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Abstract: In this paper, we propose using paraxial matrix optics to describe a ring-phase conjugated
resonator that includes an intracavity chaos-generating element; this allows the system to behave in
phase space as a Bogdanov Map. Explicit expressions for the intracavity chaos-generating matrix
elements were obtained. Furthermore, computer calculations for several parameter configurations
were made; rich dynamic behavior among periodic orbits high periodicity and chaos were observed
through bifurcation diagrams. These results confirm the direct dependence between the parameters
present in the intracavity chaos-generating element.
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1. Introduction

Matrix description of optical systems through ABCD matrices (Equation (8)) naturally produces
iterative maps with rather complex dynamics. Several publications have dealt with the ABCD law
and the iterative maps it produces. Belanger [1] has generalized the ABCD propagation law for
optical systems Onciul [2], using the Kirchhoff integral, derives a generalized ABCD propagation
law for general astigmatic Gaussian beams through misaligned optical systems, Bastiaans [3] shows
under what condition the well-known ABCD law that can be applied to describe the propagation
of one-dimensional Gaussian light through first-order optical systems (or ABCD systems) can be
extended to more than one dimension; in the two-dimensional (or higher-dimensional) case, an
ABCD law only holds for partially coherent Gaussian light for which the matrix of second-order
moments of the Wigner distribution function is proportional to a symplectic matrix. Tian [4] presents
an iterative method for simulating beam propagation in nonlinear media using Hamiltonian ray
tracing in which the Wigner distribution function of the input beam is computed at the entrance
plane, used as the initial condition for solving the Hamiltonian equation; he gives examples for the
study of periodic self-focusing, spatial solitons and the Gaussian–Schell model in Kerr-effect media.
Finally, Siegman [5] and Tarasov [6] shown how to describe a laser resonator with iterative matrix
optics by ray propagation through cascaded optical elements. This kind of map has been successfully
applied before to the description of laser beams within optical resonators. This treatment has been
explored for several other maps, obtaining several chaos-generating intracavity elements that are
based on the dynamical behavior from widely diverse maps, such as the Ikeda map [7], Standard
map [8], Tinkerbell map [9–11], Duffing map [11,12], logistic map [13] and the Henón map [11,14].
Throughout this article the Bogdanov Map will be used to describe a ring-phase conjugated resonator,
while the resultant iterative matrix system is analyzed. In the following Section 2, a quick derivation
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of the Bogdanov map is sketched following reference [15], then will convert our two-dimensional
mapping into a theoretical optical element that will produce the same complex dynamical behavior as
the Bogdanov map within a phase-conjugated ring resonator. To accomplish this, we introduce the
ABCD matrix formalism that is commonly used in paraxial optics [16], allowing us to represent each
optical component as a 2× 2 matrix. Moving forward with the previously obtained results, finding
what we call Bogdanov beams; these are beams that propagate within the resonator following dynamics
of the Bogdanov map. In Section 3, we discuss the results obtained from numerical calculations
displaying the rich dynamics of the system, as it is shown in the bifurcation diagrams as a function of
the intracavity chaos-generating element parameters. Finally, Section 4 presents the conclusions.

2. Material and Methods

2.1. Bogdanov Map

This map was originally conceived by Bogdanov while studying the universal unfolding of the
double-zero-eigenvalue singularity [17] (also called Bogdanov–Takens or cusp), which is the equivalent
of a vector field invariant under a rotation of the plane by 2π. The Bogdanov map can be obtained by
means of discretization using the Euler method on the Bogdanov vector field. Next, to be thorough
and closely follow reference [15], we proceed to sketch a quick derivation of the Bogdanov Map.

ẏ = θ,

θ̇ = 0
(1)

This vector field has a codimension-two fixed point at the origin, known as a
double-zero-eigenvalue singularity; the normal form of this can be written as follows:

ẏ = θ + λy2,

θ̇ = ηy2 (2)

where λ 6= 0, η 6= 0. A two-parameter versal unfolding for this normal form, which contains all possible
qualitative dynamical behavior near Equation (2), can be given:

ẏ = θ + v2y + λy2,

θ̇ = v1 + ηy2 (3)

The unfolding given above is not unique and a versal unfolding or deformation such as
Equation (3) contains all possible qualitative dynamical behavior that can occur near the singularity.
By restricting our attention to the region away from the saddle-node bifurcations, the Hamiltonian
system of ordinary equations first considered by Bogdanov can be obtained,

ẏ = θ

θ̇ = y(y− 1)
(4)

once again, a two-parameter versal unfolding is obtained for Equation (4),

ẏ = θ

θ̇ = u1θ + y(y− 1) + u2yθΞ(y, u1, u2) + u2
2θ2Φ(y, θ, u1, u2)

(5)
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By taking the vector field from Equation (5), and applying the backward Euler discretization
method to the first equation (ẏ) and the forward Euler method to the second equation (θ̇), both with
step length h, we obtain

yn+1 =yn + hθn+1

θn+1 =θn + hu1θn + hyn(yn − 1) + hu2ynθnΞ(yn, u1, u2) + hu2
2θ2

nΦ(yn, θn, u1, u2)
(6)

now making Ξ(yn, u1, u2) = 1, Φ(yn, θ, u1, u2) = 0 and multiplying the second equation by h.
Finally, making the change of variables u1 = ε/h, u2 = µ/h, hθ = θ̃, h2 = k and dropping the
tilde from θ, we get the Bogdanov Map.

yn+1 =yn + θn+1

θn+1 =θn + εθn + kyn(yn − 1) + µynθn
(7)

The Bogdanov map is a planar quadratic map, conjugate to the Hénon-area-preserving map in its
conservative limit (ε = µ = 0). Here, ε and µ are related to the Bogdanov vector field, while k plays
the role of step length in the discretization, such that for a small k, the map behavior will resemble
the original vector field. The dissipative Hopf parameter ε determines the birth and growth from the
origin for the primary Hopf invariant circle; the stability of this circle is determined by µ, while the
Hamiltonian discretization parameter k determines the birth and growth of the island chains.

2.2. Paraxial Matrix Analysis

The description of ray or Gaussian optics with matrices turns both the analysis and composition
of optical systems into a simple and straightforward task, since this technique allows us to represent
the behavior of any optical element as a 2× 2 matrix. Cylindrical symmetry is used around the optical
axis, so that for any given position z both the perpendicular distance of any ray to the optical axis (y)
and its angle with the same axis (θ) can be defined; thus, any optical system can be represented by an
[ABCD] matrix, (

yn+1

θn+1

)
=

(
A B
C D

)(
yn

θn

)
(8)

In passive optical elements (mirrors, lenses, interfaces between two media, etc.), elements
A, B, C, D are constant; nevertheless, for nonlinear optical elements, they are not necessarily constant,
but may be functions of different parameters; The description of an optical system described by a
Bogdanov Map requires (from Equation (7)) that the coefficients A, B, C, D be:(

A B
C D

)
=

 1
θn+1

θn
k(yn − 1) 1 + ε + µyn

 (9)

where the value
θn+1

θn
can be written as

θn+1

θn
≡ 1 + ε + yn[

k
θn

(yn − 1) + µ] .

In Figure 1, we sketch the diagram of our optical system, where the [a, b, c, e] matrix is the
unknown map generating device, located between the plain mirrors M1 and M2 at a distance d/2,
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while M3 is a phase-conjugated mirror. For this system, the total transformation [ABCD] matrix for a
complete round trip is written as follows:(

A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)(
1 d/2
0 1

)

×
(

a b
c e

)(
1 d/2
0 1

)(
1 0
0 1

)(
1 d
0 1

) (10)

which gives

=

(
a + 3cd

2 b + 3d
4 (2a + 3cd + 2e)

−c − 3cd
2 − e

)
(11)

A = a +
3cd
2

B = b +
3d
4
(2a + 3cd + 2e)

C = −c

D = −3cd
2
− e

Figure 1. Phase-conjugated ring resonator with an intracavity chaos-generating element.

To reproduce the behavior of the Bogdanov map by means of a ray within the optical ring resonator,
each round trip described by (yn, θn) must be considered as an iteration of the Bogdanov map. Next,
we take the previously obtained [ABCD] matrix elements of the Bogdanov map, Equation (9), and
equate them to the total [ABCD] matrix of the resonator, Equation (11); this in order to generate the
round-trip map dynamics for (yn+1, θn+1). Note here that the results obtained are only valid for a small
b value, (b ≈ 0): this is because before and after the matrix element [a, b, c, e], there is a propagation of
(d− b)/2. Meanwhile, for a general case, Equation (11) ought to be replaced by the following:
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(
A B
C D

)
=

(
1 0
0 −1

)(
1 d
0 1

)(
1 0
0 1

)(
1 d−b

2
0 1

)

×
(

a b
c e

)(
1 d−b

2
0 1

)(
1 0
0 1

)(
1 d
0 1

) (12)

which gives (
a− c

2 (b− 3d) 1
4
[
b2c− 2b(−2 + a + 3cd + e) + 3d(2a + 3cd + 2e)

]
−c 1

2 (bc− 3cd− 2e)

)
(13)

A = a− c
2
(b− 3d)

B =
1
4

[
b2c− 2b(−2 + a + 3cd + e) + 3d(2a + 3cd + 2e)

]
C = −c

D =
1
2
(bc− 3cd− 2e)

This is the total round-trip transformation matrix for the general case.

2.3. Bogdanov Beams

We define ‘Bogdanov beams’ as beams that behave on the yn and θn optical ray parameters
according to the Bogdanov Map given by Equation (7), i.e., Beams produced in the above optical
resonator that undergo the Bogdanov map dynamics will be called ‘Bogdanov beams’. To obtain the
Bogdanov beams, the matrix elements of Equation (9) must be equaled to the elements of Equation (11),
thus giving the system.

a +
3cd
2

= 1

b +
3d
4
(2a + 3cd + 2e) = 1 + ε + yn[

k
θn

(yn − 1) + µ]

−c = k(yn − 1)

−3cd
2
− e = 1 + ε + µyn

(14)

This system is solved to obtain the [a, b, c, e] matrix elements. Therefore, the intracavity matrix
that produces Bogdanov Beams is

(
a b
c e

)
=

[1 +
3
2

kd(yn − 1)]
θn+1

θn
− 3

2
d
{

3
2

kd(yn − 1)− ε− µyn

}
−k(yn − 1) −[1 + ε + µyn +

3
2

kd(yn − 1)]

 (15)
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2.4. General Case for Bogdanov Beams

Taking the elements of matrix Equation (9) and equating them to the ones of matrix Equation (13),
we get the following system, which is analogous to Equation (14):

a− c
2
(b− 3d) = 1

1
4

[
b2c− 2bα + 3dβ

]
= 1 + ε + yn[

k
θn

(yn − 1) + µ]

−c = k(yn − 1)
1
2
(bc− 3cd− 2e) = 1 + ε + µyn

(16)

Here α = (−2 + a + 3cd + e) and β = (2a + 3cd + 2e).
Solving the system found in Equation (16), we find two new [a, b, c, e] matrices,

Equations (17) and (18). These matrices contain all the dynamic information of the Bogdanov map
taking into account the thickness b of the intracavity element,

(
a b
c e

)
=


1

6θn
(ϑn − γn)

1
3kθn(yn − 1)

(ϕn + γn)

k(1− yn)
1

6θn
($n − γn)

 (17)

(
a b
c e

)
=


1

6θn
(ϑn + γn)

1
3kθn(yn − 1)

(ϕn − γn)

k(1− yn)
1

6θn
($n + γn)

 (18)

were γ, ϑ, ϕ, $ are defined as:

γn ≡ {θn[−12k2(yn − 1)2yn + θn[36k2d2(yn − 1)2 + (2 + ε + µyn)
2

−12k(yn − 1)(1 + ε + µyn + d(−1 + ε + µyn))]]}1/2

ϑn ≡ θn(8 + ε + 12kd(yn − 1) + µyn)

ϕn ≡ −θn(2 + ε + 3kd(yn − 1) + µyn)

$n ≡ θn(−4− 5ε + 12kd(yn − 1)− 5µyn)

the intracavity chaos-generating matrix, whose bn element is given as follows;

bn ≡
1

3kθn(yn − 1)
(ϕn − γn) (19)

3. Results

3.1. Computer Calculations

The dynamic behavior of the phase-conjugated resonator in phase space was studied through
numerical iteration of the obtained matrices, Equations (17) and (18). To find valid trajectories on
the phase plane values for yn, θn must be real numbers at every iteration, diverging trajectories are
only mathematical possibilities since they cannot be related to any physical reality given that they
do not meet the stability requirements to stay within the resonator. Also, the bn intracavity element
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from the matrices must be greater than zero at every iteration, while being smaller than the mirror
resonator separation distance. These conditions ensure that the trajectories are on the real phase plane
and within a stable trajectory, greater than zero at every iteration, given that the bn element is related to
the total round-trip distance traveled by the Bogdanov beam within the resonator. The last condition
ensures that no ‘negative distances’ are traveled.

Iterations were carried out using Equation (18) for values of the control parameter d, where the
iterations (yn, θn) have physical meaning. The system displays high periodicity for 0.91 < d < 1,
Figure 2a. Also, a short region of low periodicity appears within a high periodicity range where
d = 0.99 Figure 2b. For d > 0.9925, the Bogdanov beam resonator exhibits a period-doubling route to
chaos, Figure 2c.

Figure 2. Phase space (yn, θn), equivalent to a round trip inside the resonator for (a) d = 0.95,
(b) d = 0.99 and (c) d = 0.998; in all cases k = 0.295, ε = 0.01 and µ = −0.1.

The bifurcation diagram of bn with was obtained to understand the dependence of the intra cavity
nonlinear element bn with respect to parameters; d, k and ε of the Bogdanov map. Advantages of
this bifurcation diagram is that it gives a global view of the dynamic element bn as one or several
parameters are changed.

Figure 3a shows the bifurcation diagram of local max of bn as a function of parameter d. In this
figure, high periodicity is interrupted by regions of low periodicity windows and a route to chaos
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by period-doubling is shown. The same result is also shown while plotting the temporal Inter Peak
Intervals (IPI) of bn as the parameter d is varied, Figure 3b. Comparing Figure 3a and Figure 3b, it is
shown that Figure 3b clearly illustrates a rich dynamics that shows high periodicity for 0.91 < d < 1,
Figure 2a, interrupted by low periodicity windows of for d = 0.99, Figure 2b. The bifurcation diagrams
show a route to chaos due to period-doubling, Figure 2c.

Figure 3. (a) Bifurcation diagram of local max of bn as a function of parameter d. (b) Temporal inter
peak interval (IPI) of bn as a function of parameter d; in both plots, the following fixed values were
used: k = 0.295, ε = 0.01 and µ = −0.1.

As can be seen, the dependence of the intra cavity nonlinear element bn to parameter d of the
phase-conjugated ring resonator has been shown. In the following figures, dependence of bn on the k
and ε parameters of the Bogdanov map will be displayed. Figure 4 shows the bifurcation diagram of the
local max of bn as a function of parameter k. Although Figure 4 is qualitatively similar to Figure 3a clear
difference is noted when the low periodicity windows are considered. It can be observed that when
the parameter k is increased, the region of high periodicity is interrupted by windows with low values
of periodicity, i.e., for k = 0.2964, and for k = 0.30735 exhibits a route to chaos by period-doubling.
The phase space (yn, θn) for particularly cases of high and low periodicity and chaos is shown in
Figure 5a–c respectively.
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Figure 4. Bifurcation diagram of local max of bn as a function of parameter k, for d = 0.9837, ε = 0.01
and µ = −0.1.

Figure 5. Phase space (yn, θn). High periodicity for (a) k = 0.2925, low periodicity for (b) k = 0.30434
and chaos for (c) k = 30735, in all cases d = 9837, ε = 0.01 and µ = −0.1.
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In addition, the phase space (yn, θn) for different values of k with d fixed in chaotic region are
plotted in Figure 5, while the bifurcation diagram of local max bn as a function of ε for same values of k
and d, are plotted in Figure 6. In this figure, we can see that for k = 0.2894, Figure 5a, the bifurcation
diagram of local max bn presents a high periodicity for all the range of control parameter ε; see Figure 6a.
With further increase of parameter k to values of k = 0.30434, Figure 5b, the bifurcation diagram
Figure 6b show a short interval of ε where the local max of bn exhibits low periodicity windows that
interrupts a region of high periodicity. Finally, for k = 0.30735 (chaotic region of Figure 5c), Figure 6c
shows regions of high periodicity interrupted by low periodicity windows and a large region of route
to chaos by period-doubling as control parameter ε is increased.

Figure 6. The bifurcation diagram of local max bn as a function of ε for three different values of k with
d fixed in the chaotic region, and µ = −0.1. (a) k = 0.2925, (b) k = 0.30434 and (c) k = 0.30735.

4. Conclusions

In this paper, a matrix transformation over the Bogdanov map is proposed to obtain an intra
cavity element that can yield the same rich, dynamical behavior within a phase-conjugated ring
resonator. We began our study by obtaining the Bogdanov Map through the use of Euler method
for discretization over the Bogdanov Vector Field; then, we introduced the paraxial matrix analysis
(or ABCD propagation law): this was done in order to simplify the analysis for the complete resonator
system, enabling us to express this system as a simple dynamical matrix Equation (8). Once these
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central concepts had been introduced, we proceed to obtain what we call “Bogdanov Beams”, which are
beams produced in an optical resonator undergoing the Bogdanov map dynamics. Then, we studied a
simple case of ‘Bogdanov Beams’ where the thickness of the intra cavity element is considered to be
negligible. Next, we moved on to the general case, where the thickness of the intracavity element is
greater than zero. While it may seem a trivial difference, this general case introduces a new parameter
d in our final matrix transformation, which adds up to the three initial parameters from the Bogdanov
Map (k, ε, µ), therefore increasing the dimension of the problem and contributing to the non-linearity
of the map. Once the explicit expressions for the general case were obtained, Equations (17) and (18),
computer programs were made that allowed us to search the 4-dimensional parameter space for
combinations that yield stable trajectories; this is no easy task, since the stability of the trajectories is
also dependent on the initial values (y0, θ0), due to this, often the trajectories will not have physical
meaning; it is important to remark that we analyzed valid intervals of the parameters (k, ε, µ and d).
We have found that the intracavity element, bn, Equation (19), is responsible for the different dynamic
behavior of the optical resonator. The response of bn to the parameters (k, ε, µ and d) by bifurcation
diagrams of local max and IPI of time series of bn has been accomplished.

The dependence of bn with respect to d, which is the distance between plain mirrors of
the phase-conjugated ring resonator showed low, high periodicity and route to the chaos by
period-doubling behavior, see Figure 3. Similar behavior was observed when the dependence of
bn was analyzed with respect to the parameters k, ε while µ and d were fixed, see Figure 4. Interesting
results were found for the dependence of bn on the parameter ε for different fixed values of k. For
a small value of k = 0.2925, the bifurcation diagram shows high periodicity of low amplitude, see
Figure 6a. With an increment of k = 0.30434, we have low periodicity windows within high periodicity
regimens, see Figure 3b. Finally, at k = 0.30735, the bifurcation diagram of local max of bn, shows
rich dynamics, with low and high periodicity regions and a route to chaos by period-doubling, see
Figure 6c.

Based on the behavior observed, we conclude that the matrix transformation used was successful
in generating a dynamical system that preserves the main structures found in the Bogdanov map. The
practical implementation of an intracavity element is a complex technical challenge far beyond the aim
of this work. Interested readers on this matter may consult reference [9].
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