140 164 232 21 41 67 / 0 107 134 165 231 21 47 60 119 139 134 242 142 12 57 07 101 134 165 120 127 157 142 142 142 142 142 142 142 142 142 142	137 100 184 233
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114 152 142 155 177
4 70 104 138 160 71 106 142 176 58 107 149 225 47 86 157 234 43 92 125 219 37 92 147 22	3
6 57 82 110 133 156 177 61 92 116 137 163 187 43 74 102 126 155 206 41 93 139 167 213 221 13 79 118 156 166 205 11 71 112 15	5 175 239
1 (1) 8 50 72 97 120 138 155 172 190 54 75 93 110 131 151 173 194 37 62 91 121 143 165 205 219 3 19 32 70 111 155 188 227 11 35 76 122 141 181 216 230 23 74 94 113	147 189 214 241
49 64 79 92 105 118 137 158 173 50 69 90 108 121 139 155 170 187 38 67 85 98 113 129 145 164 196 7 35 69 99 115 136 157 184 210 5 17 37 91 113 158 202 229 247 25 57 90 112	. 141 155 174 196 216
10 191 204 222 251 252 232	
4 62 89 136 179 70 103 136 191 70 111 156 191 32 132 173 217 33 79 01 34 215 70 129 166 1	92
Test 10 6 52 95 129 155 187 226 54 88 116 148 184 216 50 80 111 141 171 207 51 85 123 155 187 218 14 33 61 117 187 237 41 67 108 13	9 182 219
	- 104 173 193 215 132 157 180 100 224
$10 \begin{array}{c} 10 \\ 232 \\ 232 \\ 227 \\ 232 \\ 227 \\ 232 \\ 227 \\ 232 \\ 227 \\ 232 \\ 227 \\ 232 \\ 232 \\ 232 \\ 232 \\ 232 \\ 246 \\ 240 \\ 240 \\ 239 \\ 240 \\ 239 \\ 240 \\ 239 \\ 240 \\ 239 \\ 2$	1.74 1.77 1.00 1.77 2.24

Table 5. Comparison of optimal threshold values between Wind Driven Optimization (WDO) and Bird Swarm Algorithm (BSA) at *K* = 4, 6, 8, 10 based on fuzzy entropy.

Figure 7. Segmented images of Test 1 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 8. Segmented images of Test 2 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 9. Segmented images of Test 3 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 10. Segmented images of Test 4 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 11. Segmented images of Test 5 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 12. Segmented images of Test 6 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 13. Segmented images of Test 7 at *K* = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 15. Segmented images of Test 9 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Figure 16. Segmented images of Test 10 at K = 4, 6, 8, 10 using selected algorithms based on fuzzy entropy.

Table 6 and Figures 17 and 18 compare the CPU Time and PSNR values while Table 7 and Figures 19 and 20 compare the MSSIM and FSIM values of the segmented images. As can be seen from these tabulated values, all algorithms have lower values of PSNR, MSSIM, and FSIM at lower threshold levels. With the improvement of the threshold level, the values of PSNR, MSSIM, and FSIM increase gradually. Consequently, it can be clearly known that segmentation performance will be improved as the threshold level increases. However, the time of each algorithm will rise equally on the increasing threshold levels indicating the computation of algorithms is more complex on the higher threshold levels. PSNR, MSSIM, and FSIM are used to measure the similarity and qualify among the segmented images. Higher PSNR, MSSIM, and FSIM demonstrate that segmented images have more excellent segmentation performances.

Figure 17. Comparison of Computational Time (CPU Time) based on fuzzy entropy.

Image	к		Con	nputational 🛛	lime (CPU T	Time)		Peak Signal to Noise Ratio (PSNR)					
	R	CEFO	EFO	ABC	BA	WDO	BSA	CEFO	EFO	ABC	BA	WDO	BSA
	4	0.17541	0.20379	5.13759	2.45288	2.49367	2.97138	19.0869	18.5304	17.8020	17.3212	15.9576	16.8238
T	6	0.21623	0.26617	6.63971	2.98102	3.04503	3.33423	22.4966	21.0851	20.8826	19.4872	19.2521	19.3995
lest 1	8	0.26219	0.30416	7.40398	3.54215	3.53203	3.96657	23.9315	23.3153	23.0079	23.0902	21.2553	21.9558
	10	0.33284	0.35769	8.54834	4.05983	4.12060	4.61008	25.1603	24.8085	24.9762	23.5623	23.5174	24.2976
	4	0.18152	0.19745	5.48045	2.62491	2.55021	3.05768	18.5011	16.6384	17.9217	14.9956	14.6621	16.8609
Test 9	6	0.23014	0.25140	6.52806	2.98864	3.11644	3.67576	21.4186	20.8410	21.4261	17.9962	16.1975	22.5361
lest 2	8	0.26745	0.30171	7.39266	3.54545	3.54003	4.00924	23.4745	23.5633	24.0574	18.3652	19.0371	22.6106
	10	0.35415	0.36493	8.32270	4.07706	4.17821	4.71338	27.1960	26.5362	26.5537	24.7670	19.9620	22.7476
	4	0.19354	0.20952	5.42962	2.54004	2.32354	3.05836	17.9266	18.0706	17.7559	15.0795	17.8259	16.1882
T+ 2	6	0.24406	0.27724	6.51639	3.07212	3.14887	3.21041	21.4595	20.9724	21.0554	20.6465	20.9096	18.7586
lest 5	8	0.26572	0.30195	7.43254	3.61201	3.64706	4.05836	23.5257	22.7557	22.9832	22.7031	23.0729	21.4050
	10	0.31104	0.35756	8.49756	4.05537	4.27057	4.97929	25.1107	24.1796	24.6243	23.9076	24.8630	21.4820
	4	0.20654	0.22286	5.22364	2.53570	2.51094	2.89167	18.5791	18.5562	18.4538	17.8594	18.1050	18.4835
Tect 4	6	0.25613	0.27055	6.52943	3.00267	3.05336	3.40388	21.9962	21.5752	21.4728	21.0931	20.4419	21.3494
lest 4	8	0.29565	0.31734	7.34861	3.53905	3.74083	4.08592	23.6574	22.9513	22.5091	22.4950	22.1239	21.8930
	10	0.34226	0.43022	8.48234	4.19234	4.20027	4.77867	24.8212	24.7081	24.3937	24.5774	23.1124	24.5733
	4	0.20017	0.22525	5.27645	2.53857	2.48718	2.98304	18.0239	17.6242	16.8089	16.3870	17.3516	15.8329
Test F	6	0.25485	0.26024	6.89415	3.06993	3.06272	3.53148	20.3479	20.4329	20.0547	20.2630	19.1668	18.4271
lest 5	8	0.29424	0.32101	7.55179	3.86221	3.68722	4.09332	22.1661	21.8127	22.1693	21.5206	21.5001	19.8220
	10	0.34480	0.35174	8.37159	4.09532	4.24325	4.95875	24.0138	23.7462	23.8704	23.4936	22.2399	23.5245
	4	0.19472	0.20841	5.12137	2.49369	2.53905	3.08066	18.1095	17.6491	17.6509	17.7857	17.7293	16.8704
Tact 6	6	0.24263	0.26745	6.57661	3.07078	3.06447	3.58303	21.4831	20.6287	21.0117	20.2254	20.2431	19.4964
lest o	8	0.30864	0.32049	7.35641	3.57464	3.50718	4.12885	23.2290	23.3256	22.7773	21.8122	21.4135	20.8800
	10	0.33725	0.35708	8.54900	4.03751	4.15783	4.86694	24.7681	24.4737	24.5259	24.6509	23.1793	22.5603
	4	0.20678	0.23005	5.22556	2.53131	2.44727	3.00952	18.8739	18.5039	18.0277	16.4128	16.4863	16.0152
Test 7	6	0.23562	0.25809	6.62490	3.07199	3.21664	3.41591	22.1443	21.6213	20.0762	19.9806	20.8248	18.3119
16517	8	0.29807	0.30283	7.41492	3.56056	3.69153	4.05134	23.7839	23.1932	23.2384	22.0415	24.3675	22.0538
	10	0.34217	0.36273	8.58824	4.20910	4.36751	4.74359	24.7433	24.0335	24.3244	23.0629	23.8627	24.2057
	4	0.21450	0.22378	5.33752	2.52727	2.33784	2.93353	18.9495	17.4911	16.6399	16.5774	18.2614	17.6314
Test 8	6	0.25068	0.28080	6.43523	3.03905	3.08865	3.44368	21.4109	20.5791	21.8933	20.7661	22.1747	19.2986
lesto	8	0.31994	0.35980	7.36667	3.57058	3.46608	4.14337	23.0677	22.4398	23.0619	22.3759	23.4846	21.3875
	10	0.33725	0.36888	8.48988	4.08254	4.16608	4.89443	25.4357	25.3720	23.9689	23.7873	25.4598	24.9694
	4	0.19324	0.23558	5.28317	2.55034	2.32281	3.11904	16.4568	15.9776	16.5525	16.1450	16.1994	18.1708
Test 9	6	0.23789	0.27384	6.58909	3.06363	3.08147	3.32353	18.4675	18.6749	19.2639	18.5698	18.4175	19.1084
1000 9	8	0.27057	0.29738	7.32034	3.58204	3.53299	4.04083	21.0098	20.5312	20.6003	20.3908	19.9597	21.0047
	10	0.33151	0.36361	8.34554	4.15394	4.26364	4.60027	22.3666	23.0655	24.4486	22.4630	20.8358	22.9661
	4	0.19039	0.23247	5.45731	2.58281	2.42582	3.10718	18.5817	18.4860	18.1025	17.9358	18.4517	17.3690
Test 10	6	0.23656	0.25762	6.46701	3.03982	3.12420	3.45783	20.8938	20.8450	20.8187	20.7592	20.5685	19.7354
1031 10	8	0.26390	0.29360	7.34870	3.59042	3.54711	3.95625	22.6241	22.3346	22.3827	22.2330	22.6466	22.6210
	10	0.33304	0.34301	8.49122	4.12545	4.29727	4.76364	25.3640	24.8916	24.8559	24.7299	23.3085	24.8469

Table 6. Comparison of CPU Time (in seconds) and PSNR computed by CEFO, EFO, ABC, BA, WDO, and BSA using fuzzy entropy. The bold numbers are the best values in the relevant index.

Image	к		Mean	Structural S	imilarity (M	(SSIM)		Feature Similarity (FSIM)					
		CEFO	EFO	ABC	BA	WDO	BSA	CEFO	EFO	ABC	BA	WDO	BSA
	4	0.97368	0.96312	0.96192	0.94201	0.94017	0.95642	0.75882	0.74880	0.74221	0.72940	0.72485	0.69178
T	6	0.98631	0.98280	0.98244	0.95769	0.97051	0.97305	0.85039	0.83938	0.81125	0.76648	0.80694	0.75111
lest 1	8	0.99199	0.98985	0.98934	0.98929	0.98299	0.98442	0.88618	0.87683	0.86915	0.86860	0.85435	0.83095
	10	0.99361	0.99251	0.99329	0.98959	0.98878	0.99215	0.91098	0.90282	0.90927	0.88384	0.89480	0.89012
	4	0.96013	0.95306	0.95484	0.93035	0.92588	0.95814	0.72972	0.68909	0.69247	0.64807	0.64540	0.65013
Test 2	6	0.98459	0.97495	0.97746	0.93722	0.94664	0.98110	0.81315	0.73786	0.74709	0.70236	0.67594	0.73024
lest 2	8	0.99098	0.98908	0.98343	0.96678	0.97116	0.98765	0.86210	0.84695	0.85625	0.71072	0.74300	0.83126
	10	0.99631	0.99389	0.99545	0.99194	0.97709	0.98899	0.92876	0.92497	0.91465	0.87880	0.76162	0.84512
	4	0.97373	0.97293	0.97077	0.90106	0.96489	0.95882	0.71919	0.72285	0.71887	0.68456	0.70871	0.65393
Tect 2	6	0.98862	0.98623	0.98767	0.98523	0.98145	0.97832	0.83144	0.81185	0.82559	0.80544	0.82705	0.74121
lest 5	8	0.99319	0.99143	0.99196	0.99137	0.99274	0.98806	0.88510	0.87295	0.87866	0.87292	0.87457	0.84056
	10	0.99513	0.99393	0.99447	0.99282	0.99467	0.98472	0.91471	0.88683	0.91214	0.90164	0.90996	0.86459
	4	0.97504	0.97382	0.97329	0.97005	0.96999	0.97144	0.75966	0.75493	0.75345	0.75329	0.72873	0.73845
Test 4	6	0.98817	0.98736	0.98634	0.98489	0.98256	0.98795	0.85825	0.84736	0.84706	0.82680	0.80402	0.84761
1031 4	8	0.99221	0.99099	0.99161	0.99025	0.98786	0.98684	0.89738	0.88582	0.89347	0.88408	0.84668	0.86167
	10	0.99485	0.99452	0.99446	0.99308	0.99011	0.99385	0.92218	0.91879	0.91227	0.90467	0.86575	0.91742
	4	0.97653	0.97315	0.96886	0.96022	0.96675	0.96267	0.76795	0.76296	0.74913	0.75639	0.75709	0.72777
Test 5	6	0.98616	0.98513	0.98517	0.98732	0.97710	0.97627	0.82839	0.82738	0.81941	0.82174	0.80032	0.78086
icst 5	8	0.99131	0.98955	0.99027	0.98258	0.98718	0.98158	0.86282	0.85410	0.85843	0.85236	0.85559	0.82891
	10	0.99470	0.99435	0.99429	0.99253	0.98864	0.99286	0.89313	0.88408	0.88847	0.88520	0.88349	0.87589
	4	0.97060	0.96579	0.96406	0.95931	0.96633	0.95680	0.77366	0.74182	0.73894	0.75263	0.74499	0.71969
Test 6	6	0.98591	0.98494	0.98417	0.97846	0.98073	0.97718	0.83568	0.82893	0.83366	0.79984	0.81545	0.80549
10010	8	0.99198	0.99165	0.98932	0.98702	0.98448	0.98218	0.88446	0.88168	0.86619	0.85645	0.84359	0.82360
	10	0.99424	0.99330	0.99346	0.99299	0.98979	0.98715	0.90343	0.89737	0.90076	0.89585	0.87933	0.85478
	4	0.97596	0.97279	0.97349	0.95629	0.95168	0.95706	0.75191	0.72087	0.73196	0.69886	0.72229	0.62681
Test 7	6	0.98862	0.98840	0.98061	0.98013	0.98278	0.97028	0.84983	0.83905	0.79482	0.79773	0.82547	0.70824
	8	0.99260	0.99116	0.99129	0.98974	0.99020	0.98792	0.88582	0.87568	0.87649	0.86537	0.87662	0.83777
	10	0.99407	0.99259	0.99320	0.99084	0.99053	0.99268	0.90659	0.89269	0.90124	0.87211	0.88049	0.89262
	4	0.98354	0.97469	0.96164	0.97004	0.98276	0.97990	0.79086	0.76787	0.75329	0.78219	0.77483	0.78629
Test 8	6	0.99111	0.98909	0.99031	0.98855	0.99055	0.98273	0.84716	0.83915	0.83630	0.82678	0.83681	0.79247
	8	0.99381	0.99227	0.99103	0.99217	0.99266	0.99066	0.86616	0.84681	0.85892	0.84004	0.85703	0.80136
	10	0.99847	0.99600	0.99506	0.99363	0.99606	0.99554	0.88832	0.88298	0.88288	0.87188	0.87718	0.86633
	4	0.97162	0.97039	0.96942	0.96822	0.96587	0.97086	0.81290	0.79545	0.80453	0.78891	0.79135	0.80267
Test 9	6	0.98281	0.98209	0.98173	0.98096	0.97984	0.97906	0.86751	0.85710	0.85210	0.84483	0.85514	0.83386
	8	0.98634	0.98826	0.98486	0.98571	0.98601	0.98727	0.88414	0.89537	0.90678	0.87892	0.88468	0.87814
	10	0.99255	0.99236	0.99222	0.99119	0.98845	0.99031	0.92326	0.91/15	0.91732	0.91380	0.89638	0.90067
	4	0.97860	0.97680	0.97229	0.96956	0.97424	0.97019	0.78955	0.78169	0.74377	0.74445	0.75473	0.78499
Test 10	6	0.98606	0.95543	0.98550	0.98345	0.98326	0.98265	0.8183/	0.82121	0.80852	0.80624	0.79444	0.80907
	8	0.99207	0.99177	0.99129	0.98994	0.98941	0.99109	0.86164	0.86015	0.85335	0.84145	0.83516	0.84721
	10	0.99532	0.99500	0.99441	0.99384	0.99105	0.99423	0.89375	0.88711	0.87918	0.87236	0.84516	0.88534

Table 7. Comparison of MSSIM and FSIM computed by CEFO, EFO, ABC, BA, WDO, and BSA using fuzzy entropy. The bold numbers are the best values in the relevant index.

Figure 18. Comparison of Peak Signal to Noise Ratio (PSNR) based on fuzzy entropy.

Figure 19. Comparison of Mean Structural Similarity (MSSIM) based on fuzzy entropy.

Figure 20. Comparison of Feature Similarity (FSIM) based on fuzzy entropy.

Then, when comparing the differences in CPU time between various algorithms, it can be found that CEFO and EFO are significantly faster than ABC, BA, WDO, and BSA. Moreover, the running time of CEFO has decreased about 12.26% when comparing with EFO, which indicates the modified electromagnetic field optimization algorithm has a faster convergence rate. As for other algorithms, ABC has the longest time of computation due to its slow convergence rate, it needs nearly 30 times as much as CEFO. Afterward, BA, WDO, and BSA have an approximate running time, they are about 15 times longer than CEFO. With the increase of execution time, the practicability of the algorithm will be reduced. For a clearer presentation of convergence speed about these algorithms, the convergence curves are shown in Figure 21.

3.5

Convergence Plot

(e) Convergence curves of Test 5.

Iterations (f) Convergence curves of Test 6.

300

200

Figure 21. Cont.

3.5

3

Fitness Function Value 5.2 5.2 7 7 7 7 7

0.5

0

100

400

500

300

300

Convergence Plot

400

400

500

500

Convergence Plot

Figure 21. Convergence curves of CEFO, EFO, ABC, BA, WDO, and BSA based on fuzzy entropy at K = 10. (Red line represents CEFO; Blue line represents EFO; Cyan line represents ABC; Yellow line represents BA; Magenta line represents WDO; Green ling represents BSA.)

In terms of PSNR, the chart of all algorithms is shown in Figure 18. It can be seen that CEFO has higher values among these algorithms; ABC has similar values to EFO in some images at a high threshold level. For instance, in Test 1 of K=10, PSNR value of EFO is 24.8085 while ABC is 24.9762, but CEFO is 25.1603. WDO has much lower values in smaller threshold level and BSA has good values in higher threshold level, all in all, PSNR values of BA, WDO, and BSA have different diversification, but they are mediocre on the whole.

Comparing the results of MSSIM and FSIM in Table 7, FSIM is considered to be more authoritative and application and CEFO also performs better than other algorithms in this index. Although EFO can have a banner performance at K = 4, ABC will usually be close to EFO at high levels. BA has better values at some images such as in Test 2, 4, etc. WDO and BSA have higher values than BA at K = 6 in some images but they are all lower than CEFO on the whole.

From what has been mentioned above, the CEFO algorithm has superior performance when searching for the optimal threshold vector in multilevel thresholding color image segmentation.

6.2. Comparison of Other Segmentation Methods

In the last experiment, the superiority of CEFO has been verified. And in this experiment, fuzzy entropy has been regarded as the research objective. To show the performance of fuzzy entropy thresholding in multilevel color image segmentation, Otsu's and Kapur's entropy based on color image segmentation are used to be a comparison. Applying the CEFO algorithm to Fuzzy entropy, Otsu's, and Kapur's entropy respectively to segment selected 10 Berkeley images in Figure 6. The threshold level is chosen as = 4, 6, 8, and 10, which is used to obtain the corresponding threshold points for each component of the color image. The results of segmented images are in Figure 22, and the corresponding

optimal threshold values are in Table 8. Table 9 compares the performance of different thresholding approaches based on parameters of CPU Time, PSNR, MSSIM, and FSIM.

Figure 22. Cont.

Figure 22. Segmented images at K = 4, 6, 8, 10 using CEFO algorithm based on fuzzy entropy, Otsu's and Kapur's entropy.

Image	к		Fuzzy			Otsu			Kapur	
		R	G	В	R	G	В	R	G	В
	4	56 93 153 187	57 88 132 191	59 10 157 197	52 86 130 190	60 80 100 173	50 89 133 223	64 103 145 188	75 117 156 199	67 109 150 194
Tect 1	6	20 59 92 128 167 199	26 47 81 114 161 203	25 48 76 111 138 195	52 74 105 161 177 217	68 80 101 124 167 190	10 55 85 105 155 212	51 84 116 150 184 212	55 87 117 147 178 212	56 87 115 150 187 221
lest 1	8	11 31 58 82 107 132	12 42 64 92 114 149	18 50 73 97 143 168	25 36 69 90 124 152	42 59 70 79 115 158	47 59 68 79 107 120	38 60 81 104 132 158	49 74 99 122 147 173	16 56 87 117 143 172
	0	168 211	181 210	196 223	169 231	202 238	177 197	185 213	199 224	200 227
	10	14 37 55 75 90 111 130	11 41 61 95 122 146	14 40 64 80 105 136	45 51 67 107 119 129	41 70 72 86 91 112 156	35 50 82 100 101 115	12 38 58 81 106 133	45 61 82 103 124 146	17 52 74 94 116 137
	10	159 182 210	168 185 208 237	161 189 212 231	165 199 222 237	192 210 230	139 148 178 197	161 184 203 227	168 189 210 228	163 185 212 238
	4	10 93 114 171	86 143 194 226	91 110 137 189	39 92 144 206	36 79 116 158	20 45 86 141	76 120 164 208	89 130 171 210	68 111 150 194
Test 2	6	18 41 75 107 147 177	87 101 133 153 192 234	54 72 97 121 156 192	22 59 88 121 183 197	29 61 90 129 165 179	18 23 36 64 95 233	20 58 96 135 173 213	19 58 99 138 177 215	41 74 106 137 165 199
	8	15 27 44 59 96 127 171	14 22 43 65 117 144	39 61 82 117 148 176	26 47 103 127 151 181	5 27 61 84 102 120 132	13 45 55 61 104 140	16 48 79 109 140 170	17 52 84 114 147 175	15 41 67 92 117 143
		204	190 222	195 223	222 235	170	180 186	200 228	201 228	169 200
	10	32 55 75 108 144 171	5 50 65 85 102 121 139	31 47 64 87 108 125	18 23 47 56 99 115 143	22 71 76 78 99 108 138	18 43 56 97 129 145	13 35 56 81 104 130	15 40 65 92 112 134	13 37 58 81 102 123
	4	195 215 226 259	16/ 19/ 228	156 179 209 259	184 194 237	136 196 212	162 234 235 237	155 179 205 250	159 165 206 229 25 85 122 102	143 103 190 209
	4	44 92 139 100 22 62 02 128 172 100	10 52 00 110 162 206	27 97 136 163	49 79 102 126 152 100	95 99 150 192 26 71 114 169 195 202	90 113 130 192 18 20 101 122 150 201	49 90 143 202	20 65 105 192	36 122 137 202 36 90 104 12E 169 303
Test 3	0	32 02 93 120 173 199 32 42 68 01 113 138	19 55 90 119 102 200	11 26 58 88 106 141	46 78 103 126 133 190	7 40 95 122 146 172	18 80 114 137 167 107	12 22 60 87 125 157	20 63 99 143 161 206	20 00 104 155 100 202
	8	172 208	181 207	170 213	177 225	186 209	206 239	185 214	187 222	167 205
		26 39 55 69 86 110 131	42 29 56 79 104 121	9 25 49 82 109 132 154	1 37 64 71 99 122 151	13 51 74 75 104 137	51 82 106 111 130 168	11 32 51 73 100 132	14 37 55 75 93 109 123	16 44 66 99 130 150
	10	154 175 207	141 163 197 219	176 199 222	176 212 231	170 197 215 246	181 203 233 241	154 173 199 223	149 181 212	166 187 208 225
	4	52 84 127 164	67 102 141 204	49 74 111 155	36 86 170 196	66 107 139 229	41 83 91 146	55 94 133 173	68 124 178 218	40 79 126 203
-	6	38 62 97 137 172 195	48 71 111 144 175 213	43 77 109 147 178 235	33 63 93 127 163 215	36 66 112 138 168 231	22 48 83 135 183 206	51 86 121 155 190 224	46 80 116 149 183 219	27 55 83 118 155 203
lest 4	0	13 31 54 92 110 142	35 60 86 114 137 169	24 41 64 94 129 156	33 49 87 98 142 193	6 25 60 85 118 156 173	19 37 39 41 47 67 103	34 58 87 116 145 173	35 61 86 112 139 165	26 54 79 106 129 155
	8	175 198	200 226	193 224	231 251	218	150	201 231	192 223	182 204
	10	6 25 43 64 84 106 132	7 27 39 52 75 99 130	15 25 48 78 103 130	39 48 73 105 135 152	26 39 48 70 106 136	9 28 49 66 71 94 131	32 56 78 99 123 145	26 48 69 90 112 133	21 43 63 80 101 121
	10	152 172 189	157 190 221	157 178 219 240	156 167 197 225	158 191 199 220	159 170 186	168 190 211 235	157 180 204 229	145 165 183 204
	4	52 98 149 198	55 89 164 215	77 125 162 209	95 147 188 198	59 135 142 212	81 116 164 203	74 110 145 194	78 120 160 205	22 88 147 218
Test 5	6	22 63 93 131 179 225	16 69 97 125 158 204	15 61 97 131 166 207	92 132 165 192 233 243	78 116 119 138 187 229	68 125 134 158 190 248	66 92 118 145 180 216	67 98 126 160 191 223	22 62 99 142 180 219
icst 5	8	16 59 77 94 116 134	20 58 75 98 129 155	19 56 77 115 145 173	89 111 120 148 188 207	62 96 152 160 186 194	17 76 100 131 141 169	65 90 115 140 162 184	64 88 112 135 158 182	18 59 89 119 146 172
	-	162 199	185 214	196 227	240 246	199 215	197 231	204 225	206 227	197 221
	10	13 29 57 77 93 107 130	14 30 62 78 94 126 152	19 44 56 72 89 109 129	36 66 73 82 104 120	60 104 127 170 175 181	35 58 87 97 135 174	54 71 87 106 127 145	62 81 100 120 143 163	22 52 81 108 133 154
	4	165 188 214	179 205 231	159 176 205	126 147 181 210	185 190 206 221	175 189 214 222	168 189 208 225	183 201 218 233	1/6 19/ 21/ 235
	4	55 97 156 195 42 (0.01 118 1(E 202	04 99 105 190 25 28 76 110 165 205	40 / 5 131 1/9	54 104 105 ZZZ 40 (0 78 125 14(220	69 112 141 214 52 (4 81 122 100 222	37 76 121 191 38 57 04 130 301 337	60 109 155 201	66 112 152 199 54 01 136 155 185 317	36 110 136 213 28 78 110 155 188 222
Test 6	6	45 60 91 116 165 202	25 36 76 119 165 205	47 69 97 133 133 190	49 60 78 133 146 239	52 64 61 152 190 255 20 27 E1 76 112 141	26 57 96 150 201 227	45 /9 112 14/ 181 214	54 91 126 155 185 217 44 69 01 116 129 162	38 78 119 133 188 222 22 58 86 112 128 164
	8	10 42 73 91 129 137	10 34 32 79 108 130	25 59 64 66 120 157	45 50 81 115 155 174 184 197	20 37 31 70 112 141	3 11 39 73 110 120 187 211	194 222	44 00 91 110 130 103 189 217	196 226
		10.32 50 77 99 134 162	13 36 47 69 107 140	14 33 60 82 101 130	41 49 70 99 111 112	42 60 61 85 102 148	13 24 50 87 104 131	11 36 59 82 109 135	38 58 79 100 119 140	15 37 60 86 110 133
	10	192 209 228	164 185 200 223	156 183 208 228	171 191 237 245	186 248 249	137 156 178 229	161 187 209 232	165 189 208 228	158 186 211 232
	4	66 95 139 176	25 66 108 157	23 88 134 220	85 132 159 183	66 104 171 190	73 104 155 175	75 115 155 193	81 119 157 195	47 88 131 180
	6	17 33 80 120 168 205	20 80 108 133 164 189	13 59 84 102 128 151	77 106 144 188 212 224	51 65 76 110 152 200	45 49 79 90 131 154	63 96 128 160 194 225	47 77 106 134 163 195	17 47 79 112 144 180
Test 7		20 54 79 106 126 146	13 50 80 102 132 166	19 40 63 88 119 148	48 67 83 123 141 182	79 100 140 150 165 183	6 45 49 80 107 131 165	38 61 84 110 144 169	60 88 116 142 168 196	12 31 56 82 111 133
	8	169 209	197 223	200 228	224 234	214 254	205	195 223	216 237	154 180
	10	10 30 41 63 89 110 129	14 54 68 82 106 132	15 41 66 85 105 133	38 63 76 101 128 131	27 41 83 91 103 119	14 55 72 83 86 115 124	41 61 82 101 120 142	46 69 92 114 138 158	17 42 67 84 111 130
	10	154 178 216	169 197 220 243	151 190 214 233	157 164 185 186	157 184 219 226	157 164 214	167 194 216 237	176 196 216 239	144 161 179 196
	4	48 73 173 212	62 107 141 207	43 79 124 215	115 174 190 225	92 120 136 156	46 100 139 150	59 116 149 202	83 122 182 218	55 96 130 164
Tect 9	6	38 64 101 141 181 224	32 61 85 126 155 196	38 61 91 126 197 218	54 146 170 197 219 232	98 119 143 156 167 212	12 42 50 121 142 182	42 81 118 148 179 209	45 83 116 147 182 218	25 49 72 101 131 164
1651.0	8	15 41 64 85 110 133	44 34 74 110 135 158	25 40 69 104 136 182	65 72 140 154 178 188	69 111 141 150 170 218	28 29 72 99 116 128	37 61 90 120 144 171	46 73 101 126 152 182	20 43 61 80 99 121 143
	0	175 213	179 203	207 231	218 239	245	188 200	200 226	204 225	164
	10	18 39 58 87 115 137	21 36 63 79 111 129	28 47 74 90 116 131	28 57 59 113 123 163	39 70 72 102 128 154	9 21 27 77 79 128 168	35 58 80 100 121 142	36 47 71 91 116 139	20 37 53 70 89 107 126
		172 186 210 230	150 180 208 227	153 178 208 226	168 191 213 214	169 183 191 196	185 187 197	165 187 207 230	164 183 214 228	143 164 182

Table 8. Comparison of optimal threshold values of CEFO at *K* = 4, 6, 8, and 10 using fuzzy entropy, Otsu's and Kapur's entropy.

Table 8. Cont.

Image	к		Fuzzy			Otsu		Kapur			
8-	ĸ	R	G	В	R	G	В	R	G	В	
-	4	47 74 107 149	55 90 132 167	42 66 117 149	40 93 131 211	80 137 195 205	29 81 119 172	76 123 167 212	77 129 180 227	43 90 140 194	
T10	6	13 43 62 92 126 165	15 50 89 125 160 195	19 45 81 115 151 230	57 73 109 164 194 230	64 105 136 166 201 231	15 61 91 114 123 165	62 97 132 167 203 236	62 95 128 162 195 231	31 63 95 126 158 194	
Test 9	ø	14 36 53 75 92 123 152	11 40 55 77 101 126	26 41 66 91 128 155	45 62 101 143 153 191	45 92 128 151 156 193	12 65 78 106 118 135	55 83 110 138 162 188	53 80 108 137 164 191	25 47 70 97 119 142	
	0	173	151 183	200 233	200 229	199 217	169 214	213 238	215 238	171 199	
	10	13 23 41 59 82 106 126	11 43 54 72 89 105 134	24 47 71 94 118 140	30 48 87 101 131 159	30 50 59 64 107 112	12 20 47 80 93 106 122	47 68 92 115 140 160	38 55 74 95 118 142	19 36 54 72 91 111 133	
	10	158 181 198	163 188 213	160 177 208 237	164 220 227 253	136 166 189 228	132 150 165	182 201 219 239	164 187 212 238	156 176 194	
	4	48 76 132 175	31 69 117 169	53 86 116 200	57 112 164 206	63 108 179 202	47 95 172 216	49 91 133 182	63 111 157 206	59 99 148 192	
T 10	6	34 57 90 127 166 196	53 90 116 142 180 214	42 56 104 136 169 220	18 53 72 129 133 155	55 85 150 177 181 231	38 75 127 175 203 229	30 67 106 136 177 217	46 79 111 141 170 2070	44 78 114 152 190 225	
lest 10	ø	19 33 62 91 133 165	20 26 57 90 112 150	12 38 55 88 113 150	34 71 116 118 139 141	15 42 60 103 149 155	6 45 70 127 139 200	22 52 79 109 133 161	39 67 95 124 153 180	40 66 91 116 142 167	
	8	195 214	195 220	186 229	159 199	170 210	219 248	189 219	206 230	194 224	
	10	16 35 54 71 93 119 141 169 196 231	9 26 36 51 72 106 132 166 195 224	10 26 41 61 77 108 134 160 185 213	13 28 49 58 95 105 127 145 151 184	26 65 103 145 169 178 183 193 207 239	19 49 63 107 161 187 191 226 242 249	21 42 67 95 121 148 173 197 217 232	34 55 78 101 122 166 186 207 231	29 47 70 92 117 139 161 183 204 226	

Table 9. Comparison of CPU Time, PSNR, MSSIM, and FSIM computed by CEFO at *K* = 4, 6, 8, 10 using fuzzy entropy, Otsu's and Kapur's. The bold numbers are the best values in the relevant index.

Image	К		CPU Time		PSNR			MSSIM			FSIM		
0		Fuzzy	Otsu's	Kapur	Fuzzy	Otsu's	Kapur	Fuzzy	Otsu's	Kapur	Fuzzy	Otsu's	Kapur
	4	0.17541	0.11919	0.18065	19.0869	16.0378	16.0378	0.97368	0.95866	0.94199	0.75882	0.75699	0.73718
Test 1	6	0.21623	0.12506	0.24117	22.4966	19.0529	19.0529	0.98631	0.96735	0.97092	0.85039	0.79878	0.81115
lest 1	8	0.26219	0.13443	0.25866	23.9315	21.3692	21.9768	0.99199	0.98135	0.98558	0.88618	0.83430	0.86369
	10	0.33284	0.15629	0.27287	25.1603	22.8071	23.8019	0.99361	0.98815	0.99060	0.91098	0.85722	0.89851
	4	0.18152	0.10603	0.24967	18.5011	18.4665	18.4854	0.96013	0.95859	0.95939	0.72972	0.72349	0.71672
Test 9	6	0.23014	0.11012	0.25587	21.4186	20.9856	21.2795	0.98459	0.98013	0.98049	0.81315	0.80687	0.80330
lest 2	8	0.26745	0.12666	0.26542	23.4745	23.2473	23.2436	0.99098	0.98926	0.98958	0.86210	0.85725	0.86029
	10	0.35415	0.14591	0.30354	27.1960	24.6605	26.8256	0.99631	0.99286	0.99584	0.92876	0.87911	0.92489
	4	0.19354	0.11462	0.39732	17.9266	17.5340	17.7798	0.97373	0.96767	0.97158	0.71919	0.70489	0.71365
Test 2	6	0.24406	0.12074	0.45047	21.4595	20.4054	21.3185	0.98862	0.98374	0.98793	0.83144	0.79214	0.82536
lest 3	8	0.26572	0.13348	0.48285	23.5257	21.5710	22.7384	0.99319	0.98726	0.99194	0.88510	0.82899	0.87669
	10	0.31104	0.16254	0.21154	25.1107	23.3835	24.3602	0.99513	0.99227	0.99417	0.91471	0.88218	0.92049

Table 9. Cont.

Image	к		CPU Time			PSNR			MSSIM			FSIM	
8-	R	Fuzzy	Otsu's	Kapur	Fuzzy	Otsu's	Kapur	Fuzzy	Otsu's	Kapur	Fuzzy	Otsu's	Kapur
	4	0.20654	0.09202	0.21866	18.5791	18.4569	18.4989	0.97504	0.94314	0.97497	0.75966	0.74368	0.74512
Test 4	6	0.25613	0.12600	0.22851	21.9962	21.7162	22.0191	0.98817	0.98612	0.98724	0.85825	0.84935	0.85897
lest 4	8	0.29565	0.15338	0.24107	23.6574	23.0068	23.5891	0.99221	0.99073	0.99239	0.89738	0.88483	0.89628
	10	0.34226	0.16649	0.27016	24.8212	24.5519	24.7934	0.99485	0.99308	0.99460	0.92218	0.91235	0.92176
	4	0.20017	0.10569	0.23254	18.0239	16.4797	17.2779	0.97653	0.96171	0.97062	0.76795	0.74241	0.76655
Test 5	6	0.23485	0.12750	0.24186	20.3479	17.9620	20.0647	0.98616	0.97050	0.98300	0.82839	0.81379	0.82815
lest 5	8	0.29424	0.15211	0.27258	22.1661	19.6993	21.4806	0.99131	0.97874	0.98620	0.86282	0.83396	0.87859
	10	0.34480	0.16173	0.29775	24.0138	21.9181	23.1757	0.99470	0.98889	0.99059	0.89313	0.85475	0.89169
	4	0.19472	0.10286	0.24964	18.1095	17.8512	17.9759	0.97060	0.97041	0.96622	0.77366	0.76319	0.74541
Test (6	0.24263	0.12325	0.28237	21.4831	20.4060	20.6824	0.98591	0.98186	0.98165	0.83568	0.81530	0.82596
lest o	8	0.30864	0.15339	0.29413	23.2290	22.1354	22.9859	0.99198	0.98855	0.98949	0.88446	0.85408	0.87426
	10	0.33725	0.18392	0.32098	24.7681	22.8894	25.0296	0.99424	0.98975	0.99350	0.90343	0.86898	0.90198
	4	0.20678	0.10402	0.24912	18.8739	17.8704	17.8217	0.97596	0.96464	0.96471	0.75191	0.72297	0.74535
Test 7	6	0.23562	0.10956	0.25531	22.1443	20.3251	21.6210	0.98862	0.97872	0.98609	0.84983	0.79339	0.84398
lest /	8	0.29807	0.12937	0.27367	23.7839	20.7719	23.1949	0.99260	0.97916	0.99048	0.88582	0.81106	0.87668
	10	0.34217	0.14226	0.27555	24.7433	23.1843	24.3686	0.99407	0.99097	0.99363	0.90659	0.85053	0.90773
	4	0.21450	0.10617	0.23422	18.9495	19.0541	18.9415	0.98354	0.98371	0.98401	0.79086	0.79082	0.79759
Test 9	6	0.25068	0.12896	0.26131	21.4109	21.1411	21.4439	0.99111	0.98687	0.99032	0.84716	0.80299	0.81085
lest o	8	0.31994	0.14136	0.28517	23.0677	23.2842	23.5914	0.99381	0.99375	0.99576	0.86616	0.85771	0.87685
	10	0.33725	0.18727	0.29926	25.4357	22.6056	25.4062	0.99847	0.99165	0.99681	0.88832	0.82970	0.89139
	4	0.19324	0.11092	0.23595	16.4568	16.3593	17.1580	0.97162	0.97064	0.96985	0.81290	0.80596	0.81157
Test	6	0.23789	0.12999	0.17958	18.4675	18.0109	19.0843	0.98281	0.98205	0.98394	0.86751	0.86452	0.89018
lest 9	8	0.27057	0.14229	0.22847	21.0098	21.0045	21.3567	0.98634	0.98629	0.98699	0.88414	0.87084	0.90497
	10	0.33151	0.18128	0.25452	22.3666	22.3547	23.1507	0.99255	0.99251	0.99428	0.92326	0.91262	0.93015
	4	0.19039	0.10466	0.20511	18.5817	17.9607	18.0765	0.97860	0.97268	0.97934	0.78169	0.76586	0.77935
T	6	0.23656	0.11261	0.24046	20.8938	20.8925	21.0027	0.98606	0.98526	0.98586	0.82121	0.82907	0.83085
lest 10	8	0.26390	0.12200	0.24834	22.6241	21.6691	23.1804	0.99207	0.98882	0.99119	0.86015	0.83365	0.85931
	10	0.33304	0.12677	0.27179	25.3640	23.8567	25.0886	0.99532	0.99289	0.99428	0.88711	0.88195	0.88555

As can be seen in Table 9 and Figures 23–26, Otsu's thresholding has the fastest speed of execution time, fuzzy entropy and Kapur's entropy are a bit slower than Otsu's. However, three thresholding segmentation methods are all in 0.5 (seconds) at different threshold levels, which can also indicate CEFO algorithm has a fast convergence rate. In terms of PSNR, it is clear that fuzzy entropy thresholding has higher values in general, the ranking of PSNR among these segmentation methods is Fuzzy > Kapur's > Otsu's. As for MSSIM and FSIM, Fuzzy entropy also performs well, which is in advance of two other methods overall. And the ranking of MSSIM and FSIM among three methods is Fuzzy > Kapur's > Otsu's. Therefore, fuzzy entropy is better as compared to others showing CEFO based on the fuzzy entropy technique can be applied in the color image segmentation field excellently.

Figure 23. Comparison of CPU Time based on fuzzy entropy.

Figure 24. Comparison of PSNR based on fuzzy entropy.

Figure 25. Comparison of MSSIM based on fuzzy entropy.

Figure 26. Comparison of FSIM based on fuzzy entropy.

6.3. ANOVA Test

A statistical test known as "the analysis of variance" (ANOVA) has been performed at 5% significance level to evaluate the significant difference between algorithms. In the experiment, CEFO algorithm is regarded as the control group and is compared with EFO, ABC, BA, WDO and BSA algorithms in terms of four measure metrics. The null hypothesis assumes that there is no significant difference between the mean values of 5 selected algorithms, whereas, the alternative hypothesis can be considered as a significant difference between them. Table 10 exhibits the –value of CPU Time, PSNR, MSSIM, and FSIM by the ANOVA test. As can be seen, the -value for CPU Time is less than 0.05, which implies a significant difference between the proposed algorithm and other algorithms and CEFO has a much fast convergence rate. With respect to another three measures, CEFO also has significant difference about BA, WDO and BSA. It can be observed that CEFO algorithm has a better performance.

Dependent Variable	Proposed Algorithm	Algorithms	<i>p</i> -Value	Dependent Variable	Proposed Algorithm	Algorithms	<i>p</i> -Value
CPU Time	CEFO	EFO	0.038791(*)	MSSIM	CEFO	EFO	0.201224
		ABC	3.76E-50(*)			ABC	0.157924
		BA	1.08E-46(*)			BA	0.006606(*)
		WDO	1.23E-43(*)			WDO	0.004560(*)
		BSA	1.95E-47(*)			BSA	0.006092(*)
PSNR	CEFO	EFO	0.457477	FSIM	CEFO	EFO	0.364938
		ABC	0.466803			ABC	0.297925
		BA	0.037665(*)			BA	0.034212(*)
		WDO	0.021986(*)			WDO	0.016480(*)
		BSA	0.020720(*)			BSA	0.003728(*)

Table 10. Comparison of *p*-values between CEFO and other algorithms based on Fuzzy entropy.

7. Conclusions and Future Work

In this paper, multilevel thresholding color image segmentation has been considered as an optimization problem in which the fuzzy entropy technique has been presented as the objective function. To achieve efficient segmentation, it is essential for algorithms to search the optimal fuzzy parameters and threshold values. Electromagnetic Field Optimization is a novel meta-heuristic algorithm which use is attempt herein for the first time in this field. Additionally, a new chaotic strategy is proposed and embedded into the EFO algorithm to accelerate the convergence rate and enhance segmentation accuracy. In order to demonstrate the superior performance of the CEFO-based fuzzy entropy technique, a series of experiments have been conducted and results are evaluated in terms of CPU Time, PSNR, MSSIM, and FSIM. On the one hand, the CEFO algorithm is compared with EFO, ABC, BA, WDO, and BSA based on fuzzy entropy for segmenting ten Berkeley benchmark images at different threshold levels (K = 4, 6, 8, and 10). The obtained results illustrate the obvious

effect of proposed chaotic strategy and CEFO needs less than 0.35 seconds to find the optimal threshold vector which makes it an effective algorithm to handle the above problem. On the other hand, the fuzzy entropy method is compared with Otsu's variance and Kapur's entropy method based on CEFO on the basis of the same experimental environment. The high precision of fuzzy entropy has been validated with four metrics. Although CEFO-fuzzy is not the fastest among the three techniques, its execution time is suitable for practical applications within 0.5 seconds. To sum up, CEFO-based fuzzy entropy is a robust technique in multi-threshold color image segmentation.

In the future, the proposed technique can be applied to solve practical problems such as medical images, satellite images, etc. It is also interesting to modify EFO algorithm in other aspects to improve its performance for higher threshold levels (e.g., K = 15 and 20). Furthermore, the merits of CEFO can be investigated using Tsallis entropy, Renyi's entropy, and cross entropy for multilevel thresholding.

Author Contributions: S.S. and H.J. contributed to the idea of this paper; J.M. performed the experiments; S.S. and J.M. wrote the paper; H.J. contributed to the revision of this paper.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the anonymous reviewers for their constructive comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. He, L.F.; Huang, S.W. Modified firefly algorithm based multilevel thresholding for color image segmentation. *Neurocomputing* **2017**, 240, 152–174. [CrossRef]
- Mlakar, U.; Potočnik, B.; Brest, J. A hybrid differential evolution for optimal multilevel image thresholding. *Expert Syst. Appl.* 2016, 65, 221–232. [CrossRef]
- 3. Agrawal, S.; Panda, R.; Bhuyan, S.; Panigrahi, B.K. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. *Swarm Evol. Comput.* **2013**, *11*, 16–30. [CrossRef]
- 4. Pare, S.; Bhandar, A.K.; Kumar, A.; Singh, G.K. An optimal color image multilevel thresholding technique using grey-level co-occurrence matrix. *Expert Syst. Appl.* **2017**, *87*, 335–362. [CrossRef]
- 5. Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [CrossRef]
- 6. Otsu, N. A threshold selection method from gray level histograms. *IEEE Trans. Syst. Man Cybern.* **1979**, *9*, 62–66. [CrossRef]
- 7. Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram. *Comput. Vis. Graph. Image Process.* **1985**, *29*, 273–285. [CrossRef]
- 8. Li, C.H.; Lee, C.K. Minimum cross entropy thresholding. Pattern Recogn. 1993, 26, 617–625. [CrossRef]
- 9. Jiang, Y.C.; Tang, Y.; Liu, H.; Chen, Z.Z. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. *Inf. Sci.* 2013, 240, 95–114. [CrossRef]
- 10. Ye, Z.W.; Wang, M.W.; Liu, W.; Chen, S.B. Fuzzy entropy based optimal thresholding using bat algorithm. *Appl. Soft Comput.* **2015**, *31*, 381–395. [CrossRef]
- 11. Gao, H.; Pun, C.M.; Kwong, S. An efficient image segmentation method based on a hybrid particle swarm algorithm with learning strategy. *Inf. Sci.* **2016**, *369*, 500–521. [CrossRef]
- 12. Bohat, V.K.; Arya, K.A. A new heuristic for multilevel thresholding of images. *Expert Syst. Appl.* **2019**, *117*, 176–203. [CrossRef]
- 13. Akay, B. A study on particle swarm optimization and artificial bee colony algorithms for multilevel thresholding. *Appl. Soft Comput.* **2013**, *13*, 3066–3091. [CrossRef]
- 14. Agarwal, P.; Singh, R.; Kumar, S.; Bhattacharya, M. Social spider algorithm employed multi-level thresholding segmentation approach. *Proc. First Int. Conf. Inf. Commun. Technol. Intell. Syst.* **2016**, *2*, 149–259. [CrossRef]
- Bhandari, A.K.; Singh, V.K.; Kumar, A.; Singh, G.K. Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur's entropy. *Expert Syst. Appl.* 2014, 41, 2538–2560. [CrossRef]
- Sumathi, R.; Venkatesulu, M.; Arjunan, S.P. Extracting tumor in MR brain and breast image with Kapur's entropy based Cuckoo Search Optimization and morphological reconstruction filters. *Biocybern. Biomed. Eng.* 2018, *38*, 918–930. [CrossRef]

- 17. Chen, K.; Zhou, Y.F.; Zhang, Z.S.; Dai, M.; Chao, Y.; Shi, J. Multilevel Image Segmentation Based on an Improved Firefly Algorithm. *Math. Probl. Eng.* **2016**, 2016. [CrossRef]
- 18. Mohamed, A.E.A.; Ahmed, A.E.; Aboul, E.H. Whale Optimization Algorithm and Moth-Flame Optimization for multilevel thresholding image segmentation. *Expert Syst. Appl.* **2017**, *83*, 242–256. [CrossRef]
- 19. Wang, X.H.; Deng, Y.M.; Duan, H.B. Edge-based target detection for unmanned aerial vehicles using competitive Bird Swarm Algorithm. *Aerosp. Sci. Technol.* **2018**, *78*, 708–720. [CrossRef]
- 20. Rajinikanth, V.; Couceiro, M.S. RGB histogram based color image segmentation using firefly algorithm. *Procedia Comput. Sci.* **2015**, *46*, 1449–1457. [CrossRef]
- 21. Gao, M.L.; Jin, S.; Jun, J. Visual tracking using improved flower pollination algorithm. *Optik* **2018**, 156, 522–529. [CrossRef]
- 22. Oliva, D.; Cuevas, E.; Pajares, G.; Zaldivar, D.; Osuna, V. A multilevel thresholding algorithm using electromagnetism optimization. *Neurocomputing* **2014**, *139*, 357–381. [CrossRef]
- 23. Bayraktar, Z.; Komurcu, M.; Bossard, J.A.; Werner, D.H. The Wind Driven Optimization Technique and its Application in Electromagnetics. *IEEE Trans. Antenn. Propag.* **2013**, *61*, 2745–2757. [CrossRef]
- 24. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. *Inf. Sci.* **2009**, 179, 2232–2248. [CrossRef]
- 25. Kotte, S.; Pullakura, R.K.; Injeti, S.K. Optimal multilevel thresholding selection for brain MRI image segmentation based on adaptive wind driven optimization. *Measurement* **2018**, *130*, 340–361. [CrossRef]
- 26. Hussein, W.A.; Sahran, S.; Abdullah, S.N.H.S. A fast scheme for multilevel thresholding based on a modified bees algorithm. *Knowl.-Based Syst.* **2016**, *101*, 114–134. [CrossRef]
- 27. Sambandam, R.K.; Jayaraman, S. Self-adaptive dragonfly based optimal thresholding for multilevel segmentation of digital images. *Comput. Inform. Sci.* **2018**, *30*, 449–461. [CrossRef]
- 28. Jia, H.M.; Ma, J.; Song, W.L. Multilevel Thresholding Segmentation for Color Image Using Modified Moth-Flame Optimization. *IEEE Access* 2019, 7, 2169–3536. [CrossRef]
- 29. Abedinpourshotorban, H.; Shamsuddin, S.M.; Beheshti, Z. Electromagnetic field optimization: A physics-inspired metaheuristic optimization algorithm. *Swarm Evol. Comput.* **2016**, *26*, 8–22. [CrossRef]
- 30. Talebi, B.; Dehkordi, M.N. Sensitive association rules hiding using electromagnetic field optimization algorithm. *Expert Syst. Appl.* **2018**, *114*, 155–172. [CrossRef]
- 31. Bouchekara, H.R.E.H.; Zellagui, M.; Abido, M.A. Optimal coordination of directional overcurrent relays using a modified electromagnetic field optimization algorithm. *Appl. Soft Comput.* **2017**, *54*, 267–283. [CrossRef]
- Ghamisi, P.; Couceiro, M.S.; Martins, F.M.; Benediktsson, J.A. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization. *IEEE Trans. Geosci. Remote Sens.* 2014, 52, 2382–2394. [CrossRef]
- 33. Sarkar, S.; Das, S.; Chaudhuri, S.S. A multilevel color image thresholding scheme based on minimum cross entropy and differential evolution. *Pattern Recogn. Lett.* **2015**, *54*, 27–35. [CrossRef]
- 34. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
- 35. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. *Knowl.-Based Syst.* **2015**, *89*, 228–249. [CrossRef]
- 36. Cuevas, E.; Zaldivar, D.; Pérez-Cisneros, M. A novel multi-threshold segmentation approach based on differential evolution optimization. *Expert Syst. Appl.* **2010**, *37*, 5265–5271. [CrossRef]
- 37. Pecora, L.M.; Carroll, T.L. Synchronization of chaotic systems. Phys. Rev. Lett. 2015, 25. [CrossRef] [PubMed]
- Kohli, M.; Arora, S. Chaotic grey wolf optimization algorithm for constrained optimization problems. J. Comput. Des. Eng. 2017, 5, 458–472. [CrossRef]
- 39. Bhandari, A.K.; Kumar, A.; Singh, G.K. Modified artificial bee colony based computationally efficient multilevel thresholding for satellite image segmentation using Kapur's, Otsu and Tsallis functions. *Expert Syst. Appl.* **2015**, *42*, 1573–1601. [CrossRef]
- 40. Tao, W.B.; Wen, T.J.; Liu, J. Image segmentation by three-level thresholding based on maximum fuzzy entropy and genetic algorithm. *Pattern Recogn. Lett.* **2003**, *24*, 3069–3078. [CrossRef]
- 41. Laing, H.N.; Jia, H.M.; Xing, Z.K.; Ma, J.; Peng, X.X. Modified Grasshopper Algorithm-Based Multilevel Thresholding for Color Image Segmentation. *IEEE Access* **2019**, *7*, 2169–3536. [CrossRef]
- 42. Bhandari, A.K.; Kumar, A.; Singh, G.K. Tsallis entropy based multilevel thresholding for colored satellite image segmentation using evolutionary algorithms. *Expert Syst. Appl.* **2015**, *42*, 8707–8730. [CrossRef]

- 2010, 215, 3302–3310. [CrossRef]
 44. Sağ, T.; Çunkaş, M. Color image segmentation based on multi-objective artificial bee colony optimization. *Appl. Soft Comput.* 2015, 34, 389–401. [CrossRef]
- 45. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. *IEEE Trans. Image Process.* **2004**, *13*, 600–612. [CrossRef]
- 46. Sowmya, B.; Rani, B.S. Colour image segmentation using fuzzy clustering techniques and competitive neural network. *Appl. Soft Comput.* **2011**, *11*, 3170–3178. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).