
  

Entropy 2019, 21, 374; doi:10.3390/e21040374 www.mdpi.com/journal/entropy 

Article 

Saliency Detection Based on the Combination of 

High-Level Knowledge and Low-Level Cues in Foggy 

Images 

Xin Zhu 1, Xin Xu 1,2,3,* and Nan Mu 1 

1 School of Computer Science and Technology, Wuhan University of Science and Technology, Wuhan 

430065, China; zhuxin1002@gmail.com (X.Z.); munan528@gmail.com (N.M.) 
2 Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System, 

Wuhan 430065, China 
3 School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 

200240, China 

* Correspondence: xuxin@wust.edu.cn; Tel.: +86-27-68893531 

Received: 28 February 2019; Accepted: 3 April 2019; Published: 6 April 2019 

Abstract: A key issue in saliency detection of the foggy images in the wild for human tracking is 

how to effectively define the less obvious salient objects, and the leading cause is that the contrast 

and resolution is reduced by the light scattering through fog particles. In this paper, to suppress the 

interference of the fog and acquire boundaries of salient objects more precisely, we present a novel 

saliency detection method for human tracking in the wild. In our method, a combination of object 

contour detection and salient object detection is introduced. The proposed model can not only 

maintain the object edge more precisely via object contour detection, but also ensure the integrity 

of salient objects, and finally obtain accurate saliency maps of objects. Firstly, the input image is 

transformed into HSV color space, and the amplitude spectrum (AS) of each color channel is 

adjusted to obtain the frequency domain (FD) saliency map. Then, the contrast of the local-global 

superpixel is calculated, and the saliency map of the spatial domain (SD) is obtained. We use 

Discrete Stationary Wavelet Transform (DSWT) to fuse the cues of the FD and SD. Finally, a fully 

convolutional encoder–decoder model is utilized to refine the contour of the salient objects. 

Experimental results demonstrate that the presented model can remove the influence of fog 

efficiently, and the performance is better than 16 state-of-the-art saliency models. 

Keywords: saliency detection; foggy image; spatial domain; frequency domain; object contour 

detection; discrete stationary wavelet transform 

 

1. Introduction 

There is great influence on the visibility of the human tracking in the wild under foggy 

environments on account of how dust particles suspend in the air. Therefore, the foggy images 

typically have low contrast and faded color features, in which the main objects are difficult to be 

recognized. Saliency detection is advantageous to this task, and it is a cognitive process that simulates 

the attention mechanism of human visual system (HVS) [1–3], which has an astonishing capability to 

rapidly judge the most attractive image region from a scene for further processing in the human brain. 

In the past several years, the detection of visual salient objects has drawn much attention to most 

image processing applications. Saliency detection in foggy images acts a pivotal part in fields such as 

human tracking in the wild, object recognition, object segmentation, remote sensing, intelligent 
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vehicles, and surveillance. So far, all kinds of defogging techniques [4–7] have been proposed, and 

they can reach comparatively good performance. 

At present, image processing methods in foggy weather can be split into image enhancement 

and image restoration methods. 

Image restoration methods include Dark channel prior algorithm [8], Visual enhancement 

algorithms for uniform and non-uniform fog [9], and defogging algorithms based on deep learning 

[10]. The method of image restoration based on the physical model is mainly to explore the physical 

mechanism of images degraded by fog, and to establish a general foggy weather degradation model. 

Then, the degradation model is calculated to compensate for the loss of image information caused by 

the degradation process. Finally, the quality of foggy images can be improved. However, the image 

restoration algorithm is a physical model based on atmospheric scattering. It requires more priori 

knowledge. Image enhancement methods can be divided into contrast enhancement and color 

enhancement. Image enhancement representative algorithms include histogram equalization [11], 

Retinex [12], and Wavelet based approaches [13,14]. However, the main drawbacks of these 

algorithms include: (1) High complexity makes their execution time-consuming, thereby making it 

difficult to guarantee the real-time performance of saliency detection. (2) During the process of 

dehazing, the visibility of foreground and background is increased simultaneously, so the recognition 

of salient objects is disturbed to some extent. (3) Image color distortion leads to visual features such 

as the edge and contour of the target cannot be accurately extracted. 

Due to the low-resolution and low-contrast characteristics of foggy images, traditional spatial or 

frequency-based saliency models have a poor performance under fog environment. In view of this 

problem, this paper presents a frequency-spatial saliency model based on the atmospheric scattering 

distribution of foggy images, which can obtain effective information under foggy weather. Since the 

traditional machine learning method leads to the loss of boundary information, the object contour 

detection method of deep learning is added to enrich the edge information of the saliency map. As 

illustrated in Figure 1, the object contour detection method obviously improves the quality of the 

saliency map. 

    

(a) input image (b) ground truth (c) traditional method (d) our method 

Figure 1. Example of salient object detection in foggy images. 

In this paper, traditional methods and deep learning methods are combined to effectively detect 

salient objects for human tracking in the wild. In step one, the frequency domain (FD) and the spatial 

information are fused by DSWT. We utilize the object contour detection method of deep learning to 

obtain the map of the edge of the object at step two. Last, we obtain the final saliency map of the 

foggy image by fusing the two maps. Specifically, in step one, the foggy image is transformed into 

HSV color space first, and the amplitude information of FD is utilized to obtain feature maps in each 

channel. Then, segmenting the image into superpixels and computing the saliency of each superpixel 

by the local-global spatial contrast. Finally, the DSWT is applied to fuse the FD and spatial domain 

(SD) saliency maps, and the Gaussian filter is employed to refine the results. The flow diagram of the 

presented method is shown in Figure 2. The experimental results show that the proposed method can 

effectively detect salient objects under fog conditions. 
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Figure 2. Flowchart of the proposed salient object detection model in single foggy image. 

2. Related Works 

Saliency detection is generally driven by low-level knowledge and high-level cues. Therefore, 

visual saliency computation under foggy environments for human tracking in the wild can be 

typically categorized into two classes: Saliency computational models and object contour detection 

approaches. Traditional saliency computational models are data-driven and primarily utilize low-

level image features; while top-down object contour detection models are task-driven and usually 

utilize cognitive visual features. 

2.1. Saliency Computational Models 

From the perspective of information processing, traditional saliency models can be divided into 

two categories: SD and FD based models. 

The SD saliency models are usually based on the contrast analysis to establish the algorithms. 

Itti et al. [15] presented a famous saliency model by utilizing the center-surround differences of 

multiple features. Goferman et al. [16] introduced a context-aware saliency approach, which 

measures the similarity of image patches in a local-global manner. Xu et al. [17] proposed a 

superpixel-level saliency method through a support vector machine (SVM) to train unique features. 

Cheng et al. [18] considered the histogram information and spatial relations, and then developed a 

global contrast-based saliency algorithm. Peng et al. [19] integrated tree-structed sparsity-inducing 

and Laplacian regularizations to construct a structured matrix decomposition model. However, most 

of the features used in these spatial models are not ideal for foggy images. 

The saliency models of the FD develop an algorithm by converting the to a spectrum. Hou and 

Zhang [20] employed a spectral residual saliency method, which utilizes the log spectra to represent 

images. Guo et al. [21] extended the FPT algorithm and denoted four features of image by quaternion. 

Then, they utilized the Fourier transform of the quaternion to acquire the saliency map. Achanta et 

al. [22] built a frequency-tuned method, which estimates the contrast of several features. The color 

and brightness characteristics of each pixel are adopted to calculate the saliency map by Bian and 



Entropy 2019, 21, 374 4 of 15 

 

Zhang [23]. Li et al. [24] explored saliency detection by analyzing the scale-space information of the 

amplitude spectrum (AS). Li et al. [25] studied the image saliency in the FD to design the model. Arya 

et al. [26] integrated local and global features to propose a biologically feasible FD saliency algorithm. 

These existing FD saliency models do not work well in foggy images due to the low-frequency 

information representing salient objects are greatly reduced in foggy weather. 

2.2. Object Contour Detection 

Object contour detection is a traditional computer vision problem with a long history. The 

traditional computer vision methods include Roberts, Prewitt, Sobel, canny, and other algorithms. 

In the process of object contour detection, Roberts’ algorithm does not smooth the image, so the 

image noise is generally not well suppressed, which also affects the loss of a part of the edge when 

calculating the positioning. However, Roberts’ algorithm has higher positioning accuracy and better 

effect on steep low-noise images. Prewitt algorithm can suppress noise. The principle of noise 

suppression is pixel average, which is equal to low-pass filtering of the image. Thus, Prewitt’s 

algorithm is inferior to Roberts’ algorithm in edge positioning. The practical application of the Sobel 

edge detection algorithm [27] is when the efficiency requirements are high and the fine texture is not 

of interest. Sobel is usually directional and can detect only vertical or horizontal edges or both. The 

Sobel algorithm is improved on the basis of the Prewitt algorithm. Compared with the Prewitt 

algorithm, the Sobel algorithm can suppress the smoothing noise better. The Canny algorithm [28] 

pays more attention to the edge information reflected by the pixel gradient change and does not 

consider the actual object. However, it leads to loss of spatial information of the image at the same 

time. For some images where the edge color is similar to the background color, the edge information 

may be lost. The Canny algorithm is one of the best algorithms for detecting edge effects in traditional 

first-order differentials. It has stronger denoising capabilities than the Prewitt and Sobel algorithms. 

On the other hand, it is also easy to smooth some edge information, and its checking method is more 

complicated. However, the traditional edge detection algorithm uses the maximum gradient or the 

zero-crossing value of the second derivative to obtain the edge of the image. Although these 

algorithms have better real-time performance, they have poor anti-interference and cannot effectively 

overcome the influence of noise. In addition, the positioning is not good. 

With the development of deep learning, the fast edge algorithm, HED and RCF algorithms are 

introduced. Fast edge algorithm [29] uses random forests to generate edge information. Ground truth 

is used to extract the edge of the image patch. This can not only reflect the actual object, but also 

reflect the spatial information of the picture. HED [30] used the network modified by VGG. Feature 

information is extracted from the whole image through multi-scale fusion, multi-loss and other 

methods. Similarly, it can reflect the feature information of the edge. RCF [31] takes advantage of the 

features of all convolutional layers in each stage compared to HED. The use of more features has also 

brought about an improvement in results and achieved good results. Inspired but different from these 

deep learning models, we employ an encoder-decoder network with full convolution to guide better 

salient object detection. 

In our previous work, we trained an encoder-decoder network with full convolution using Caffe 

to optimize the performance of saliency detection. The proposed fully convolutional encoder-decoder 

network can learn the object contour to better represent saliency map in low contrast foggy images. 

The key contributions of this paper are summarized below: (1) We compute the saliency map via a 

frequency-spatial fusion saliency model based on DSWT. (2) This framework is further refined by a 

fully convolutional encoder-decoder model based on fully convolutional networks [32] and 

deconvolutional networks [33]. (3) The presented saliency computational model has better 

performance in foggy images than traditional models. 

3. Proposed Saliency Detection Method 

In this paper, we propose a frequency and spatial cues based traditional method through DSWT 

and a deep learning-based edge detection method fused salient object computational model to obtain 

the saliency map in foggy images effectively. 



Entropy 2019, 21, 374 5 of 15 

 

This section first analyses the features of foggy images, including the imaging model and effect 

of fog distortion on images in Section 3.1. We describe the FD based algorithm and some important 

computational formulas in Section 3.2. Then we give the detailed description of the SD based 

algorithm in Section 3.3. Section 3.4 provides the implementation of the discrete stationary wavelet 

transform based image fusion, which combines the above-mentioned two algorithms to generate 

elementary saliency map. Finally, Section 3.5 introduces the object contour detection method to refine 

the contour of the saliency map. It makes the position of the salient object more precise. 

3.1. Analysis of Foggy Image Features 

3.1.1. Imaging Model of Foggy Image 

Under fog conditions, there are a lot of tiny water droplets and aerosols in the atmosphere, which 

seriously affect the spread of light, resulting in a decrease in image clarity and contrast in foggy days. 

Especially for color images, it also produces severe color distortion and misalignment. From the 

respective of the computer vision, there are plentiful models [34,35] which are widely used for 

describing the information of foggy images. Narasimhan and Nayar [35] proposed imaging model of 

foggy images as shown following: 
c (1 )c c

x x x xI J t A t    (1) 

where r, g, bc   denotes the color space of the images and c

xI  denotes the foggy image captured 

by an imaging device. c

xJ  and 
xt  denote the scene reflected light and scene transmissivity, 

respectively. cA  is a constant and represents the ambient light. 

In Equation (1), c

x xJ t  and (1 )c

xA t  denote the direct attenuation [10] and air light [36], 

respectively. Direct attenuation is defined as the radiance of the scene and its attenuation in the 

medium. Air light, on the other hand, is caused by the previous scattering light, resulting in a change 

in the color of the scene. The transmission t  can be indicated as follows in which the atmosphere is 

homogenous: 

xd

xt e


  (2) 

let   denote the scattering coefficient of the atmosphere. 

The results show that the scene brightness decays exponentially with the scene depth d. 

3.1.2. Effect of Foggy Distortion on Images 

The degraded effect of fog on the image [37] is called fog distortion. The degraded effect of fog 

distortion brings great challenges to the saliency computation of images. The effect of fog distortion 

on image quality is mainly concentrated in three aspects: 

(1) The original information of the image is destroyed by the fog, and the structural information of 

the image is regarded as the high frequency component with enough energy in the image. The 

generation of fog destroys the structural information of the image and affects the details and texture 

of the scene object. 

(2) The fog adds some information to the image. The existence of fog can be seen as adding the 

relevant channel information of the image and making the overall brightness of the image rises. 

(3) Fog distortion combines with the original information of the image to generate some information. 

Due to the interaction between fog particles and the information of the image itself, the foggy image 

adds some multiplicative information, such as fog noise. It blurs the image, which reduces the 

contrast of the image. 

3.2. FD based Algorithm 

Given a foggy image, it is transformed into HSV color space firstly, which has shown strong 

stimuli to human visual cortex in foggy image [38], thus the hue, saturation, value features of H, S, 

and V channels can be considered as the important indicators for detecting saliency. 
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Then, the H, S, and V channels are converted into FD respectively by conducting the Fast Fourier 

Transform (FFT) as: 

1 1 2

0 0

( , ) ( , ) ,

ux vyM N j
M N

x y

F u v f x y e

     
 

 

  (3) 

where M  and N  denote the image’s width and height. ( , )f x y  and ( , )F u v  denote image pixels 

in SD and FD, respectively. 

( , )A u v  and ( , )P u v  represent the AS and the phase spectrum (PS), respectively. And they can be 

computed via: 

( , ) angle( ( , )),P u v F u v  (4) 

( , ) abs( ( , )),A u v F u v
 (5) 

where the AS function and the PS function are denoted as abs( )  and angle( ) , respectively. In PS 

function, each element of the complex array ( , )F u v  returns the phase angle (in radians). This angle 

is between  . Amplitude spectrum ( , ) abs( ( , ))A u v F u v  means the absolute value of image pixels 

in frequency domain. 

For foggy images, the low amplitude in FD can be regarded as a cue of the object, and the high 

amplitude can represent the fog background. Therefore, restraining the high amplitude information 

to highlight the object region in other words, the salient object can be extracted by removing the peaks 

of the AS via: 

( , ) medfilt 2( ( , )),A u v A u v  (6) 

where the median filter function is represented as medfilt 2( ) , which can effectively eliminate the 

peaks of ( , )A u v . medfilt 2( )I  performs median filtering of the image I in two dimensions. Each 

output pixel contains the median value in a 3-by-3 neighborhood around the corresponding pixel in 

the input image. 

Next, it can compute a new FD map via: 
( , )( , ) ( , ) ,jP u vF u v A u v e  (7) 

where the absolute value is represented as  . 

The FD map is then transformed back to SD by performing the Inverse Fast Fourier Transform 

(IFFT) via: 

1 1 2

0 0

1
( , ) ( , ) .

ux vyM N j
M N

u v

f x y F u v e
MN


    
 

 

   (8) 

The saliency maps (denoted as mapH , mapS , and mapV ) of each channel in HSV color space can be 

acquired by (3-8). 

Finally, we calculate the sum of mapH , mapS , and mapV , and obtain the map of FD saliency 

(represented as 1S ). 

3.3. SD based Algorithm 

To reduce the amount of computation and guarantee the integrity of the object, the input foggy 

image is first divided into superpixels (presented as ( )SP i , 1, ,i Num  , 300Num  ) through the 

simple linear iterative clustering (SLIC) algorithm [39]. Then, the obtained mapH , mapS , and mapV  of H, 

S, and V channels are regarded as the features of saliency. 

The local-global saliency of every superpixel ( )SP i  in mapH  can be obtained through: 

1,

1 ( ( ), ( ))
( ) 1 ,

1 1 ( ( ), ( ))

HmapNum
Hmap

j j i

d SP i SP j
S i exp

Num E SP i SP j 

 
   

  
  (9) 
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where ( ( ), ( ))Hmapd SP i SP j  is the difference in the mean of ( )SP i  and ( )SP j  in mapH . The mean 

Euclidean distance between ( )SP i  and ( )SP j  is represented as ( ( ), ( ))E SP i SP j . 

Through (9), saliency values ( )SmapS i  and ( )VmapS i  of superpixels ( )SP i  in mapS  and mapV  can 

be figured out. 

In the end, the saliency value of each pixel ( )SP i  is acquired by the sum of ( )HmapS i , ( )SmapS i , and

( )SmapS i . And 2S  is the saliency map of SD. 

3.4. DSWT based Image Fusion 

The presented model mainly employs 2-levels DSWT to remove the noise of the saliency map 

and to accomplish the wavelet decomposition on it. 

Low-pass filter and high-pass filter of the 1-level conversion are represented as 1[ ]h n  and 1[ ]g n

. Up sample of the 1-level can calculate the 2-levels filters 2[ ]h n  and 2[ ]g n . Next, we can obtain the 

horizontal high-frequency subband 2H , the approximation low-pass subband 2A , and the diagonal 

high-frequency subband 2D , the vertical high-frequency subband 2V . The high-pass and low-pass 

subband has the same size as the initial image. Therefore, the information of detail can be preserved 

adequately. Thereby, it makes DSWT have translation invariance. 

According to above steps, the saliency map based on the FD 1S  and the saliency map based on 

the SD 2S  is obtained. Then, we fuse the two maps through the 2-levels DSWT as: 

 1 1 1 1 1 1 1 1 1S , , ,  = swt2( , 1, 'sym2'),A H S V S D S S  (10) 

 1 2 1 2 1 2 1 2 2, , ,  = swt2( , 1, 'sym2'),A S H S V S D S S
 (11) 

 2 1 2 1 2 1 2 1 1 1, , ,  = swt2( , 1, 'sym2'),A S H S V S D S A S
 (12) 

 2 2 2 2 2 2 2 2 1 2, , ,  = swt2( , 1, 'sym2'),A S H S V S D S A S
 (13) 

where the multilevel DSWT is represented as swt2( ) . swt2( )  performs a multilevel 2-D stationary 

wavelet decomposition using either an orthogonal or a biorthogonal wavelet. Equations (10)–(13) 

compute the stationary wavelet decomposition of the real-valued 2-D or 3-D matrix at 1-level by 

using ‘sym2′. The output three-dimensional array i jA S  is represented as the result of the i-level low 

frequency approximation coefficients of saliency map jS  employing 'sym2'  filter, and i j D S , i jH S , 

i j V S  represent the high frequency coefficients of the diagonal, vertical and horizontal directions, 

respectively. 

Next, the 2-level fusion is calculated using the following formulas: 

 2 2 1 2 2 = 0.5 + ,fA S A S A S  (14) 

 2 2 1 2 2 2 1 2 2 = ,  = - 0,fH S D H S D H S D H S H S   
 (15) 

 2 2 1 2 2 2 1 2 2 = ,  = - 0,fV S D V S D V S D V S V S   
 (16) 

 2 2 1 2 2 2 1 2 2 = ,  = - 0.fD S D D S D D S D D S D S   
 (17) 

The 1-level fusion is calculated using the following formulas: 

1 2 2 2 2 = iswt2( , , , , 'sym2'),f f f f fA S A S H S V S D S  (18) 

 1 1 1 1 2 1 1 1 2 = ,  = - 0,fH S D H S D H S D H S H S   
 (19) 

 1 1 1 1 2 1 1 1 2 = ,  = - 0,fV S D V S D V S D V S V S   
 (20) 

 1 1 1 1 2 1 1 1 2 = ,  = - 0,fD S D D S D D S D D S D S   
 (21) 
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where the inverse DSWT function is represented as iswt2( ) . For example, 

X = iswt2( , , , , ' 2')A H V D sym  reconstructs the matrix X based on the multilevel stationary wavelet 

decomposition structure  , , ,A H V D  in Equation (18) and Equation (22). 

Then, the fusion image can be calculated using the following formulas: 

 1 1 1 12 , , , , ' 2' .f f f fSalmap iswt A S H S V S D S sym  (22) 

In the end, the proposed method utilizes a Gaussian filter to generate a smoothed saliency map. 

3.5. Object Contour Detection 

Object contour detection model [40] can filter and ignore the edge information in the background 

and obtain the contour detection result by centering the object in the foreground. Inspired by the fully 

convolutional networks and deconvolutional networks [33], an object contour detection model is 

introduced to extract the target contour and suppress background boundaries. 

The layers up to ‘fc6′ from VGG-16 [41] are used in the edge detection model as the encoder of 

the network. The deconv6 decoder convolutional layer uses 1  kernel, and all remaining decoder 

convolutional layers use 5 5  kernel. Except for the decoder convolutional layer next to the output 

layer which uses the sigmoid activation function, all other decoder convolutional layers are followed 

by the relu activation function. 

We trained the network using Caffe. The parameters of the encoder are fixed when training the 

network, while only the parameters of the decoder are optimized. This maintains the generalization 

of the ability of the encoder and enables the decoder network to be easily combined with other tasks. 

4. Experimental Results 

4.1. Experiment Setup 

Datasets: Abundant experiments are executed on two datasets to assess the performance of the 

proposed saliency model. 

A foggy image dataset (FI) was collected from the Internet, which contained 200 foggy images. 

We also provide the corresponding manual labeled ground truths. The FI dataset can be downloaded 

at https://drive.google.com/file/d/1aqro3U2lU8iRylyfJP1WRKxTWrrFzizh/view?usp=sharing. The 

other one is the BSDS500 Dataset. It includes 500 natural images with carefully annotated boundaries 

by different users. The dataset is divided into three parts: 200 for training, 100 for validation and the 

other 200 for testing. Object contour detection is utilized to optimize the saliency map which was 

obtained by traditional machine learning methods of salient object detection. Due to the use of 

traditional methods, the edge information of the saliency map is incomplete. 

Evaluation Criteria: For quantitative evaluation, the average computation time, the mean 

absolute error (MAE) score, the overlapping ratio (OR) score, the precision-recall (PR) curve, the true 

positive rates (TPRs) and false positive rates (FPRs) curve, the area under the curve (AUC) score, the F-

measure curve, the weighted F-measure (WF) score, and various saliency models are computed, 

respectively. 

The precision, recall, TPR and FPR values are generated by converting the saliency map into 

binary map via thresholding to compare the difference of each pixel with ground truth. 2  is the 

parameter to weigh the precision and recall, which is set to 0.3 in our experiments [18], [22]. 

The ratio of the number of salient pixels correctly labeled to all salient pixels in this binary map 

is defined as the precision. In other words, precision refers to how many of the samples that are 

positively judged by the model that are true positive samples. The recall rate refers to how many 

positive samples are judged as positive samples by the model in the ground-truth map: 

,
TS DS

precision
DS


 ,

TS DS
recall

TS


  (23) 

where TS and DS denote true salient pixels and detected salient pixels by the binary map, 

respectively. 
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The TPRs represents the probability that have a right classification of positive examples, and the 

FPRs represents the probability of splitting a negative sample into a positive sample. 

,
( )

TP
TPR

TP FN



,

( )

FP
FPR

FP TN



 (24) 

F-measure value, denoted as F
, is obtained by computing the weighted harmonic mean of 

precision and recall. 
2

2

(1 ) Precision Recall
,

Precision Recall
F





  


 
 (25) 

where 2  is set to 0.3 to weight precision more than recall as suggested in [42]. 

Given a ground truth main subject region G and a detected main-subject region D. The OR score 

is the ratio between two times the correctly detected main-subject region to the sum of detected and 

ground truth main subject region. 

2
,

( ) ( )

A
OR

A D A G

 




（D G）
 (26) 

The percentage of area under the TPRs-FPRs curve is called as the AUC score. It intuitively 

reflects the classification ability of ROC curve. 

i

(1 )

2 ,
ipositiveClass

M M
rank

AUC
M N










 (27) 

The MAE score to calculate the average difference of each pixel between the saliency map which 

is predicted and ground truth. It is acquired by: 

   
1 1

1
, , ,

W H

x y

MAE S x y G x y
W H  

 


   (28) 

where S is predicted saliency map and G is ground truth, the width and height of saliency map S are 

presented as W and H. 

4.2. Comparison and Analysis 

The presented method is compared with 16 well-known saliency detection methods including: 

IT [15], CA [16], SMD [19], SR [20], FT [22], MR [41], NP [43], , IS [44], LR [45], PD [46], , SO [47], BSCA 

[48], BL [49], GP [50], SC [51], , and MIL [52]. The source code provided by others was used to test on 

our foggy dataset. Each foggy image in our dataset was tested on 16 methods of others to produce 

the corresponding saliency map. 

Figure 3 shows the PR, TPRs-FPRs, and F-measure curves of various saliency models to evaluate 

the proposed model quantitatively. The larger the area under the curve is, the better the performance 

of the saliency model will be. 

   

(a) PR (b) TPRs-FPRs (c) F-measure 

Figure 3. The quantitative comparisons of the proposed saliency model with 16 state-of-the-art 

models in foggy images. 
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It can be seen from the three figures that the proposed model is superior to other saliency models, 

which validates that our saliency result is robust in foggy images. 

The greatest three results in Table 1 are emphasized in red fonts, blue fonts and green fonts when 

comparing performance with other methods. Table 1 shows that the presented model yields the 

greatest performance in terms of AUC and OR scores and obtains the second best in MAE and WF. 

These results indicate that the presented saliency model reaches the better performance under fog 

conditions. Moreover, our proposed method has a shorter running time than most, ranking fifth out 

of other 16 methods. 

Table 1. The performance comparisons of various saliency models in foggy images. 

Saliency 

Models 
AUC MAE WF OR TIME(s) 

IT 0.7916 0.3434 0.1250 0.1629 5.7661 

SR 0.5602 0.1118 0.0730 0.3253 10.7458 

FT 0.6809 0.1724 0.1268 0.1703 0.8717 

NP 0.9156 0.2881 0.1879 0.4357 4.6347 

CA 0.8718 0.1328 0.2729 0.4145 59.2286 

IS 0.9077 0.1736 0.2378 0.4115 1.2987 

LR 0.8687 0.1174 0.2661 0.4274 146.0651 

PD 0.8277 0.1073 0.3602 0.4449 28.5625 

GBMR 0.5658 0.2219 0.2058 0.1809 2.4929 

SO 0.7705 0.0913 0.4431 0.4557 2.5251 

BSCA 0.7327 0.1850 0.2028 0.2420 6.7254 

BL 0.8053 0.2220 0.2159 0.5007 53.3103 

GP 0.8241 0.2235 0.2556 0.3133 20.2649 

SC 0.8077 0.1491 0.2005 0.3215 39.0530 

SMD 0.7311 0.1418 0.2976 0.3455 7.6693 

MIL 0.8636 0.1365 0.3127 0.5009 341.9829 

Proposed 0.9177 0.0995 0.4060 0.6050 5.0756 

Figure 4 shows the visual comparisons of varieties of saliency detection models on the foggy 

image dataset, which demonstrates that the saliency maps obtained by our method are much closer 

to the ground truths. Compared to the baselines, our method yields a better performance, which 

means that it suppresses background clutters well and generates visually good contour maps. Based 

on the saliency maps compared with other models, this paper makes a few basic observations: 

The IT, NP, IS and BL models find it difficult to suppress the fog background. The map did not 

highlight salient objects but detected the fog background together. It is treated with fog as the 

foreground. As can be seen from Figure 4, there has a very poor effect. 

Saliency maps of the MR, BSCA and GP models show that the fog background areas are too 

bright, and background and foreground are marked as salient regions at the same time. Therefore, 

saliency maps are blurred. However, the results are relatively better than IT, NP, IS and BL. 

The FT, LR, PD, SC, CA models detect salient objects in the foreground while also clearly 

detecting non-salient objects such as trees, streetlights, and roads in the back-ground. Such an 

algorithm cannot achieve the purpose of saliency detection and is meaningless for tracking humans 

in the wild. 

Although the fog background has less interferential in the SR than others, the salient objects are 

also not detected. It is the worst model on test dataset. Due to the features they used are ineffective 

in foggy images. 

The SO, SMD and MIL have poor performance for foggy images with a slightly complex 

background. Although salient objects in the foreground are detected, the brightness of the fog in the 

image affects the final detection results. In other words, these models are not robust in fog 

environment. 
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The experiment results show that other models cannot detect the salient objects well under foggy 

weather. It is evident that the proposed method can better detect the salient objects in foggy images 

and more effective than other models. The reasons are summarized as follows: 

(1) The local and global information of the images are utilized, so that the salient objects can 

complement the information in the FD and the SD. However, the traditional machine learning 

method leads to the loss of edge information. Thus, causes the boundary of the saliency map to be 

blurred. 

(2) The object contour detection method of deep learning is added to enrich the edge information of 

the saliency map. It can suppress the interference from the fog background and acquire the edge of 

salient objects more precisely. 

(3) In the meantime, traditional based method and deep learning-based method are combined to 

effectively detect salient objects. The proposed method can not only retain the edge more accurately 

via object contour detection, but also ensure the salient objects’ integrity. By this means, can obtain a 

more precise and clearer saliency map
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Figure 4. The saliency maps of the proposed model in comparison with 16 models in foggy images. (a) testing foggy images, (b) ground truth binary masks, (c-r) saliency 

maps obtained by 16 state-of-the-art saliency models, (s) saliency maps obtained by the proposed model. 
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Entropy 2019, 21, 374; doi:10.3390/e21040374 www.mdpi.com/journal/entropy 

5. Conclusions 

In our study, we present a high-efficiency model to handle the salient object detection of foggy 

images. The proposed model combines traditional machine learning based frequency-spatial saliency 

detection algorithm and deep learning-based object contour detection algorithm to cope with the 

matter of salient object detection under fog environments. In traditional saliency detection method, 

the saliency map is acquired by fusing the frequency and spatial saliency maps via DSWT. Then, a 

fully convolutional encoder–decoder model is utilized to improve the contour of the salient objects. 

Experimental results on foggy image dataset demonstrate that the proposed saliency detection model 

performs obviously better against other 16 well-known models. 
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