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Abstract: In this study, we investigated the time-varying capacitated lot-sizing problem under
a fast-changing production environment, where production factors such as the setup costs,
inventory-holding costs, production capacities, or even material prices may be subject to continuous
changes during the entire planning horizon. Traditional lot-sizing theorems and algorithms, which
often assume a constant production environment, are no longer fit for this situation. We analyzed
the time-varying environment of today’s agile enterprises and modeled the time-varying setup
costs and the time-varying production capacities. Based on these, we presented two mixed-integer
linear programming models for the time-varying capacitated single-level lot-sizing problem and
the time-varying capacitated multi-level lot-sizing problem, respectively, with considerations on the
impact of time-varying environments and dynamic capacity constraints. New properties of these
models were analyzed on the solution’s feasibility and optimality. The solution quality was evaluated
in terms of the entropy which indicated that the optimized production system had a lower value
than that of the unoptimized one. A number of computational experiments were conducted on
well-known benchmark problem instances using the AMPL/CPLEX to verify the proposed models
and to test the computational effectiveness and efficiency, which showed that the new models are
applicable to the time-varying environment. Two of the benchmark problems were updated with
new best-known solutions in the experiments.

Keywords: capacitated lot-sizing problem; time-varying environment; mixed-integer linear
programming; optimization; entropy

1. Introduction

The multi-level lot-sizing (MLLS) problem [1,2] plays an important role in the efficient operation
of a modern manufacturing and assembly system. It involves determining the optimal production
quantities and periods for a production system in order to balance the trade-off cost between the
production setup and inventory-holding. The MLLS is also a key part of many planning systems of
a manufacturing firm, including material request planning (MRP), manufacturing execution system
(MES), capacity planning system (CPS), and the inventory planning system, and has great influence on
the economic benefit of a manufacturing enterprise. Nevertheless, the MLLS problem is extremely
difficult solve with optimality, as modern products may have multi-level structures with complex
interdependencies. Arkin et al. [3] proved that the MLLS problem is strongly NP-hard. The optimal
algorithms existing in the literature can only solve small-sized problems, such as the dynamic
programming formulations proposed by Zangwill [4], the constructive method for assembly structure
proposed by Crowston and Wagner [1], and the branch-and-bound-based algorithms [5,6].
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The lot-sizing problem was originally raised by the cost reduction requirement of inventory
management [7]. Since Harris [8] published the famous economic order quantity (EOQ) formula, which
can be viewed as the earliest form of the single-point lot-sizing problem, the trade-off optimizations
between the one-time ordering/setup cost and the continuously occurring inventory-hold cost has
become a hot research topic in industries and academia for a century’s long time. In 1958, Wagner
and Whitin [9] first introduced the single lot-sizing problem and proposed a dynamic programming
algorithm, i.e., the well-known WW algorithm, as an exact solution approach for optimal solutions.
Schussel [10] discussed the lot-sizing planning problem for linear production systems, which was the
first study that considered the lot-sizing problem involving multi-level product structures. In the 1990s,
the fast development of computer-integrated manufacturing system (CIMS) technologies promoted
the popular use of the MRP system in manufacturing enterprises, and has attracted great academic
attention for the optimization of the MLLS problem. According to the existence of capacity constraints,
the models for MLLS can be divided into two categories: (1) the uncapacitated MLLS model and
(2) the capacitated MLLS model. It is generally considered that the uncapacitated MLLS belongs to
the category of classical MRP systems and the capacitated MLLS problem belongs to an MRP-II/MES
system, and the latter was generally deemed as closer to actual production situations, with stronger
practical significance.

The uncapacitated MLLS problem was formally formulated by Yelle [2], where the sum of
production setup cost and holding cost occurring in multiple periods within a limited planning horizon
was taken as the objective function to be minimized. In comparison to the single-level lot-sizing (SLLS)
problem that involves optimizing only one item of its production quantities, the MLLS needs to
determine the optimal production volumes and corresponding periods for multiple items (products
and parts) that have complex interdependencies. The internal dependencies among items may cause
the problem, a great computational complexity and may bring difficulty in finding the optimal solution.
Steinberg and Napier [11] first proved that the uncapacitated MLLS is a HP-hard problem in an
ordinary sense. There are also a number of works in the literature that studied the MLLS problem
on products with only pure-assembly structures and utilized the internal triangular characteristics
of the production setup decision variables to improve the solution quality [12–15]. Meta-heuristic
algorithms such as the MAX-MIN ant colony optimization (ACO) systems [16], the particle swarm
optimization (PSO) algorithm [17], the genetic algorithm [18,19], the soft optimization (SOA) approach
based on segmentation [20,21], and the variable neighborhood search (VNS) algorithms [22,23] have
been developed for solving the medium- and large-sized uncapacitated MLLS problems with general
product structures.

The capacitated MLLS problem involves additional constraints on the production capacities of the
planning periods. That is, the total volume of products produced in one period is not allowed to exceed
a predefined upper limit, or the excess parts are imposed with cost penalties [24–27]. Sahling et al. [28]
presented a model considering the dual constraints of capacity and resources, in which they defined a
“resource–product” relationship matrix to transfer the product demand into resource demand, and set
an upper limit for each of the resources in each period. Almeder et al. [29] studied the capacitated MLLS
problem with lead time consideration. They developed two models considering batch production and
allowing lot-streaming. Wu et al. [30] developed an optimization framework for the capacitated MLLS
problem with backlogging, where the customers’ demands were allowed to be postponed and satisfied
in delayed periods with compensation penalties.

In addition to the production setup cost and inventory-holding cost, other types of cost, such as
the production cost, switch-off cost, and line changeover cost, could also be considered in lot-sizing
models in order to make them more adaptable to different production environments [31–33]. Most of
the lot-sizing models in the literature have made an assumption that backloggings are not allowed,
which means that the customers’ demands must be satisfied in their required periods without delays.
However, in some cases, delayed deliveries must be allowed due to the impacts of various unexpected
events such as machine breakdown, quality defects, and extreme weather. In these cases, the delayed
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deliveries were usually considered as weighted penalty costs added to the objective function [30].
Steigberg and Napier [11] transformed the MLLS problem in a general production system into a
minimum cost flow problem, and obtained the optimal solution based on a network algorithm.
However, the efficiency of their solution approach was relatively low. Zahorik and Thomas [34]
analyzed the characteristics of the assembly system and then transformed the batch problem with three
planning periods into a network problem. Blackburn and Millen [35] used the cost correction heuristic
algorithm to solve the lot-sizing problem without capacity constraints. Homberger [19] designed a
parallel genetic algorithm to solve the uncapacitated MLLS problem. Xie and Dong [36] studied a
more general lot-sizing problem with a heuristic genetic algorithm as the solution approach. There
are also other similar studies [37–39]. This MLLS optimization is not only treated as a production
planning problem but also connected with the other subsystems of the manufacturing system, such as
internal transport, material handling, and purchases [40,41]. In addition, Simulation methods are also
frequently used for optimization problems in production environment [42–44].

However, all of the above works on lot-sizing problems had an assumption of a constant
production environment where the unit costs of manufacturing resources were invariable, and
the capacities were stable. The time-varying environment (TVE) is becoming common in many
manufacturing industries because of the fast-changing market and individualized customer needs.
In the modeling and biological literature, many types of time-varying environments are generally
considered. The environmental types may include periodic, non-periodic, deterministic, stochastic,
predictable environments, etc. In some more complex cases, exogenous variability may be affected
by collective feedback from previous (delayed) dynamic activities. In TVE, production factors
of the manufacturing system, such as the availability of manufacturing resources, material/labor
costs/prices and production capacities are all potentially subject to continuous change. Due to the
fierce competition environment, TVE exists widely in today’s manufacturing firms in many industries.
Traditional lot-sizing theorems and algorithms are assumed for a constant production environment;
thus, they are not applicable to TVE. There are only a few related works on lot-sizing problem with
TVE that can be found in the literature. Martel and Gascon [45] first considered the difference of
price and cost in different production periods. Haase and Kimms [46] considered that the production
setup cost is dependent on the order of production steps. Dellaert and Jeunet [12,18], Haase and
Kimms [46], and Raa and Aghezzaf [47] considered the fluctuation of external demand in different
periods. Piperagkas et al. [48] and Tempelmeier and Hilger [49] studied the dynamic lot-sizing problem
with stochastic demands over multiple planning periods. Chowdhury et al. [50] presented a new
O(T) algorithm for the dynamic single-item lot-sizing problem. Related works in the literature on the
lot-sizing problem under TVEs are still very limited.

Wiley et al. [51] first used the entropy theory to describe the structure of biological systems and
defined the order degree of systematization. Li [52] discussed the proportional relationship between
organization degree and the entropy of the system structure from the perspective of information
quantity and gave the theoretical conditions for keeping the order of the system unchanged. Zhilin [53]
established a structural entropy model for optimizing the structure of the system and calculating
the order degree of the system structure by analyzing the influence of the system structure on the
information flow in the system. All the studies agree with the fact that the more chaotic the production
system is, the greater the entropy value of the system, while the entropy value of the optimized
production system is generally smaller. Stephen et al. [54] studied entropy and provided contributions
for modeling situated entropy in factories to improve the planning and control of such factories.
Camelia [55] proposed a general model for the optimization of thermal machines with two heat
reservoirs, which was applied to a Carnot-like refrigerator with non-linear heat transfer laws and
internal and external irreversibility. Martina et al. [56] used a statistical-validation approach derived
from maximum-entropy arguments to analyze the influence of technological innovations on industrial
production. The above works applied entropy theory to factory manufacturing and are closely related
to the subject of this paper. Except for its application in production systems, entropy theories have
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been widely used in supply chain systems, urban systems, groundwater systems, and other fields.
Qiuyang et al. [57] analyzed the stability of equilibrium points by mathematical analysis and explored
the influence of parameters on stability domain and entropy of a system. Yimin and Qiuxiang [58]
analyzed and simulated the influences of decision variables and parameters on the stability and entropy
of asymmetric dual-channel supply chain systems based on entropy theory. Yong et al. [59] analyzed
the spatial structure of urban systems through entropy theory. Wei and Shanghai [60] described the
evolution of a groundwater flow system with system information entropies. In addition, it is also
very important to prepare optimized and robust production plans and schedules in order to reduce
the necessity of re-scheduling during the manufacturing process. Related works can be found in
Tolio et al. [61] and Sobaszek et al. [62]. The above works have made an important contribution to the
application of entropy theory to production and manufacturing.

In this paper, we considered the time-varying setup cost and dynamic capacity constraints
as new constraints based on the traditional capacitated MLLS framework. We present a new
mixed-integer linear programming (MILP) model for the capacitated MLLS problem under a
time-varying environment (CMLLS-TVE) and provide theoretical analysis on the model’s properties.
Computational experiments were conducted on well-known benchmark problems and the model was
solved in the AMPL/CPLEX programming environment. The experimental results showed that the
AMPL/CPLEX solver could effectively solve the small-sized CMLLS-TVE problem instances with
optimal solutions and could also solve a part of the medium-sized benchmark instances. However, for
large-sized problem instances, we developed a fix-and-optimize heuristic algorithm based on partial
optimizations to solve the CMLLS-TVE with near-optimal solutions within a controllable time limit.

The rest of the paper is organized as follows. In Section 2, we introduce the MILP model for
the CMLLS-TVE, and the properties of the MILP model are discussed in Section 3. In Section 4,
computational experiments are conducted to analyze the optimality of the solution with small-sized
problems and the efficiency of the MILP model. In the same section, a fix-and-optimize heuristic
approach is developed for medium- and large-sized problems. Finally, in Section 5, we summarize the
paper and give further research directions.

2. Problem Description and Formulation

Traditional lot-sizing models assumed that the production environment was constant, and many
production factors were considered to be consistent in multiple periods of the planning horizon, which
are in fact not in accordance with today’s dynamic environment. For a manufacturing firm in TVE,
a typical time-varying factor is the production setup cost that may not be a constant but a time-varying
value depending on the length of time interval between the current setup and the previous one. This
phenomenon can be explained that if the production interval is longer, then more costs (or time), such
as cleaning, machine inspection, maintenance, and preparation, are needed for the production setup.
The change of the setup costs can result from either outside or internal influences. The study considers
all exogenous and endogenous environmental dynamics that may cause the cost variability.

2.1. Entropy in Production Systems

Entropy, one of the parameters in thermodynamics that characterize the state of matter, is
represented by the symbol S. Its physical meaning is a measure of the chaos degree of the system.
Entropy is ubiquitous in production systems. For example, the rationality of a factory layout, logistics
transportation, processing procedure, and production task arrangement will affect the orderliness.
Then, the entropy of the system is affected. In this paper, we considered the external demand and
various factors in the production process to optimize the production schedule. The purpose of
optimizing the production schedule is to make the production system more orderly. Correspondingly,
the entropy of the system decreases. In this paper, the entropy value was adopted as a criterion for
evaluating the effectiveness of optimization.
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The entropy change of a system is formally expressed as ∆S = SB − SA [56,57], indicating
the entropy change of the system from state A to state B. Since our models consider multi-level
product structures and the objective function is to minimize the total cost, the system’s entropy
value should be affected by the complexity of the product structure, the quantity of products
produced, and the cost. Here, we propose a preliminary method for calculating the system entropy.
Entropy of the system was assumed to be the product of these three (i.e., the complexity of
product structure, the quantity of products produced, and the objective cost). This is a preliminary
idea, which needs further improvement. Therefore, the formula of the entropy change rate of
the system can be calculated by ∆R = (SB − SA)/SA. It can be further expressed as ∆R =

(PSBPQBOCB − PSAPQAOCA)/PSAPQAOCA , where the symbol ∆R represents the entropy change
rate, symbol PS represents the complexity of the product structure, symbol PQ represents the quantity
of the products produced, and the symbol OC represents the objective cost.

2.2. A Mathematical Programming Model for the CMLLS-TVE

We assumed a positive correlation between the setup cost and the production interval. For
simplicity, the production setup cost was assumed to increase at a fixed rate for each unit of production
interval. We introduced two new definitions for a product (say i), which were: (1) production interval,
Lit, of product i at period t, and (2) growth rate, αi, of setup cost of product i.

Definition 1. Production interval Lit: the number of periods between the period t and the last period arranged
for production before t for product i, which can be mathematically expressed in Equation (1) as follows.

Lit = t− 1−max
{

t′ · yit
∣∣1 ≤ t′ < t

}
, ∀t 6= 1, ∀i (1)

In Equation (1), yit is a binary decision variable, indicating whether the product i is scheduled for production in
the period t. If product i is arranged to be produced, then yit = 1; otherwise, yit = 0. This formula provides a
method for calculating the production interval for each product i in each period. For the first period, where t = 1,
we assume Lit = 0. For the second period, where t = 2, the production interval is also zero because the first period
is always arranged with a production setup. This is in order to guarantee the solution’s feasibility. The value
range of Lit for t ≥ 2 is [0, t − 1]. It should be noted that the production interval Lit is irrelative to the states of
the production setup of production i in period t.

Definition 2. Growth rate of setup cost αi: the rate of the production setup cost increased with respect to one
unit of production interval. This coefficient can be a fixed value determined in advance according to the actual
production condition or be a time-varying parameter related to specified periods.

Based on the definitions above, the CMLLS-TVE problem can be described as follows. A set
of product items, including end products, intermediate parts, and raw materials are going to be
produced in a set of production periods over a planning horizon, in order to deliver the customers’
demands timely in their required periods. All items have known product structures which determine
the intermediate dependencies and the leading time among them. The leading time is scheduled for
the preparations by subsystems such as internal transports, material handling, purchases, etc., such
that a full manufacturing chain can be integrated to be optimized as a whole in the CMLLS-TVE model.
For each period, if a product is setup for production, then a setup cost occurs, and a batch quantity
is calculated based on the available capacity in that period. All produced products will be stored as
inventory in warehouses before being delivered to customers, which recurs an inventory-holding
cost in each period. The production setup cost is considered a function of the production interval,
proportional to the length of the production interval. The objective function of CMLLS-TVE is to
arrange a set of optimized production setups in these periods in order to minimize the sum of the
production setup cost and the inventory-holding cost over the entire planning horizon.
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Notations of parameters and decision variables used to describe the CMLLS-TVE problem are
summarized in Table 1.

Table 1. Symbolic definitions of the capacitated MLLS problem under a time-varying environment
(CMLLS-TVE) model.

Symbol Explanation

Parameter:
m Total number of products (including parts)
n Total number of production periods over the planning horizon
i Index of product (including parts)
t Index of production period

si,t Setup cost of product i during the period t
Hi,t Unit cost of inventory-holding for product i in period t
Mi,t Maximum capacity of product i that can be produced in period t
di,t External requirements (from customers) of product i during the period t
Di,t Total demand of product i in period t, including external demand and internal demand
Ci,j The product structure, indicating the number of products i used to produce product j
Γi Set of direct successor products of product i

Γ−1
i Set of direct predecessor products of product i

li
lead time of product i, if needed in period t, then production must be arranged

in period t − li.
αi Growth coefficient of setup cost for product i

Decision variables:
yit Binary decision variable, indicating if product i is scheduled for production in period t
Iit Non-negative decision variable, indicating the inventory of product i at the end of period t

Xit
Number of products i arranged to produce, started in the period t and finished

in period t + li
Lit Production interval of product i in period t

Problem CMLLS-TVE:
Minimize:

TC =
m

∑
i=1

n

∑
t=1

(Hit Ii,t + sityit + αiLityit) (2)

Subject to:
Iit = Ii,t−1 + Xit − Dit ∀i, t (3)

Lit = t− 1−max
{

t′yit′
∣∣1 ≤ t′ < t

}
∀i, t > 1 (4)

Li1 = 0 ∀i (5)

Dit = dit + ∑
j∈Γ(i)

CijXj,t+lj
∀i|Γi 6= ∅, ∀t (6)

yit ≥ ykt ∀k ∈ Γ−1
i , ∀i, t (7)

Xit −Mityit ≤ 0 ∀i, t (8)

Iit ≥ 0 ∀i, t (9)

Xit ≥ 0 ∀i, t (10)

yit ∈ {0, 1} ∀i, t (11)

In the above formulations, the objective function in Equation (2) represents the sum of the
setup cost and the inventory-holding cost of all products/parts in all periods. Constraint (3) is the
inventory-flow, representing the balance of inventory at the end of each period, which is subtracted
by the demand and added by the production volume in the same period. Constraints (4) and (5)
are designed to calculate the production interval Lit, representing the number of periods between
period t and the last period arranged for a production setup before t. The first period is initialized
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as zero. Constraint (6) indicates that the total demand of product i in period t is equal to the sum
of the external demand in period t and the internal demand of products or components needed to
assemble a higher level of products. Constraint (7) utilizes the rule introduced by Tang [13] for the
case of pure assembly. That is, if the production of product i is not arranged to be produced in period t,
then any predecessor product of product i, e.g., product k, should not be arranged to be produced in
the same period. Constraint (8) guarantees that the production of product i takes place only in period
t, which satisfies yit = 1, and restricts the production volume of products i in period t so that it does
not exceed the maximum capacity limit Mit. Constraint (9) indicates that backlogging is not allowed.
Constraint (10) indicates that the production volume is non-negative. Constraint (11) defines yi,t as a
binary decision variable, indicating if product i is arranged to be produced in period t (by yit = 1) or
not (by yit = 0).

2.3. A Mixed-Integer Programming Model for the CMLLS-TVE

The mathematical programming model formulated in Equations (2)–(11) well illustrates the
CMLLS-TVE problem; however, it is non-linear. In the following, we transform the non-linear model
into a linear one so that optimal solutions can be obtained by using commercial MIP solvers such as
Lingo and CPLEX. Note that the objective function in Equation (2) and Condition (4) in the CMLLS-TVE
model are non-linear. To transform them into linear expressions, we defined a new variable to replace
Lit, as follows.

Definition 3. Increment of setup cost uit: a binary decision variable indicating if product i has a unit of setup
cost increased in period t (by uit = 1) or not (by uit = 0).

The new variable uit was introduced to determine the impact of the production interval on the
production setup cost in period t. It plays a similar role to Lit in the optimization model but in a linear
way. The MILP model of the CMLLS-TVE problem is presented as follows.

Problem CMLLS-TVE:
Minimize:

TC =
m

∑
i=1

n

∑
t=1

(Hit Iit + sityit + αiuit) (12)

Subject to:
Iit = Ii,t−1 + Xit − Dit ∀i, t (13)

uit ≥ ui,t+1 + yi,t+1 − 2yit ∀ t < n, i (14)

uin = 0 ∀i (15)

Dit = dit + ∑
j∈Γ(i)

CijXj,t+lj
∀i|Γi 6= ∅, ∀t (16)

Xit −Mityit ≤ 0 ∀i, t (17)

Iit ≥ 0 ∀i, t (18)

Xit ≥ 0 ∀i, t (19)

yit ∈ {0, 1} ∀i, t (20)

Notations used in above model are defined in Table 1. The objective function in Equation (12) is
to minimize the sum of the total production setup cost, the inventory-holding cost, and the extra cost
recurred by the production interval. Constraint (14) and constraint (15) are designed to guarantee the
linear relationship between variables uit and yit. Note that the variable uit does not have an increment
of setup cost if there is no production setup after period t. So, uit = 1 always holds for the last period
of each product i. Other constraints are kept from the model in Section 2.1. Note that the improved
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model for the CMLLS-TVE problem is linear, so it can be directly solved with optimality by using
commercial MIP solvers such as Lingo and CPLEX.

3. Property Analysis of the CMLLS-TVE Model

We analyzed the relationships among the parameters and variables and propose several properties
for the CMLLS-TVE problem, which can help to improve the computational efficiency of the heuristic
solution approach by cutting off non-optimal solution spaces.

Property 1. For an optimal solution of the CMLLS-TVE problem, the following expressions always holds:

(1) Ii,t−1 · yi,t = 0
(2) Ii,t−1 · Xi,t = 0, ∀t > 1, i

Proof. This property can be proven by using a contradict method. Assuming that there is an optimal
solution that has a certain period in which the inventory level is not zero and new production has been
arranged at the same time, such that we have Ii,t−1 · Xi,t > 0. We let the Ii,t−1 part of the products to
be produced in period t. Then, we have I′ i,t−1 · X′ i,t = 0. Finally, we have a non-zero cost savings of
ht−1 · It−1. Thus, we have a new solution which is even better than the optimal solution, which is in
contradiction with the assumption. Thus, the property holds. �

Property 2. For an optimal solution of the CMLLS-TVE problem, the production volume in each period is

calculated by Xit = yit
k
∑
j=t

Dij, where k = min{t′|t′ ≥ t, yit′ = 1}, ∀i.

Proof. Property 2 determines the minimum quantity of production volume in the period t when yit = 1,
which covers exactly all customer demands behind period t and before the next production setup. This
property can by be proven by using a contradict method. Assuming that there is an optimal solution
in which more products are produced in a period than that determined by Property 2, then extra
inventory-holding costs incur, and then this solution is not an optimal solution, which is contradictory
to the assumption. �

Property 3. For an optimal solution of the CMLLS-TVE problem, if the demand (Di,t*) for product i in period t*

is met by production setup in period t**, where Xi,t** = 1 and t** < t*, then the demand in period t that t* < t < t**

is also met by Xi,t**.

Proof. This is straightforward. As proved in the proof of the traditional model, if Property 1 is correct
and the production interval does not change, then property 3 must be correct. �

Property 4. For an optimal solution of the CMLLS-TVE problem, the expressions shown below always holds.

n

∑
t=1

(Xi,t · yi,t) =
n

∑
t=1

Di,t, ∀i (21)

t

∑
t′=1

(Xi,t′ · yi,t′) ≥
t

∑
t′=1

Di,t′ , ∀i, t (22)

Proof. Since we have the assumption that both the initial inventory and the final inventory are 0,
Equation (21) must be correct because it represents a balance of the total output of all the planned
periods and the total demand that guarantees the optimality of the solution. Equation (13) guarantees
that at any period, the total demand of customers should be satisfied by the production volume, which
is always satisfied by any feasible solution, including the optimal solution. �
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4. Computational Experiments

The computational experiments were conducted on an Apple MacBook Pro (Apple Inc, Cupertino,
CA, USA) with an Intel Core i7 of 2.9 GHz and a RAM size of 8 GB. The operating system was OS X
10.8.5 (Apple Inc, Cupertino, CA, USA). The models were coded by the AMPL software and solved by
IBM CPLEX (version 12.6.0.1, Lucent Technologies, Murray Hill, NJ, USA).

4.1. Optimality Test with Small-Sized Problems

In order to verify the solution effect of the MILP model for the CMLLS-TVE problem, we used
AMPL/CPLEX to solve the 96 well-known small-sized test problem instances from Dellaert and
Jeunet (2000), which contains five items with an assembly structure over a 12-period planning horizon.
Since the original benchmark instances do not have capacity constraints, we gave capacity constraints
(Mit, αi, uit) for the 96 instances to make them adaptable to the CMLLS-TVE model. We repeatedly ran
the AMPL/CPLEX solver five times for each problem.

The solution results of the 96 small-sized TV-MLCLSP problem instances with five products over
12 planned periods are shown in Table 2. Through these computational experiments, the proposed
MILP model was verified for its effectiveness and efficiency on solving the TV-MLCLSP. For all
96 examples, the optimal solution can always be obtained in a few seconds of CPU time. The average
running time was 5.8 s, and the longest computation time was only 18.4 s. This shows that the proposed
MILP model can solve efficiently the CMLLS-TVE problem with optimality for small-sized instances.

Table 2. Calculation results of the 96 small-scale problem instances (CMLLS-TVE).

Problem
No.

Optimal
Solution

Problem
No.

Optimal
Solution

Problem
No.

Optimal
Solution

Problem
No.

Optimal
Solution

0 984.93 24 1245.64 48 1482.96 72 1402.48
1 846.38 25 1002.91 49 1380.09 73 1515.90
2 1059.78 26 875.80 50 1207.79 74 1365.47
3 855.29 27 1405.56 51 1631.69 75 1689.09
4 786.75 28 1275.42 52 1239.53 76 1646.16
5 902.73 29 829.89 53 978.94 77 1576.88
6 1247.28 30 1328.52 54 1733.47 78 1830.30
7 1279.51 31 1173.84 55 1474.13 79 1828.76
8 1018.47 32 1403.66 56 1767.20 80 1739.96
9 1154.90 33 1560.80 57 1826.97 81 1666.15

10 937.83 34 1559.91 58 1420.11 82 1440.70
11 971.84 35 1032.96 59 1591.52 83 1472.72
12 1167.12 36 1523.27 60 1426.32 84 2022.54
13 1074.67 37 1518.01 61 1616.45 85 1921.94
14 979.37 38 1210.94 62 1737.39 86 1594.65
15 1183.37 39 1396.97 63 1704.36 87 1637.68
16 787.13 40 1067.77 64 1541.81 88 1484.71
17 838.00 41 1049.42 65 1568.04 89 1657.46
18 1819.32 42 2248.63 66 2154.69 90 1942.97
19 2052.23 43 2334.54 67 1808.15 91 1959.45
20 1825.04 44 1695.17 68 1965.99 92 1728.54
21 1718.71 45 2028.77 69 1760.67 93 2190.22
22 1711.30 46 2044.11 70 1600.15 94 2054.16
23 1699.48 47 1817.31 71 1853.75 95 1579.07

4.2. Efficiency Test with Medium-Sized Problems

In order to verify whether the proposed models can effectively solve the CMLLS-TVE problem of a
medium-size, we tested them with 40 medium-sized problem instances from Dellaert and Jeunet [12,13],
which were generated based on the product structures in Afentakis et al. [1] and Afentakis and
Gavish [2]. Each of the medium-sized problem had 40–50 products (and parts) with general assembly
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structures over a 12/24-period planning horizon. Based on the original problem instances, we tested
the sub-problem instances with combinations of 5, 10, 20, and 40 products and 6, 12, 18, and 24 planning
periods. The CPU times used are listed in Table 3 for the average of five repeated runs. A general
trend was recognized, where the average CPU time increased sharply as the number of products or
the number of planning periods increased. When the problem size was larger than 20 products and
18 planning periods, the optimal solution could no longer be delivered by the MIP solver within a 2-h
time limit.

Table 3. Average CPU time used with respect to different product numbers and planned periods.

Number of
Periods

Number of Products

5 10 20 40

6 0.34 s 4.7 s 53 s 27 min
12 5.8 s 45 s 8.2 min 30 min
18 53 s 43 min 2.3 h >5 h
24 1.4 min 1.8 h >5 h >>5 h

As seen in Table 3, with the increase in the product number and planning periods, the solution time
increased dramatically. This was because the CMLLS-TVE problem is NP-hard and the CPLEX solver
is based on the branch-and-bound algorithm for solving an MIP problem. Variables in the CMLLS-TVE
model, including yit, Dit, Iit, Xit, and uit, all have a m× n solution space. Thus, the increase in the
product number and planning periods led to an exponential growth in the solution time. Therefore, for
large-sized CMLLS-TVE problems, only heuristic algorithms can be used to search for good-enough
feasible solutions, instead of the optimal ones.

4.3. A Fix-and-Optimize Heuristic Approach for Large-Sized Problems

Fix-and-optimize heuristics is a concrete realization of a partial optimization strategy. Its basic
principle is described as follows. For large-sized complex problems with multiple decision variables
that cannot be solved with optimality in an acceptable time, partial optimization can be applied to
optimize only a small part of selected decision variables while fixing most of the others with given
values. Thus, the selected decision variables can be efficiently optimized in very short CPU time, and
then repeated to select another part of the decision variables to fulfill similar partial optimizations
iteratively, until no further improvements can be made after a given number of continuous attempts.

Hence, for large-sized CMLLS-TVE problems, we developed a fix-and-optimize heuristic to find
a good-enough feasible solution within a controllable CPU time. In the CMLLS-TVE, variable yit is
an independent decision variable on which all of the rest of the variables, e.g., Xit, Iit, Dit, ect., are
dependent. Therefore, we choose yit as the target variable to be executed with the partial optimization
strategy. In such a fix-and-optimize algorithm, we first initialize a feasible solution as the incumbent
solution, and then iteratively improve the incumbent solution by performing selecting, unfixing,
and optimizing on variable yit. Before we provide the detailed steps of the algorithm, the following
definition is given.

Definition 4. Neighborhoods Ck(Ω) or Rk(Ω) of an incumbent solution: A neighborhood of an incumbent
solution is defined by Ck(Ω) or Rk(Ω), indicating the set of neighboring solutions that may have different
values in decision matrix yit specified by k columns at Ω direction, where Ω indicates either a horizontal or
vertical direction.

In CMLLS-TVE, the variable yit is a m× n dimension matrix. Parameter k represents the number
of rows (or columns) selected to be unfixed at one time. In order to guarantee the accuracy and
efficiency of the solution, we let k = 1, 2, and 3, and let Ω indicate the row (or column) with value
by ω (or ω′). Notion ω represents a sequential selection and ω′ represents a random selection. We
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define set Items = {1, 2, . . . , m} and set Periods = {1, 2, . . . , n}. Then A ⊆ Items, |A| = k, and set
B ⊆ Periods, |B| = k. Mathematical expressions of Ck(Ω) and Rk(Ω) are shown as follows.

Ck(Ω) = {yit|i ∈ A, A ⊆ Items, |A| = k} (23)

Rk(Ω) = {yit|t ∈ B, B ⊆ Periods, |B| = k} (24)

Thus, we can combine four operators of neighborhood selection in Table 4, as shown.

Table 4. Explanation of the removing fixation scheme.

Symbol Explanation of Scheme

Ck(ω) Select k columns in order
Ck(ω

′) Select k columns randomly
Rk(ω) Select k rows in order
Rk(ω

′) Select k rows randomly

Based on the above four operators, given the parameter Kmax of the maximum number of columns
(or rows) and the parameter Nmax of the maximum continuous attempts, we can implement the
fix-and-optimize algorithm on the CMLLS-TVE, described as Algorithm 1.

Algorithm 1. Scheme of fix-and-optimize algorithm.

(1) Generate an initial solution by assigning yit ← 1, ∀i, t as the incumbent solution.
(2) Let k←1, N←0.
(3) Repeat the following Steps (a), (b), (c), and (d), until k = Kmax or the time limit is met:

(a) Select randomly one of the four operators Ck(ω), Ck(ω
′), Rk(ω), Rk(ω

′) to unfix a partial of
variable instances yit and fix the rest of the others.

(b) Call a MIP solver to implement partial optimization.
(c) If the new solution is better than the incumbent solution, then update the incumbent solution and

let N←0; otherwise, let N←N + 1.
(d) If N >= Nmax, then let k←k + 1 and N←0.

(4) Output the incumbent solution and stop.

4.4. Computational Experiment with the Fix-and-Optimize Heuristics

The benchmark problem instances data from Dellaert and Jeunet (2000) were used to test the
proposed fix-and-optimized heuristic algorithm. The problem set contains 40 instances that have
40–50 products over a planning horizon of 12/24 periods. However, since neither the productivity
restricts nor the time-varying setup cost were considered in these instances, we gave a large value
to the Mit, αi, uit, and a zero-increasing rate of the setup cost, in order to transform the original
MLLS problem instances into CMLLS-TVE instances. To verify the effectiveness of the proposed
fix-and-optimize heuristic approach, we set the time limit to be 60 s and compared them with the
results obtained by CPLEX with a time limit of 1800 s (by adding a statement in AMPL: option CPLEX
options “timelimit = 1800”).

In Table 5, we show the results of the computational experiments and the comparisons.
The product structures numbers 1, 2, and 3 represent the assembly structure, the sequential structure,
and the general structure of the problem instances, respectively. The number of independent
end-products was three. For product structure number 4, the number of independent end-products
were four. Column ∆TC indicates the differences between the results of the fix-and-optimize algorithm
in 60 s and the results of CPLEX in 1800 s. If the number ∆TC is negative, then the solution of
the fix-and-optimize algorithm was better than that of CPLEX. It can be observed that for 32 out
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of 40 instances, the fix-and-optimize algorithm had a better solution by 60 s than that of CPLEX.
The average deviation was −733. Therefore, for medium and large-sized CMLLS-TVE instances, the
proposed fix-and-optimize algorithm is applicable to get good-enough solutions within a controllable
computational time. We use column ∆R to indicate the amplitude of entropy reduction after
optimization. Because the complexity of product structure and the demand of product quantity
remain unchanged before and after optimization, ∆R depends only on the change of objective cost.
Therefore, the calculation formula for the system entropy can be described as:

∆R = (OCB −OCA)/OCA (25)

The above Equation (25) provides a method for calculating entropy change rate of the production
system, where symbol OCA represents the production cost of optimized production system and symbol
OCB represents the production cost of original production system.

Table 5. Results of computational experiment on 40 instances of CMLLS-TVE.

ID.
Description Fix-and-Optimize Heuristics CPLEX

∆TC. ∆R
Structure Product Period Obj. Cost Obj. Cost CPU Time

0 1 50 12 195764 −1476 197240 1800 −1476 −1.02%
1 1 50 12 167156 537 166619 1800 537 −1.80%
2 1 50 12 201519 −1345 202864 1800 −1345 −1.98%
3 1 50 12 189944 −741 190685 1800 −741 −1.32%
4 1 50 12 162857 60.0 163238 1800 −381 −2.15%
5 2 50 12 181233 60.0 182551 1800 −1318 −2.48%
6 2 50 12 157213 60.0 159341 1800 −2128 −1.27%
7 2 50 12 184309 60.0 185547 1800 −1238 −1.63%
8 2 50 12 137762 60.0 138492 1800 −730 −2.90%
9 2 50 12 188358 60.0 189677 1800 −1319 −1.33%
10 3 40 12 150014 60.0 151488 1800 −1474 −2.33%
11 3 40 12 199725 60.0 199584 153.8 141 −2.25%
12 3 40 12 162963 60.0 163877 1800 −914 −2.34%
13 3 40 12 186729 60.0 187676 1800 −947 −2.09%
14 3 40 12 162666 60.0 163859 1800 −1193 −2.45%
15 4 40 12 186415 60.0 187788 1800 −1373 −2.19%
16 4 40 12 186770 60.0 187118 1800 −348 −2.23%
17 4 40 12 194375 60.0 195441 1800 −1066 −2.19%
18 4 40 12 137810 60.0 139812 1800 −2002 −3.15%
19 4 40 12 168149 60.0 166865 1247.6 1284 −2.65%
20 1 50 24 345240 60.0 344573 1800 667 −1.31%
21 1 50 24 294497 60.0 294740 1800 −243 −1.56%
22 1 50 24 356096 60.0 357664 1800 −1568 −1.32%
23 1 50 24 326286 60.0 327804 1800 −1518 −1.46%
24 1 50 24 388415 60.0 387878 1800 537 −1.25%
25 2 50 24 342872 60.0 344100 1800 −1228 −1.45%
26 2 50 24 380879 60.0 380733 1800 146 −1.32%
27 2 50 24 348082 60.0 349071 1800 −989 −1.47%
28 2 50 24 414460 60.0 415030 1800 −570 −1.26%
29 2 50 24 391856 60.0 392551 1800 −695 −1.35%
30 3 40 24 347138 60.0 347182 1800 −44 −1.55%
31 3 40 24 353882 60.0 354731 1800 −849 −1.55%
32 3 40 24 357991 60.0 359584 1800 −1593 −1.55%
33 3 40 24 413653 60.0 413482 53.7 171 −1.37%
34 3 40 24 404030 60.0 403717 85.4 313 −1.42%
35 4 40 24 291120 60.0 291729 1800 −609 −2.00%
36 4 40 24 339370 60.0 339774 1800 −404 −1.74%
37 4 40 24 322227 60.0 322871 1800 −644 −1.86%
38 4 40 24 368075 60.0 369409 1800 −1334 −1.65%
39 4 40 24 306287 60.0 307136 1800 −849 −2.02%
Average value 264855 60.0 265588 1658.5 −733 −1.81%

5. Conclusions

This study investigated the capacitated multi-level lot-sizing problem under a time-varying
environment (CMLLS-TVE) and extended the traditional MLLS model by considering time-varying
production factors. We considered time-varying production setup cost and time-varying production
capacities and proposed a non-linear mathematical programming model and a mixed-integer linear
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programming model for the CMLLS-TVE. In the proposed models, the time-varying setup cost and
dynamic capacity constraint were taken as new constraints. New properties about the time-varying
characteristics in CMLLS-TVE were analyzed. In order to solve the medium- and large-sized
problems with computational efficiency and good solution quality, we developed a fix-and-optimize
solution approach implemented in the AMPL/CPLEX environment. Computational experiments on
well-known benchmark problem instances in the literature showed that the proposed algorithms
can effectively solve the small-sized CMLLS-TVE problems with optimal solutions, while the
fix-and-optimal heuristic was able to find near-optimal solutions with controllable computational time
for medium- and large-sized CMLLS-TVE problems. After optimization, the system entropy showed a
decreased value, indicating that the optimization made the production in the system become more
orderly. Future studies can be carried out on four aspects: (1) to make the CMLLS-TVE more practical
by considering more time-varying factors, (2) to develop parallel heuristic algorithms with higher
efficiency for very large-sized CMLLS-TVE problem instances, (3) to develop a more reasonable and
accurate method for calculating system entropy, and (4) to combine the economic lot-sizing problem
with the optimizations of plant layout, process flow, and logistics and model the optimization in view
of the whole production system.
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