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Abstract: Permutation Entropy (PE) is a time series complexity measure commonly used in a variety
of contexts, with medicine being the prime example. In its general form, it requires three input
parameters for its calculation: time series length N, embedded dimension m, and embedded delay 7.
Inappropriate choices of these parameters may potentially lead to incorrect interpretations. However,
there are no specific guidelines for an optimal selection of N, m, or T, only general recommendations
suchas N >> m!, T =1,orm = 3,...,7. This paper deals specifically with the study of the practical
implications of N >> m!, since long time series are often not available, or non-stationary, and other
preliminary results suggest that low N values do not necessarily invalidate PE usefulness. Our study
analyses the PE variation as a function of the series length N and embedded dimension m in the
context of a diverse experimental set, both synthetic (random, spikes, or logistic model time series)
and real-world (climatology, seismic, financial, or biomedical time series), and the classification
performance achieved with varying N and m. The results seem to indicate that shorter lengths than
those suggested by N >> m! are sufficient for a stable PE calculation, and even very short time series
can be robustly classified based on PE measurements before the stability point is reached. This may
be due to the fact that there are forbidden patterns in chaotic time series, not all the patterns are
equally informative, and differences among classes are already apparent at very short lengths.

Keywords: permutation entropy; embedded dimension; short time records; signal classification;
relevance analysis

1. Introduction

The influence of input parameters on the performance of entropy statistics is a well known
issue. If the selected values do not match the intended purpose or application, the results can be
completely meaningless. Since the first widely used methods, such as Approximate Entropy (ApEn) [1],
or Sample Entropy (SampEn) [2], the characterization of this influence has become a topic of intense
research. For example, ref [3] proposed the computation of all the ApEn results with the tolerance
threshold varying from 0 to 1 in order to find its maximum, which leads to a more correct complexity
assessment. The authors also proposed a method to reduce the computational cost of this approach.
For SampEn, works such as [4] have focused on optimizing the input parameters for a specific field of
application, the estimation of atrial fibrillation organisation. In [5], an analysis of ApEn and SampEn
performance with changing parameters, using short length spatio-temporal gait time series was
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researched. According to their results, SampEn is more stable than ApEn, and the required minimum
length should be at least 200 samples. They also noticed that longer series can have a detrimental effect
due to non-stationarities and drifts, and therefore these issues should always be checked in advance.

The research into this parameter has been extended to other entropy statistics. The study in [6],
addresses the problem of parameter configuration for ApEn, SampEn, Fuzzy (FuzzyEn) [7], and Fuzzy
Measure (FuzzyMEn) [8] entropies in the framework of heart rate variability. These methods require
from 3 up to 6 parameters. FuzzyEn and FuzzyMEn are apparently quite insensitive to r values,
whereas ApEn exhibits the flip—flop effect (depending on r, the entropy values of two signals under
comparison may swap order [9]). Although this work acknowledges the extreme difficulty of studying
the effect of up to 6 degrees of freedom, and the need for more studies, they were able to conclude
that length N should be at least 200 samples for ¥ = 0.20. Another important conclusion of [6],
strongly related to the present work, is that length has an almost negligible effect on the ability of
the entropy measurements to classify records. PE parameters have been addressed in works such as
in [10]. The authors explored the effect of m = 3-7 and T = 1-5 on anaesthetic depth assessment, based
on the electroencephalogram. Their conclusion was that PE performed best for m = 3, and 7 = 2,3,
and proposed to combine those two cases in a single index. However, as far as we know, there is no
study that quantifies the effect of N and its relationship with m on PE applications.

Since PE conception [11], the length N of a time series under analysis using PE has been
recommended to be significantly greater than the number of possible order permutations [12-15],
given by the factorial of the embedded dimension m, that is, m! << N, or some of its variants, such as
5m! < N [16]. For example, in [12], the authors describe the choice of algorithmic parameters based
on a survey of many PE studies. They also performed a PE study using synthetic records of length
N = 6025: Lorenz system, Van—-der-Pol oscillator, the logistic map, and an autoregressive model,
varying T and m, and from an absolute point of view (no classification analysis). The main conclusions
of these works were to recommend T = 1 and m the highest possible value, with N > 5m!. The study
in [16] is devoted to distinguishing white noise from noisy deterministic time series. They look for
forbidden patterns to ensure determinism, and therefore have to use long enough synthetic records
(Hénon maps), since the probability that any existing pattern remains undetected tend towards 0
exponentially as N grows. Their recommendation is also N > 5m!. The PE proposers [11] worked
with logistic map records of N = 10° to obtain accurate PE results for m < 15, but they also found that
PE could be reliably estimated in this case with N = 1000.

The rationale of the m! << N recommendation, as for other entropy metrics [5,7,17-19], is to
ensure a high number of matches for a confident estimation of the probability ratios [20,21] and also
ensure that all possible patterns become visible [16]. An original recipe for m [11] was choosing the
embedding dimension from within the range 3, ..., 7, from which a suitable N value can be inferred.

However, in some contexts, it is not possible to obtain long time series [22], or for decisions
have to be made as quickly as possible, once a few samples are already available for analysis [21]
in a real time system. In addition, long records are more likely to exhibit changes in the underlying
dynamics. In other words, the required stationarity for a stable PE measurement cannot be assured [23].
As a consequence, N is sometimes out of the researcher’s control, and short records are often
unavoidable. Therefore, only relatively small values of the embedded dimension m should be used,
in accordance with the recommendation stated above. Unfortunately, high values of m usually
provide better signal classification performance [24-26], and this fact leads to an antagonistic and
counterproductive relationship between PE stability, and its segmentation power. For example,
in reference [24], the classification performance of PE using electroencephalogram records of 4096
samples, temperature records of 480 samples, RR records of some 1000 samples, and continuous
glucose monitoring records of 280 samples was analysed. Using m values from 3 up to 9, classification
performance was highest for m = 9 for all the signal types, even the shortest ones, which is in high
contrast to the recommendation assessed.
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Thus, there are studies where, despite analysing short time series with high m values that did
not fulfil the relationship m! << N, the classification achieved using PE was very good [24,26,27].
This led to the hypothesis that PE probably achieves stability before it was initially thought, especially
for larger m values, and additionally, such stability is not required to attain a significant classification
accuracy. The stability criterion proposed is based on the step response of a first order system: the time
needed to achieve a steady state response or its final value. This settling time is defined as the time
required for that response to reach and stay within a percentage of its final value, typically between 2%
and 5% [28]. Thus, we consider PE reaches stability when that measurement stays within a 2% error
band of the PE value obtained for the entire record, and instead of time, the independent variable is the
number of samples. This is the same criterion used in similar works, such as in [1]. If this error band is
not satisfied for the maximum length available, we consider stability is not reached for that m and N.

Furthermore, entropy values are relative, they cannot be correctly interpreted if they are analyzed
in isolation, without a comparison between a control and an experimental group [5]. This has already
been demonstrated in previous studies [24], where PE differences in relative terms were key to
obtaining a significant classification, not the absolute PE values that were influenced by the presence
of ties in the sub-sequences.

In this paper, we try to fine-tune the general recommendation m! << N by computing exactly
what is the required length for a stable PE calculation using different m values, from 3 to 7, and in a
few cases even 9. A classification analysis using short records and PE as the distinctive feature is also
included. The experimental dataset will be composed of a miscellaneous set of records from different
scientific and technical fields, including synthetic and real-world time series.

2. Materials and Methods

2.1. Permutation Entropy

Given an input time series {x; : t =0,..., N — 1}, and an embedding dimension m > 1, for each
extracted subsequence at time s, (s) — (xs_(m_1),xs_(m_2),...,xs_l,xs), an ordinal pattern 7
related to s is obtained as m = (rg,71,...,m—1), defined by xs—;, | < x5—p, , < ... < x5y <
Xs—r, [15]. For all the possible m! permutations, each probability p(7) is estimated as the relative
frequency of each different 7 pattern found. Once all these probabilities have been obtained, the final
value of PE is given by [11]:

m!—1

PE = — ZO p(rtj)log, (p(7;)),if p(7t;) > 0 1)
f=

More details of the PE algorithm, including examples, can be found in [11]. The implicit input
parameters for PE are:

1. The embedded dimension m. The recommended range for this parameteris 3, ...,7 [11], but other
greater values have been used successfully [12,24,26,27]. Since this parameter is also part of the
inequality under analysis in this work, m will be varied in the experiments, taking values from
within the recommended range, and in some cases beyond that.

2. The embedded delay T. The influence of the embedded delay has been studied in several previous
publications [10,29] for specific applications. This parameter is not directly involved in the
m! << N relationship, and therefore it will not be assessed in this work. Moreover, this parameter
contributes to a reduction in the amount of data available when T > 1 in practical terms [30],
and therefore might have a detrimental effect on the analysis. Thus, T will be considered as T = 1
in all the experiments except a few cases for illustrative purposes.

3. The length of the time series N. As stated before, the recommended relationship m! << N is
commonplace in practically all the publications related to PE, but no study so far has quantified
this relationship as planned in the present paper. N will be varied in the experiments to obtain
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a representative set of PE curve points accounting for increasing time series lengths, from 10
samples up to the maximum length available. Each time series was run at different lengths and m
values.

2.2. Experimental Dataset

The experimental data contains a varied and diverse set of real-world time series, in terms of
length and frequency content and distribution, from scientific frameworks where PE or other similar
methods have proven to be a useful tool [14,31-34]. Synthetic time series are also included for a more
controlled analysis. These synthetic time series enable a fine tuning of their parameters to elicit the
desired effects, such as exhibiting a random, chaotic, or more deterministic behaviour. All the records
were normalised before computing PE (zero mean, unit variance). The key specific features of each
dataset utilized are described in Sections 2.2.1 and 2.2.2.

2.2.1. Synthetic Dataset

The main goal of this synthetic dataset was to test the effect of randomness on the rate of PE
stabilisation. In principle, 100 random realisations of each case were created, and all the records
contained 1000 samples to study the evolution for low m values. Most of them were also generated
with 5000 data points to study the effect of greater m values, as described in Section 3. In the specific
case of the logistic map, the resulting records were also used for classification tests since their chaotic
behaviour can be parametrically controlled. This dataset, along with the key features and abbreviations,
is described below. Examples of some synthetic records are shown in Figure 1.

=) &)
2 2
= s
E g
SO i { l 3 . } }
2 £ | |
3 5, ‘ 1 A Ll
: 2T 1T
S o
g g
< <

0 200 400 600 800 1000 0 200 400 600 800 1000

Samples Samples
(a) (b)

=) &)
2 2
s s
E g
S 8
RS K=
[} (9]
° ke
2 £
= B
g g
< < |

0 Samples 200 0 Samples 200

(c) (d)

Figure 1. Synthetic data experimental dataset examples. (a) Example of a synthetic random sequence
from the RAND experimental dataset; (b) Example of a synthetic spikes sequence from the SPIKES
experimental dataset; (c) Example of a synthetic logistic map periodic sequence from the LMAP
experimental dataset. The three records correspond to R = 3.50,3.51, and 3.52. Only the first 200
samples are shown for resolution purposes; (d) Example of a synthetic logistic map chaotic sequence
from the LMAP experimental dataset. The three records correspond to R = 3.57,3.58, and 3.59. Only
the first 200 samples are shown for resolution purposes.
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RAND. A sequence of random numbers following a normal distribution (Figure 1a).

SPIKES. A sequence of zeros including random spikes generated by a binomial distribution with
probability 0.05, and whose amplitude follows a normal distribution (Figure 1b). This sequence is
generated as in [35].

LMAP. A sequence of numbers computed from the logistic map equation x;,1 = R - x¢(1 — x¢).
This dataset really corresponds to 2 subsets obtained by changing the value of the parameter
R: 100 random initialisations of xy with x¢ €]0, 1], and with R = 3.50,3.51, and 3.52 to create
3 classes of 100 periodic records each (Figure 1c), and 3x100 randomly initialised records with
R =3.57,3.58, and 3.59 to create 3 classes of 100 more chaotic records each (Figure 1d).

SIN. A sequence of values from a sinusoid with random phase variations. Used specifically to
study the number of patterns found in deterministic records.

The logistic map has been used in several previous similar studies. In [1], records of this type

were analysed using ApEn, and lengths of 300, 1000, and 3000 samples. Random values are also a
reference dataset in many works, such as in [36], where sequences of 2000 uniform random numbers
were used in some experiments. Spikes have been used in studies such as [22,35], with N = 1000.

2.2.2. Real Dataset

The real-world dataset was chosen from different contexts where time series are processed using

PE. This dataset, along with the key features and abbreviations, is described below. Examples of some
of these records are shown in Figure 2.

CLIMATOLOGY. Symbolic dynamics have a place in the study of climatology [33], with many
time series databases publicly available nowadays [37-39]. This group includes time series of
temperature anomalies from the Global Historic Climatology Network temperature database
available through the National Oceanic and Atmospheric Administration [39]. The data
correspond to monthly global surface temperature anomaly readings dating back from 1880 to the
present. The temperature anomaly corresponds to the difference between the long—term average
temperature, and the actual temperature. In this case, anomalies are based on the climatology
from 1971 to 2000, with a total of 1662 samples for each record. These time series exhibit a
clear growing trend from year 2000, probably due to the global warming effect, as illustrated
in Figure 2a. In [36], average daily temperatures in Mexico City and New York City were used,
with more than 2000 samples. Other works have also used climate data, such as in [40], where
surface temperature anomaly data in Central Europe were analysed using Multi-scale entropy,
with N = 2000.

SEISMIC. Seismic data have also been successfully analysed using PE [41], and these time series
are a very promising field of research using PE. The data included in this paper was drawn from
the Seismic data database, US Geological Survey Earthquake Hazards Program [42]. The time
series correspond to worldwide earthquakes whose magnitude is greater than 2.5, detected each
month, from January to July 2018. The lengths of these time series are not uniform, since they
depend on the number of earthquakes detected each month. It ranges from 2104 up to 9090

samples. An example of these records is show in Figure 2b.

FINANCIAL. This set of financial time series was included as an additional representative field of
application of PE [43]. Specifically, data corresponding to daily simple returns of Apple, American
Express, and IBM, from 2001 to 2010 [44] were included, with a total length of 2519 samples. One
of these time series are shown in Figure 2c. There is a good review of entropy applications to
financial data in [45].

Biomedical time series. This is probably the most thoroughly studied group of records using
PE [14]. Three subsets have been included:

1. EMG. Three (healthy, myopathy, neuropathy) very extensive records corresponding to
electromyographic data (Examples of electromyograms [46]). The data were acquired at
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Amplitude (normalised)

Amplitude (normalised)

50 kHz and downsampled to 4 kHz, and band—pass filtered during the recording process
between 20 Hz and 5 kHz. All three records contain more than 50,000 samples. These records
were later split into consecutive non-overlapping sequences of 5000 samples to create three
corresponding groups for classification analysis (10 healthy, 22 myopathy, and 29 neuropathy

resulting records).
PAF. The PAF (Paroxysmal Atrial Fibrillation) prediction challenge database is also publicly

available at Physionet [46], and is described in [47]. The PAF records used correspond
to 50 time series of short duration (5 minute records), coming from subjects with PAF.
Even—numbered records contain an episode of PAF, whereas odd-numbered records are
PAF-free (Figure 2e). This database was selected because the two classes are easily
distinguishable, and the short duration of the records (some 400-500 samples) can be

challenging for PE, even at low m values.
PORTLAND. Very long time series (more than 1,000,000 samples) from Portland State

University corresponding to traumatic brain injury data. Arterial blood, central venous,
and intracranial pressure, sampled at 125 Hz during 6 h (Figure 2f) from a single paediatric
patient, are available in this public database [48]. Time series of this length enable the study
of the influence of great m values on PE, and are also very likely to exhibit non-stationarities

or drifts [5].
EEG. Electroencephalograph records with 4097 samples from the Department of Epileptology,

University of Bonn [49], publicly available at http://epileptologie-bonn.de. This database is
included in the present paper because it has been used in a myriad of classification studies
using different feature extraction methods [50-54], including PE [55], and whose results make
an interesting comparison here. Records correspond to the 100 EEGs of this database from
epilepsy patients, but with no seizures included, and 100 EEGs including seizures. More
details of this database can be found in the references included and in many other papers.
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Figure 2. Real data experimental dataset examples. (a) Example of temperature anomaly data from the
CLIMATOLOGY subset. Record comprises from 1880 to 2018, with 1662 readings (12 per year), and a
growing trend in recent years. (b) Example of seismic data from the SEISMIC subset. Record comprises
worldwide earthquakes of greater intensity than 2.5, registered during May 2018. (c) Example of
financial time series from the FINANCIAL subset. (d) EMG records included in the dataset (top:
Neuropathy, center: Myopathy, bottom: Healthy). Only the first 5000 samples out of more than 50,000
are shown for clarity. (e) Examples of the records in the two groups of the PAF dataset included in
the experiments. (f) Examples of the records in the PORTLAND dataset: arterial, central venous,
and intracranial pressure. Only the first 5000 samples are shown for clarity.

To analyse the real-world records using PE, the minimum length should be that stated in Table 1.
This length, given by 10m! according to our interpretation of m! << N, is an even more conservative
approach than those used in other studies [16]. Therefore, the hypothesis of this work is that PE reaches
stability at that length, and that will be the reference used in the experiments.

Table 1. Records in the real-world experimental database and their agreement with the recommendation
N >> m! for m in the usual range. Initially, N is considered to be much greater than m! when it is at
least equal to 10 times m!. Data length is included in brackets under the database name.

. ! 1oyt CLIMATOLOGY  SEISMIC ~FINANCIAL ~ EMG  EEG PAF  PORTLAND
(1662) (2104-9090) (2519) (>50,0000 (4097)  (400-500)  (1-10°)
3 6 60 v v v v v v v
4 24 240 v v v v v v v
5 120 1200 v v v v v - v
6 720 7200 - v - v - - v
7 5040 50,400 - - - v - _ v
8 40320 403,200 - - - - - _ v
9 362,880 3,628,800 - - - - - - -

3. Experiments and Results

The experiments addressed the influence of time series length on PE computation from two
standpoints: absolute and relative. The absolute case corresponds to the stable value that PE reaches
if a sufficient number of samples is provided (see the analysis in Section 3.1). This is considered
the true PE value for that time series. The relative standpoint studies the PE variations for different
classes, in order to assess whether, despite PE not being constant with N, the curve for each class can
at least still be distinguished significantly from the others. If that is the case, that would certainly
relax the requirements in terms of N for signal classification purposes. This issue is addressed in the
experiments in Section 3.2.

In the absolute case, all the datasets described in Sections 2.2.1 and 2.2.2 were tested. The PE was
computed for all the records in each dataset and for an equally distributed set of lengths, to obtain the
points of a PE-N plot from the mean PE(mm, N) value. In an ideal scenario, the resulting plot should
be a constant value, that is, PE would be independent of N. However, in practice, PE will exhibit a
transient response before it stabilises, if the time series under analysis is stationary and has enough
samples. This number of samples is usually considered as that length that ensures all the ordinal
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patterns can be found. That is why the possible relationship between PE stability and the number of
ordinal patterns for each length was also studied in this case.

The classification analysis used only those datasets that at least contain two different record
classes. This analysis used first the complete records for PE computation, from which the classification
performance was obtained. Then, this classification analysis was repeated using a set of lengths well
below the baseline N length in order to assess the possible detrimental effect on the performance.
Additional experiments were conducted in order to justify why that detrimental effect was found to
be negligible, based on three hypotheses raised by the authors: PE-N curves are somehow divergent
among classes, not all the ordinal patterns are necessary to find differences, and some ordinal patterns
carry more discriminant information than others.

3.1. Length Analysis

When the results of PE are plotted against different time series lengths, a two-phase curve is
obtained: a parabolic-like region and a saturation region. For very short lengths, PE increases as the
number of samples also increases. At a certain length value, the rate of PE evolution levels off, and no
further length increases cause a significant variation of the PE value. This behaviour is the same for
all the datasets studied, except those with a strong prevalence of drifts, or markedly non-stationary.
There are no guidelines to quantitatively define this point of stabilisation. We used the approach
applied in [1], where stability was considered to be reached when the relative error was smaller than
2%. The ground truth with regard to the real PE value was that obtained at a certain length beyond
which further PE variations were smaller than 2%.

The length analysis graphic results of the synthetic dataset (RAND, SPIKES, chaotic LMAP,
and periodic LMAP records of length 1000) are shown in Figure 3, with m = 3,4,5,6,7. RAND records
exhibit the most frequently found behaviour in real-world records, a kind of first-order system step
response, with stability achieved at 50 samples for m = 3, 200 for m = 4 and at 500 for m = 5. Other
lengths are not shown in the plot, but the experiments yielded a stabilisation length of 20,000 samples
for m = 6, and 55,000 samples for m = 7, approximately. This can be considered in accordance with the
m! << N recommendation. The remaining synthetic records exhibited a different behaviour. The PE
results for the SPIKES dataset were quite unstable, there was no clear stabilisation point. This can be
due to the fact that PE is hypothetically sensitive to the presence of spikes, since it has been used as a
spike detector [30,56]. Both LMAP datasets displayed the same behaviour. A PE maximum at very
short lengths, and a very fast stabilisation for any m value, around 400 samples. Both datasets are very
deterministic, even the chaotic one, and it can arguably be hypothesized that a relative low value of
patterns suffice to estimate PE in these cases.

10
7.5
[Sa]
[al A=7
5 5%
O=4
=3
2.5
200 400 symples 600 800 1000 200 400 sumples 600 800 1000

@) (b)
Figure 3. Cont.
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Figure 3. PE evolution for synthetic time series as a function of length N. Average PE results
for the 100 time series generated in each dataset when N was varied from 10 up to 1000.
(A)ym = 7,(x)m = 6,(0)m =5,(0)m = 4, (e)m = 3. (a) Length analysis of the synthetic RAND
dataset. (b) Length analysis of the synthetic SPIKES dataset. (c) Length analysis of the synthetic chaotic
LMAP dataset (average of the three seeds). (d) Length analysis of the synthetic periodic LMAP dataset
(average of the three seeds).

As for the real datasets: RAND, CLIMATOLOGY, SEISMIC, FINANCIAL, and EMG (only the
first 5000 samples for EMG records), they exhibit the same behaviour depicted in Figure 3a, as shown
individually in Figure 4a—d: An initial fast growing trend that later converges asymptotically to the

supposedly true PE value.

7 m=7
10 - 10
m=6 m==6
7.5 - 7.5 m=5
m ]
A~ ~
5 m=4 5 m=4
=3 =3
2.5¥ “ 2.5l m
0 250 500 750 1000 1250 1500 500 1000 1500 2000
(San)'lp]cs (Sl;;r;ples
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aal ]
~ ~ m=5
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2.5 2.5
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Figure 4. Average PE evolution for real-world time series as a function of length N.
(A)ym = 7,(x)m = 6,(0)m =5,(0)m = 4, (e)m = 3. (a) Average PE evolution for all the records in
the CLIMATOLOGY database, with m from 3 to 7. Maximum length was 1500 samples. (b) Average PE
evolution for all the records in the SEISMIC database, with 7 from 3 to 7. Maximum length was 2000
samples. (c) Average PE evolution for all the records in the FINANCIAL database, with m from 3 to 7.
Maximum length was 2500 samples. (d) Average PE evolution for all the records in the EMG database
(healthy, myopathy, neuropathy), with m from 3 to 7. Maximum length was 5000 samples.

Figure 5 shows in more detail the results corresponding to averaged PE values at 100 different
lengths for all the PAF records, with m ranging from 3 up to 7. For the m values 3, 4, and 5, it is clear
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that PE becomes stable at the 200 samples mark at latest, which is before the recommended number.
However, stability is not achieved for the maximum length available, less than 300 samples, for m = 6
and m = 7. According to Table 1, lengths around 7200 and 50,400 samples would be necessary, but such
lengths are not available.

10
m=7
7.5 oo
m=6
S| m=>5
A
5 m=4
25 Ll
0 50 100 Samples 200 250

Figure 5. Detailed. average PE evolution for all the real records in the PAF database, with m from 3 to
7. Maximum length is taken from the shortest record, approximately 290 samples.

For lengths in the range 10,000-50,000 samples, the full-length EMG records were used for
characterisation. The results for the healthy EMG record are shown in Figure 6, including those for
very high m values of up to 9. As anticipated, there is a clear trend towards later stabilisation with
increasing m, but not as demanding as m! << N entails. Approximately, PE reaches stability at 40,000
samples for m = 9, at 20,000 samples for m = 8, and at 10,000 samples for m = 7 (for smaller m values,
see Figure 4d). According to the general recommendation, around 3,600,000, 400,000, or 50,000 samples
would have been required respectively instead (Table 1). With other less demanding recommendations
such as 5m! < N [16], the real difference is still very significant.

Although PE is very robust against non-stationarities [57], they can also pose a problem as signal
length increases. To illustrate this point, Figure 7 shows the PE results for the very long signals from
the PORTLAND database. In this specific case, even for low m values, there is not a clear stabilisation
at any point. These results suggest that a prior stationarity analysis would be required in case of very
long time series.

Since PE measurements are related to the ordinal patterns found, we also analysed the evolution
of the number of patterns with a relative frequency greater than 0, as a function of N. The results are
shown in Figure 8. The trend is similar to that of PE itself, a fast growing curve for short lengths that
later stabilises to the maximum number of patterns that can be found (this number can be smaller than
m! due to the presence of forbidden patterns). However, the stabilisation takes place far later than for
PE, which seems to indicate that PE values do not depend equally on all the patterns, as will be further
demonstrated in Section 3.2.
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Figure 6. Average. PE evolution using the entire length of the healthy EMG.
Xym = 9,(V)m = 8, (A)ym = 7,(x)m = 6,(0)m = 5,(0)m = 4,(e)m = 3. This figure
complements Figure 4d, where EMG short-term evolution was depicted instead of this long—term
evolution. The availability of very long records enabled the analysis using greater m values.
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Figure 7. Average. PE evolution using the records from the PORTLAND database. Contrary
to the previous cases, PE does not become stable even for very high values of N and low m
values, probably due to non-stationarities or changes in record dynamics that impact on PE results.
(Aym = 7,(x)m = 6,(0)m=5,(0)m =4, (e)m = 3.
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Figure 8. Average. number of ordinal patterns found for all the PAF records as a function of the length
N for mbetween3and 7. (A)m =7, (x)m =6,(0)m =5,(0)m = 4, (e)m = 3.

3.2. Classification Analysis

There is a clear dependence of PE on the record length, mainly for very short records and large
m values. However, as other previous studies have already demonstrated [24], PE might be able to
capture the differences between signal groups even under unfavourable conditions, provided these
conditions are the same for all the classes. Along these lines, it was hypothesised that well before PE
reaches stability, differences become apparent. This hypothesis was developed following observations
in previous class segmentation studies using PE and short records [24,26,27], as a generalisation of the
PE capability to distinguish among record classes despite not satisfying the m! << N condition.

The present classification analysis used records from the datasets that included several groups
that were presumably separable. Specifically, from the synthetic database, the LMAP records were
in principle separable since 3 different R coefficient values were used (3.50, 3.51, 3.52). This initial
separability was first confirmed with a classification analysis whose results are listed in Table 2.
This analysis took place using the entire 100 sequences of 1000 samples each, and the classes were
termed 0, 1, and 2 respectively. The embedded dimension was varied from 3 up to 7, the usual
range, but cases m = 8 and m = 9 were analysed too, which would require very long time series
according to the recommendation under assessment (403,200 and 3,628,800 samples respectively).
Classification performance was measured in terms of Sensitivity, Specificity, ROC Area Under Curve
(AUC), and statistical significance, quantified using an unpaired Wilcoxon-Mann-Whitney test. This is
the same scheme used in previous works [22]. The classes became significantly separable in all cases
for N = 1000 and m > 5, which seems counter—intuitive in terms of the recommendation stated: better
classification accuracy for worse m! << N agreement.
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Table 2. Baseline average classification results for synthetic LMAP periodic records using all the
samples (1000) and different m values. For m = 3, the standard deviation is included in brackets..
The classes were studied in pairs, 01, 02, and 12. Very significant differences were found between
classes 0 and 1, and 0 and 2. For classes 1 and 2, higher m values were required, although for less
significant differences.

m Sensitivity Specificity p AUC
Seg1 Sep2 Serz Spo1 Spoz Sp12 Po1 Po2 P12 01 02 12
3 0.67(0.06) 0.66(0.05) 0.66(0.13) 0.38(0.04) 0.35(0.04) 0.38(0.14) 0.7837 0.8990 0.6981 0.51(0.01) 0.50(0.01) 0.51(0.02)
4 0.49 0.68 0.67 0.55 0.41 0.41 0.6891 0.4214 0.6681 0.51 0.53 0.51
5 1 1 0.58 1 1 0.5 <0.0001 <0.0001 0.5807 1 1 0.52
6 1 1 0.61 1 1 0.65 <0.0001 <0.0001 0.0006 1 1 0.64
7 1 1 0.56 1 1 0.66 <0.0001 <0.0001 0.0193 1 1 0.59
8 1 1 0.64 1 1 0.66 <0.0001 <0.0001 <0.0001 1 1 0.66
9 1 1 0.64 1 1 0.76 <0.0001 <0.0001 <0.0001 1 1 0.73

The experiments in Table 2 were repeated for other lengths of the LMAP periodic records. These
new results are shown in Table 3. The goal of this analysis was to find out if the entire length of the
records was necessary to achieve the same classification results. As can be seen, the same classification
performance can be obtained using only the initial 200-300 samples out of the complete time series
of 1000 samples. The performance also improves when m is greater, contrary to what m! << N
would suggest.

Table 3. Classification results for synthetic LMAP periodic records for different N and m values.
The classes were studied in pairs, 01, 02, and 12. These results should be compared to results in
Table 2, where the same dataset was used, but using the entire length. With lengths as short as 200
samples, results are almost the same achieved with the complete records. More difficulties were found
to separate groups 1 and 2, also in line with the results using N = 1000.

m N Sensitivity Specificity p AUC

Sep1  Sep2  Seiz  Spor  Spoz  Spnz Po1 Po2 P12 01 02 12
3 100  0.59 0.53 0.59 0.49 0.49 0.47 0.0959 0.4840 0.3219 056 052 054
3 200 0.51 0.74  0.69 0.54 0.34 0.40 0.6228 0.4599 0.1891 0.51 053 0.55
4 100  0.33 035 044 0.71 0.71 0.58 0.9359 0.5087 0.5919 050 052 052
4 200 0.46 0.50 0.48 0.69 0.56 0.60 0.0965 0.4465 0.3909 056 053 0.53
5 100 1 1 0.52 1 1 0.59 <0.0001 <0.0001 0.7850 1 1 0.51
5 200 1 1 0.52 1 1 0.53 <0.0001 <0.0001 0.9414 1 1 0.50
6 100 0.86 0.83 046 0.98 1 0.69 <0.0001 <0.0001 0.0075 095 092 0.61
6 200 1 1 0.61 1 1 0.54 <0.0001 <0.0001 0.1867 1 1 0.55
7 100 0.44 044 0.67 1 0.84 0.54 0.0001 0.0424 0.0074 0.65 058 0.61
7 200 0.98 098 0.63 1 1 0.54 <0.0001 <0.0001 0.1212 099 099 055
8 100 0.67 0.52 0.66 0.72 0.82 0.72 <0.0001 0.0012 0.0025 0.71  0.63 0.62
8 200 098 094 0.66 0.95 1 0.6 <0.0001 <0.0001 0.0087 099 098 0.60
9 100 0.94 0.92 0.61 0.94 0.99 0.66 <0.0001 <0.0001 0.0053 097 097 0.61
9 200 1 1 0.5 1 1 0.78 <0.0001 <0.0001 0.0899 1 1 0.57
9 300 1 1 0.5 1 1 0.83 <0.0001 <0.0001, <0.0001 1 1 0.66

The classification analysis using real-world signals was based on PAF, EMG, and EEG records
from the biomedical database. Table 4 shows the results for the classification of the two groups in
the PAF database (fibrillation episode and no—-episode) for the lengths available in each 5 minutes
record, and for m between 3 and 7. These classes were significantly distinguishable in all cases studied,
although the approximately 400 samples available fell well below the amount recommended, mainly
form > 5.
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Table 4. Baseline classification results for PAF records using all the samples of each 5 minutes record
and different m values. Sensitivity improves with greater m values, but the opposite for Specificity.
Maximum AUC is obtained for m = 5. Anyway, the dataset is separable for any m value.

m Sensitivity ~ Specificity P AUC
3 0.76 0.88 <0.0001  0.8560
(t=2) 0.92 0.72 <0.0001  0.8560
(t=4) 0.84 0.72 0.0002  0.8016
4 0.80 0.84 <0.0001  0.8608
5 0.80 0.80 <0.0001  0.8688
6 0.92 0.72 <0.0001  0.8672
7 0.96 0.68 <0.0001  0.8432

The experiments in Table 4 were repeated using only a subset of the samples located at the
beginning of the time series. These additional results are shown in Table 5. Although there is a
detrimental effect on the classification performance, significant results are achieved with even very
short time series of some 45 (m = 3) or 50 samples (m = 4, 5).

Table 5. PAF records classification results for different values of N and m. These results should be
compared with those in Table 4, where the same dataset was used, but the complete time series instead.
For lengths around 50 samples, classification performance is very similar to that achieved with the
entire records.

m N Sensitivity ~ Specificity P AUC
310 0.52 0.68 1.0000  0.5000
3 25 0.68 0.56 0.0857  0.6416
3 40 0.68 0.72 0.0045  0.7336
3 45 0.76 0.84 0.0002  0.8048
3 50 0.80 0.80 0.0002  0.7984
3 60 0.84 0.72 0.0003  0.7920
3 75 0.76 0.76 0.0004  0.7904
3 100 0.92 0.60 0.0003  0.7920
4 10 0.64 0.52 0.1278  0.6184
4 25 0.52 0.68 02169  0.6016
4 50 0.72 0.76 0.0004  0.7904
4 75 0.80 0.72 0.0003  0.7936
4 100 0.88 0.68 0.0001  0.8096
4 150 0.92 0.68 <0.0001  0.8496
5 10 0.00 1.00 0.8083  0.5200
5 25 0.52 0.60 02192 0.5984
5 50 0.68 0.84 0.0012  0.7664
5 75 0.60 0.84 0.0007  0.7784
5 100 0.76 0.72 0.0017  0.7584
5 200 0.88 0.64 0.0001  0.8208

Table 6 shows the classification results for the EMG records of length 5000 samples. Each class
is termed 0, 1, or 2 healthy, myopathy, and neuropathy, respectively. Pairs 01 and 12 were easily
distinguishable for any m value, but pair 02 could not be significantly segmented.

Table 6. Baseline classification results for the three classes of. EMG records using all 5000 samples and
different m values. Groups 0 and 2 were not distinguishable in any case.

m Sensitivity Specificity p AUC
Seg1  Sepz  Seiz  Spor Spoz  Spi2 Po1 Po2 P12 01 02 12
3 1 1 0.51 1 0.62 0.81 <0.0001  0.2602 0.0203 1 0.6206  0.6912
4 1 1 1 1 0.62 1 <0.0001 0.2602  <0.0001 1 0.6209 1
5 1 1 1 1 0.62 1 <0.0001 0.2602  <0.0001 1 0.6209 1
6 1 0.9 1 1 0.62 1 <0.0001 0.3033 <0.0001 1 0.6103 1
7 1 0.9 1 1 0.55 1 <0.0001 0.3678 <0.0001 1 0.5965 1
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As with the LMAP and PAF data, the EMG experiments were repeated using only a subset of
the samples at the beginning of each record. These results are shown in Table 7. As with the entire
records, pairs 01 and 12 can be separated even using very short records (200 samples for m = 3, 100 for
m = 4,5). As can be seen, the classification performance improves more with m than with N, probably
because longer patterns provide more information about the signal dynamics [12]. Pair 02 could not be
separated, but that was also the case when the entire records were processed using PE.

Table 7. EMG classification results for different values of N and m using the subset of 5000 samples
extracted from each of the three EMG records as described in Section 2.2.2. These results should be
compared with those in Table 6, where the same dataset was used, but with N = 5000. Similar were
indeed achieved for lengths as short as 300 samples.

m N Sensitivity Specificity p AUC

Seo1 Sepz Senx  Spon Spoz  Spn po1 Poz P12 01 02 12
3 100 0.40 0.55 0.51 1 0.6 0.91 0.6843 0.8469 0.2699 0.5454 0.5206  0.5909
3 200 0.80 080 0.76 0.81 0.58 0.59 0.0009 0.2602 0.0236 0.8681 0.6206  0.6865
3 300 0.80 0.70 0.72 0.91 0.58 0.63 0.0008 0.7722 0.0034 0.8727 0.5310 0.7413
3 400 090 090 0.58 0.91 0.55 0.77  <0.0001 0.4994 0.0036 0.9409 0.5724 0.7398
3 500 090 090 0.51 1 0.62 0.68 <0.0001  0.2340 0.0347 0.9636  0.6275 0.6739
4 100 0.7 0.41 0.58 0.86 0.8 0.81 0.0064 0.8976 0.0034 0.8045 0.5137 0.7413
4 200 1 0.80 0.86 0.95 0.51 0.86 <0.0001 0.4594 <0.0001 0.9863 0.5793 0.9090
4 400 1 0.70 0.89 1 0.62 1 <0.0001 0.5200 <0.0001 1 0.5689  0.9623
4 600 1 090 093 1 0.58 1 <0.0001 0.3678 <0.0001 1 0.5965  0.9890
4 800 1 1 1 1 0.58 0.95 <0.0001 0.2216  <0.0001 1 0.6310  0.9968
5 100 0.8 0.48 0.82 0.91 0.80 0.81 0.0008 0.6758  <0.0001 0.8727 0.5448 0.8463
5 200 1 0.60 0.89 0.95 0.51 0.95 <0.0001 1 <0.0001  0.9954 0.5 0.9502
5 500 1 0.80 1 1 0.62 0.95 <0.0001 04594 <0.0001 1 0.5793  0.9952
5 750 1 0.80 1 1 0.58 1 <0.0001 0.3851 <0.0001 1 0.5931 1
5 1000 1 0.80 1 1 0.58 1 <0.0001 0.3678 <0.0001 1 0.5965 1

Finally, the EEG records were also analysed, in order to provide a similar scheme to compare
the results to those achieved in other works [55], although the experimental dataset and the specific
conditions may vary across studies. The quantitative results are shown in Tables 8 and 9.

Table 8. Baseline classification results for EEG records using all 4097 samples and different m values.
For any m value, the classification performance was very significant.

m Sensitivity ~ Specificity p AUC
3 0.93 0.90 <0.0001  0.9619
(t=2) 0.72 0.64 <0.0001  0.7186
(t=4) 0.62 0.56 0.2569 0.5464
4 0.93 0.89 <0.0001  0.9579
5 0.92 0.89 <0.0001  0.9563
6 0.91 0.89 <0.0001  0.9526
7 0.93 0.85 <0.0001  0.9443
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Table 9. EEG classification results for different values of N and m. These results should be compared
with those of Table 8, where the same dataset was used, but with all the 4097 samples.

m N Sensitivity ~ Specificity p AUC

3 100 0.76 0.86 <0.0001  0.8604
3 200 0.83 0.83 <0.0001  0.8966
3 300 0.85 0.84 <0.0001 0.9183
3 400 0.86 0.86 <0.0001  0.9241
3 500 0.89 0.83 <0.0001  0.9336
3 1000 0.87 0.87 <0.0001  0.9362
4 100 0.75 0.85 <0.0001  0.8531
4 200 0.86 0.81 <0.0001  0.8898
4 300 0.86 0.80 <0.0001  0.9086
4 400 0.87 0.83 <0.0001  0.9167
4 500 0.83 0.88 <0.0001  0.9264
4 1000 0.86 0.87 <0.0001  0.9307
5 100 0.74 0.84 <0.0001  0.8441
5 200 0.82 0.82 <0.0001 0.8746
5 300 0.84 0.80 <0.0001  0.8963
5 400 0.85 0.83 <0.0001  0.8999
5 500 0.86 0.84 <0.0001  0.9132
5 1000 0.87 0.85 <0.0001  0.9260
6 100 0.73 0.83 <0.0001  0.8239
6 200 0.81 0.79 <0.0001 0.8513
6 300 0.82 0.79 <0.0001  0.8729
6 400 0.85 0.81 <0.0001  0.8800
6 500 0.86 0.81 <0.0001  0.8940
6 1000 0.89 0.81 <0.0001  0.9146
7 100 0.71 0.79 <0.0001  0.7991
7 200 0.78 0.79 <0.0001  0.8283
7 300 0.75 0.81 <0.0001  0.8461
7 400 0.87 0.82 <0.0001  0.8533
7 500 0.85 0.78 <0.0001  0.8700
7 1000 0.89 0.78 <0.0001 0.8942

3.3. Justification Analysis

All the classification results hint that the necessary length N to achieve a significant performance
is far shorter than that stated by the recommendation m! << N. This may be due to several factors:

o  Firstly, the possible differences among classes in terms of PE may become apparent before stability
is reached. As occurred with ties [24], artefacts, including lack of samples, exert an equal impact
on all the classes under analysis, and therefore, PE results are skewed, but differences remain
almost constant. In other words, the curves corresponding to the evolution of PE with N remain
parallel even for very small N values. An example of this relationship is shown in Figure 9
for PAF records using m = 3 and m = 5. Analytically, PE reaches stability at 45 samples for
m = 3, but at 30 samples, both classes become significantly separable, which is confirmed by
numerical results in Table 5. For m = 5 there are not enough samples to reach stability, as defined
in Section 3.1, but class separability can be achieved with less than 50 samples. Shorter lengths
may have a detrimental effect on classification accuracy, but such accuracy is still very significant.
This behaviour is quite common (Tables 3 and 5).

e  Secondly, the recommendation m! << N was devised to ensure that all patterns could be
found with high probability [16]. However, this is a very restrictive limitation, since this is only
achievable for random time series. More deterministic time series, even chaotic time series like
the ones included in the experimental dataset, have forbidden patterns that cannot be found
whatever the length is [58]. Therefore, all the possible different patterns involved in a chaotic time
series can be found with shorter records than the recommendation suggests. This is very well
illustrated in Table 10, where random sequences (RANDOM, SEISMIC) exhibit more different
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patterns than chaotic ones (EMG, PAF) per length unit. Thus, for most real-world signals that
recommendation could arguably be softened.
e  Third, and finally, not all the patterns, in terms of estimated probability, have the same impact,
positive or negative, on PE calculation. Indirectly, this impact will also have an influence on the

discriminative power of PE. In other words, a subset of the patterns can be more beneficial than
the entire set. To assess this point, we modified the PE algorithm to sort the estimated non-zero
probabilities in ascending order, and remove the k—-smallest ones from the final computation.

The approximated PE value was used in the classification analysis instead. Some experiments
were carried out to quantify the possible loss incurred by this removal in cases previously studied.
The corresponding results are shown in Table 11, for records with a significant number of patterns

as per the data in Table 10.

PAF class 1 m=3

Permutation Entropy

~ PAF class 0 m=3

50

100 Length 150

200

250

Figure 9. PE evolution with N for PAF records and m = 3 and m = 5. In contrast to previous results,

not only average values are shown, but also one standard deviation interval to illustrate the possible

overlapping between classes.

Table 10. Average number of patterns found in several datasets compared to the maximum number of

patterns that m! implies (found/expected). Randomness and determinism are related to the number of

patterns found per length unit, and the number of forbidden patterns.

N m=3 m=4 m=>5 m==6 m=7
RANDOM 5000 6/6 24/24 120/120 719.37/720 3176.74 /5040
EMG 5000 6/6 24/24 115.213/120 455.82/720 1053.31/5040
SINUS 5000 4/6 6/24 8/120 10/720 10/5040
LMAP (Periodic) 5000 4.366/6 5.01/24 9.367/120 11.28/720 12.80/5040
LMAP (Chaotic) 5000 431/6 4.94/24 9.31/120 10.45/720 11.21/5040
PAF 400 6/6 23.76 /24 97.84/120 249.98/720 346.9/5040
SEISMIC 2000-9000 6/6 24/24 120/120 699.714/720  2602.29/5040
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Table 11. Influence of number of patterns used for PE computation on classification performance.
The first column corresponds to the normal case of no—pattern-restriction, the other ones account for
the performance when the smallest PE relative frequencies were discarded, and only the reported
number of patterns remained in the calculation.

Remaining patterns

m (Sensitivity)(Specificity)
3 6 5 4 3 2 1
(0.76)(0.88) (0.76)(0.92) (0.8)(0.8) (0.8)(0.8) (0.72)(0.8) (0.76)(0.68)
PAF 4 24 20 16 12 8 4
(0.80)(0.84) (0.72)(0.88) (0.8)(0.88) (0.8)(0.84) (0.8)(0.84) (0.84)(0.8)
5 120 100 80 60 40 20
(0.8)(0.8) (0.8)(0.8) (0.84)(0.76) (0.92)(0.76) (0.88)(0.8) (0.88)(0.8)
3 6 5 4 3 2 1
(1,1,051)(1,0.62,0.81)  (1,1,0.51)(1,0.62,0.81)  (1,1,0.86)(1,0.62,044)  (1,1,041)(1,0.62,1)  (1,1,0.62)(1,0.62,0.8)  (1,1,0.62)(1,0.62,0.81)
EMG 4 24 20 16 12 8 4
(1,1,1)(1,0.62,1) (1,1,1)(1,0.62,1) L,071)(1,0.651)  (1,071)(1,0.621)  (1,0381)(1,08,1) (1,0.51,1)(1,0.8,1)
5 120 100 80 60 40 20
(1,1,1)(1,0.62,1) (1,0.8,1)(1,0.48,1) (1,0.9,1)(1,0.44,1) (1,0.7,1)(1,0.55,1) (1,0.8,1)(1,0.58,1) (1,0.9,1)(1,0.62,0.91)

3.3.1. Relevance Analysis

The results in Table 11 show that only a few patterns suffice to find differences between classes.
For PAF records and m = 3, with only 3 patterns it is possible to achieve a sensitivity and specificity as
high as 0.8. For m = 5, a subset of patterns can be better for classification, since only 40 or 20 achieve
more accuracy than 120 or 100. This is also the case for other m values or other signals. Probably,
a more careful selection of the remaining patterns could yield even better results.

Since not only the quantity of attributes may play an important role, but also their quality,
a relevance analysis to the ordinal patterns for m = 3 (6 patterns) obtained when processing the
PAF database was applied. Relevance analysis aims to reduce the complexity in a representation
space, removing redundant and/or irrelevant information according to an objective function, in order
to improve classification performance and discover the intrinsic information for decision support
purposes [59]. In this paper, a relevance analysis routine based on the RELIEF-F algorithm was used to
highlight the most discriminant patterns [60].

RELIEF-F is an inductive learning procedure, which gives a weight to every feature, where a
higher weight means that the feature is more relevant for the classification [61]. For selecting relevant
ordinal patterns the RELIEF-F algorithm shown in Algorithm 1.

Algorithm 1: RELIEF-F for ordinal patterns selection
Inputs: I1, k and n
Outputs: W
forj € {1,m!} do
| W[m]:=0
fori € {1,n} do
Randomly select an instance R
Find the k nearest Hits Hy 5...
Find the k nearest Misses Mj 5...k
for! € {1,k} do
forj e {1,m!} do
L W] := W] - dlff(P(”j)rR/Hl);dlff(P(”j)erMl)

The nearest Hits makes reference to its nearest neighbours in the same class, while the nearest
Misses refers to the nearest neighbours of a different class. Likewise, diff(P(7;), A, B) function
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expresses the normalized difference, i.e., [0, 1] range, for the relative frequency of the ordinal pattern
7T}, between the instances A and B.

The results in Table 12 confirm this hypothesis. As the number and content of the patterns in PE
is known in advance, this could become a field of intense study in future works due to its potential as
a tool to improve the segmentation capability of PE or any related method.

Table 12. Results of the relevance analysis for the patterns obtained using the PAF records and m = 3.

Ordinal Pattern

123 132 213 231 321 312
Rank 1 3 5 6 2 4
Weight 0.02 0.01 —-0.005 —0.0077  0.013  0.0074
p-value 0.0002 0.0170  0.0270 0.1510 0.0123  0.0681

Additionally, according to Figure 10, in the boxplots of relative frequencies for the six ordinal
patterns assessed, the discriminant effectiveness is different for each pattern. E.g., pattern 123 is the
one which offers the best classification capability (Figure 10a), while pattern 231 is not recommended
(Figure 10f). These results suggest that for classification purposes it may not be necessary to compute
the relative frequency for all patterns, which means a reduction in the computational cost, a very
important issue for real time systems.
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Figure 10. Boxplots of relative frequencies of ordinal patterns over time series with PAF and PAF—free.

4. Discussion

The recommendation m! << N is aimed at ensuring that all possible patterns become visible [16],
even those with low probability. This is a sure and safe bet, and is clearly true for random time series,
where any pattern can appear [32].

For both synthetic and real signals, there is a clear dependence of PE on N, which is depicted in
Figures 3 and 4, with the exception of the SPIKES and LMAP datasets. PE initially grows very fast,
which can be interpreted as a complexity increase due to the addition of new patterns 7; since more
terms p(7;) become greater than 0. PE tends to quickly stabilise once all the allowed patterns have
been found [58], and at some point, more samples only contribute to increasing the counters of the
already occupied probability bins, but PE remains almost constant. However, PE stabilises before the
number of patterns found does (Figure 8), probably because not all the patterns are equally significant
when computing PE. SPIKES are not very well suited for PE since most of the subsequences will be
composed of 0 values, yielding a very biased distribution, but they have been included since there
are quite many works where PE was used to detect spikes, and to illustrate this anomalous behaviour
(Figure 3b).

Numerically, there is a great variability of the point where PE stabilises in each case. The RAND
dataset is probably the one that best follows the m! << N recommendation, with approximate real
stabilisation points at 50, 200, 500, 20000, and 55000 samples (for m = 3,...,7), compared with the
estimated values of 60, 240, 1200, 7200, and 50,400.

For the PAF database, PE becomes stable at 50 samples for m = 3, 150 for m = 4, and 250 for
m = 5. There were not enough data to study greater m values. However, the lengths available seem
to suggest that shorter lengths suffice to compute PE, and the greater the m value, the greater the
difference between the real length needed, and the length suggested.

The other real signals yielded very similar results. The CLIMATOLOGY database stabilised PE at
lengths shorter than 100 samples for m = 3, at 250 for m = 4, and at 750 samples approximately for
m = 5. Using the SEISMIC records, the lengths were 50, 300, and 900 for m = 3,4,5. The FINANCIAL
database needed 80, 450, and 850 samples for the same embedded dimensions. The EMG records of
length 5000 became stable at 100, 400, and 950 respectively. All these signals were not long enough for
m=6andm=7.

These values of m were tested with the full-length EMG records (Figure 6), along with the long
records of the PORTLAND database (Figure 7). In the EMG case, stability was reached for m = 6 at
length 16,000, and at 30,000 for m = 7. It was also possible to see that the length required for m = 8 was
35,000, and 50,000 for m = 9. The PORTLAND records did not yield any stabilisation point as defined
in this study, probably because such great lengths are counterproductive in terms of stationarity. This
case was included in order to illustrate the detrimental effect that longer records may also have.
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The classification analysis reported in Tables 2 and 3 suggests length is far less important to find
differences among classes using PE. In Table 2, the results for LMAP records using 1000 samples seem
to show that for a significant classification, it is necessary to have m > 4, and maximum classification
performance is achieved for m = 9, which would imply, according to m! << N, a length in the vicinity
of 1-10° samples at least, 1000 times more samples. These results are supported by an analysis based on
Sensitivity, Specificity, statistical significance, and AUC, from m = 5, where m! << N is still fulfilled,
up to m = 9. There is also a clear direct correlation between m and classification accuracy. With regard
to the effect of 7, as hypothesized, it has a detrimental impact on the classification performance due to
the information loss that it entails, which is not compensated by a clear multi-scale structure of the
data analysed. This parameter does not only imply a length reduction, as others analyses in this study
do, but also a sub-sampling effect.

The analysis using shorter versions of LMAP records in Table 3 confirms differences can be found
using a subset of an already short time series. With as few as 100 samples, clear differences can be
found even at m = 9, with a performance level very close to that achieved with the complete records.

Using real signals, as in Tables 4 and 5, the trend is exactly the same. The classification performance
for PAF records reaches its maximum at m = 5, being significant all the tests for m = 3 up to
m = 7, despite not having enough samples for m > 5. Again, with as few as 100 samples (Table 5),
the classification is very similar to that in Table 4. The same occurs with the EMG records of length
5000, where best classification is achieved at m = 5, with good results for m > 4 (Table 7).

The classification of the EEG records from a very well known database by the scientific community
working on this field follows the same pattern. Although the experiments are not exactly the same,
the results achieved for the full length records (4097 samples) are very similar to those in [55],
and in [54], among other papers, with AUCs in the 0.95 range for the specific classes compared.
However, as demonstrated in Table 9, a significant separability is achieved for as few as 100 samples,
and for any m between 3 and 7. This length is still within the limits suggested by m! << Nif m =3,
but that relationship is not satisfied for m > 3, with m = 7 being very far from doing so (some 50,000
samples required, see Table 1). In fact, m seems to have an almost negligible effect on the classification
performance. In terms of AUC, a length of 3000 samples seems to suffice to achieve the maximum
class separability, with a 0.1 AUC difference between N = 3000 and N = 100, except for m = 7,
with a slightly greater AUC difference. Although length has a positive correlation (very small) with
classification performance, once again records can be much shorter than m! << N entails.

Signal differences become apparent well before PE stabilisation is reached (Figure 9) and even for
very short records and great m values [26,27]. Some patterns have more influence than others (Table 11),
and some do not show up at all (Table 10). All these facts may arguably explain why classification can
be successfully performed even with as few as 100 samples. A short pattern relevance exploratory
analysis (Table 12) seemed to additionally confirm some patterns have a greater contribution to the
class differences than others, as is the case in many feature selection applications [62].

5. Conclusions

The well known recommendation of N >> m! for robust PE computation is included in almost
any study related to this measurement. However, this recommendation can be too vague and subject to
a disparity of interpretations. In addition, it may cast doubt on PE results for short time series despite
statistical significance or high classification accuracy.

This study was aimed at shedding some light on this issue from two viewpoints: the stability of
the absolute value of PE, and its power as a distinguishing feature for signal classification. A varied
and diverse experimental dataset was analysed, trying to include representative time series from
different contexts and exhibiting different properties from a chaos point of view. Sinusoidal signals
were included for deterministic behaviour, logistic maps also for deterministic and chaotic behaviour.
Spike records to account for typical disturbances in many biological records and semi-periodic records.
Random records for truly random time series and white noise. The real set included climatology
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data, non-stationary stochastic data, seismic geographically dispersed data that can be considered
random, and stochastic financial data. EMG aimed to characterise the behaviour for very long
semiperiodic signals and noise. PAF records are short non-stationary records that have been used
in other classification studies previously, and EEG records are broadband records also used in other
works. In total, 12 signal types were used in the experiments.

In absolute terms, PE values seem to reach a reasonable stability with 100 samples for m = 3, 500
samples for m = 4, and 1000 samples for m = 5. This can be arguably considered in agreement with the
m! << N recommendation, but it is far more specific, and can be further relaxed if the records under
analysis are more deterministic. In other words, they can be considered an upper limit. For greater
m values, we very much doubt that stationarity could be assured for real-world signals and for the
lengths required, and further studies are necessary.

When comparing PE values in relative terms, N >> m! becomes almost meaningless. Results
in Tables 5 and 7 already demonstrate this, in agreement with other PE classification studies [26,27].
In all cases analysed, 200 samples seem to suffice to find differences among time series using PE, if not
less. This seems to be due to three main factors: length is equally detrimental to all the classes, there is
no need to “wait” for all the patterns to appear, since some of them never will, and not all the patterns
are balanced in terms of relevance. In fact, considering the ordinal patterns relative frequencies as the
features of a classifier, a relevance analysis could arguably improve the results achieved so far using
PE, and this is probably a very promising field of research in the coming years. The recommendations
are summarised in Table 13.

Table 13. Summary of the conclusions of the paper and the supporting information.

Recommendation Supporting Data Justification
PE
(absolute N >>m! Figures 3-7 Pattern probability estimation in other works.
value)
Figures 8-10. Class differences are present at any length in stationary records.
PE Very similar results in other studies ([24,26,27]). Long records are usually non-stationary.
(relative value) N =200 Tables 2-7, 9-12. There are forbidden patterns. No need to look for them.
For classification Very similar results for 10 datasets exhibiting Not all the ordinal patterns are representative of the differences.
avaried and diverse set of features and properties. Real signals are mostly chaotic.

As far as we know, there is no similar study that analysed quantitatively the N >> m!
recommendation. It is based on a conservative assumption to ensure that all ordinal patterns can be
found with certain probability. Once that recommendation was proposed, all the subsequent works
followed that recommendation in most cases without questioning it. In this work we have provided
evidence that for PE absolute value computation that recommendation is reasonable, but it might be
completely wrong for classification purposes (relative PE values). In the classification case we have
proposed to use specific lengths of some 200 samples, but there is no formula that could mathematically
provide an explicit value.

Furthermore, large m values should not be prevented from being used in classification studies
based on PE due to the recommendation N >> m!. Similar works [24] have already demonstrated
that higher m values frequently capture the dynamics of the underlying signal better, as is the case in
the present study, and only computational resources should limit the highest m value available. Even
for very short records, m values beyond the recommendation seem to perform better than those within
m! << N.

Our main goal was to make a first step in the direction of questioning the m! << N
recommendation, overcome that barrier, and foster the development of other studies with more
freedom to choose N. The preliminary relevance analysis introduced should be extended to more
signals and cases, even using synthetic records where the probability density function of each order
pattern is known and controlled in order to enable to use more analytic calculations.
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