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Abstract: This is an editorial article summarizing the scope and contents of the Special Issue Entropy
in Networked Control.
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Networked control systems are spatially distributed systems in which the communication between
sensors, controllers and actuators is accomplished through a shared digital communication network.
Examples can be found, e.g., in vehicle tracking, underwater communications for remotely controlled
surveillance and rescue submarines, remote surgery, space exploration and aircraft design. Another
large field of application is in modern industrial systems, where industrial production is combined
with information and communication technology (“Industry 4.0”). In networked control systems, the
analog system outputs must be encoded in finite bit strings to be transmitted over the communication
network. Realistic models of networked systems, therefore, challenge the standard assumption of
control theory that controllers and actuators have access to continuous-valued state information, i.e.,
information of infinite precision. Additional difficulties in modeling and analysis arise from issues
such as time-delayed communication, lossy communication due to noise or packet dropouts and the
need of event-based control strategies. Altogether, the resulting nontrivial interaction between the
underlying dynamical system and the communication network necessitates the development of new
tools and different approaches that combine ideas from various research fields including information
theory, nonlinear dynamical systems, graph theory and classical control theory.

To characterize the properties of a communication network that enable a system operating over
this network to function properly, various notions of “control entropy” have been introduced and
studied. At the same time, the classical notion of Shannon entropy naturally appears in the analysis
of noisy communication channels and, as such, plays a major role in the theory of networked control
systems. For further background and detailed accounts on previous work in this field, we refer the
reader to the monographs [1-4] and the survey papers [5-7].

This Special Issue contains four contributions that either present new ideas and results or provide
overviews and discussions of the existing results in different branches of networked control systems.

The review article [8] by Cetinkaya, Ishii and Hayakawa deals with the important research field
of security analysis for networked control systems. As many control systems used in industrial
applications rely on communication technologies, in particular, wireless networks and the Internet,
they are vulnerable as cyber-attackers may try to corrupt their proper functioning by disrupting the
communication network. One particular form of attack, the so-called Denial-of-Service attack, prevents
the delivery of control and measurement data packets within the communication network of the
system. The authors provide an overview of the different mathematical models of such attacks and the
associated security analysis approaches studied in the literature for feedback control, state estimation
and consensus problems. The focus is on packet dropout attacks by malicious nodes in multi-hop
networks and jamming attacks in wireless channels. The paper also provides a discussion of the utility
of the models studied in the literature for analyzing the security of existing systems as well as for the
development of new attack-resilient control and communication techniques.
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The discussion paper by Delvenne [9] proposes the use of category theory to formulate concepts
and problems in networked control systems. Delvenne first demonstrates that classical concepts
and results in ergodic theory and topological dynamics can be formulated elegantly via categorical
constructions. In particular, Kolmogorov-Sinai entropy can be defined via Sinai’s factor theorem as a
functor from the category Erg of measure-preserving dynamical systems on probability spaces to the
category whose objects are the extended nonnegative reals [0, co] and whose morphisms are induced
by the natural order on this set. Similar constructions have been studied before by Gromov [10].
In order to say something about networked control systems, the author proposes an extension of this
construction to the larger category of stochastic behaviors StoBeh that is defined as follows: an object in
StoBeh is a triple (X, f, M), where X is a measurable space, f is a measurable transformation on X and
M is a convex set of f-invariant probability measures. The morphisms are the factor maps between
such dynamical systems that respect the associated sets of probability measures. In the context of
(stochastic) control systems, one should think of X being the set of all trajectories and f being the left
shift operator on X, cf. also Willems [11]. The entropy functor on Erg can now be extended naturally
to StoBeh by taking the supremum of Kolmogorov—Sinai entropy /,(f) over all measures y € M
associated with a stochastic behavior (X, f, M). The big advantage of using the category StoBeh in the
context of networked control systems is that it not only allows the definition of different components
of a plant such as the open-loop system, the controller and communication channels in formally the
same way but also makes it very easy to define the interconnections of such components by simply
taking intersections. Moreover, control problems can be specified by introducing appropriate sets of
invariant measures. For instance, in the context of set-invariance for a compact set K, one may consider
all measures supported on the set of trajectories evolving in K. Amongst many other things, it remains
to show that the (extended) Kolmogorov—Sinai entropy functor is useful in describing the data-rate
limits as typically studied in networked control systems.

The paper by Kawan [12] answers a fundamental question in the context of state estimation
over noiseless digital channels for nonlinear systems. It is well-known [13,14] that the smallest
data rate above which the state of a plant can be estimated with an arbitrarily small error by an
observer, obtaining its information via a digital channel, is given by the topological entropy of the
plant. However, the operational utility of topological entropy in the design of coding and estimation
schemes is questionable, since this quantity is highly discontinuous as a function of system parameters
and is very hard to estimate numerically. Another disadvantage of the existing schemes based on
topological entropy is that they necessitate an initial accuracy of the estimate which, in general, needs
to be tiny in comparison to the aspired accuracy over arbitrarily long time intervals. A possible remedy
for all of these problems is provided in the paper [15] by Matveev and Pogromsky, that introduces a
quantity named restoration entropy which measures the smallest data rate above which a more robust
form of state estimation can be achieved. In particular, this quantity has the following advantages
when compared to topological entropy:

e it overcomes the problem of a drastic degradation of the initial estimation error,
o itallows for an explicit formula in terms of the singular values of the linearized system, and
e it depends upper semicontinuously on system parameters.

The paper [12] shows that restoration entropy, in general, strictly exceeds topological entropy, a
fact that was not rigorously proved before. More precisely, the main result demonstrates (for the class
of mixing Anosov diffeomorphisms) that the equality of topological and restoration entropy for a given
system implies a great amount of uniformity which can be expressed in terms of the unstable Lyapunov
exponents at each point, the sum of which has to be constant. Such uniformity can easily be destroyed
by a small perturbation. The operational meaning of this result is that robust estimation policies, in
general, require a higher rate of data transmission than the non-robust ones, as one would expect.

The paper by Voortman, Pogromsky, Matveev and Nijmeijer [16] also studies the problem of state
estimation via a noiseless digital channel for both discrete- and continuous-time nonlinear systems.
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The main contribution of the paper consists in a new coder and observer design so that the associated
data rate can be estimated from above by the product of the upper box dimension of the set of relevant
initial states (which is assumed to be compact and invariant under the dynamical system) and the
largest singular value of the Jacobian of the system. This is particularly interesting, because, for
many prototypical chaotic dynamical systems, the interesting dynamics occur on fractal-like sets
the dimension of which is strictly less than the dimension of the full state space. At the same time,
the proposed coding and estimation scheme is shown to be robust (to a certain extent) against losses in
the transmission of data over the channel, a very useful property in the context of networked control
systems. With the help of Lyapunov-like functions (used to optimize the singular value estimate) and
the notion of Lyapunov dimension (rather than upper box dimension), constructive estimates of the
necessary data rates are provided. Explicit computations based on these estimates are carried out
for the Lorenz system and the smoothened Lozi map, both of which are examples of chaotic systems
intensively studied in the dynamical systems literature.
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