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Abstract: Sketch-based 3D model retrieval has become an important research topic in many
applications, such as computer graphics and computer-aided design. Although sketches and
3D models have huge interdomain visual perception discrepancies, and sketches of the same
object have remarkable intradomain visual perception diversity, the 3D models and sketches of
the same class share common semantic content. Motivated by these findings, we propose a novel
approach for sketch-based 3D model retrieval by constructing a deep common semantic space
embedding using triplet network. First, a common data space is constructed by representing every
3D model as a group of views. Second, a common modality space is generated by translating views
to sketches according to cross entropy evaluation. Third, a common semantic space embedding for
two domains is learned based on a triplet network. Finally, based on the learned features of sketches
and 3D models, four kinds of distance metrics between sketches and 3D models are designed, and
sketch-based 3D model retrieval results are achieved. The experimental results using the Shape
Retrieval Contest (SHREC) 2013 and SHREC 2014 datasets reveal the superiority of our proposed
method over state-of-the-art methods.

Keywords: sketch-based retrieval; 3D model retrieval; deep common semantic space embedding;
metric learning; cross-entropy

1. Introduction

With the rapid development of computer hardware, 3D data acquisition, and shape modeling
technologies, 3D models have become increasingly useful in various fields, and as a result, 3D model
retrieval and reuse has received increasing attention. There are two key challenges to retrieving a
3D model: creating a model that is simple enough for novice users and producing a matching algorithm
that is robust enough to work for arbitrary polygonal models [1]. Accordingly, example-based
3D model retrieval has attracted widespread attention. Unfortunately, although example-based
3D model retrieval is intuitively straightforward, it is difficult to achieve [2]. Photo input is another
natural method for 3D model retrieval when user has the target 3D object. However, user cannot
obtain the 3D object in many applications, such as the conceptual design stage of a new product.
Instead, due to its intuitive nature and convenience, sketch-based 3D model retrieval plays a practical
role in many applications, including sketch-based rapid modeling, recognition, 3D printing and 3D
animation production.

However, sketch-based 3D model retrieval is more challenging than example-based retrieval.
This difficulty is due to two main characteristics of sketch-based 3D model retrieval: (1) large
interdomain visual perception discrepancies between sketches and 3D models (as Figure 1 shows,
3D models are precise and informative, while sketches are concise and abstract) and (2) large
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intradomain visual perception diversities for sketches of the same object, as shown in Figure 1.
This diversity occurs because a sketch is a subjective expression of an object that is influenced by
factors such as the thought processes, domain background and hand-drawing habits of the person
creating the sketch. The above two factors are related to each other and lead to difficulty in sketch-based
3D model retrieval.
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Figure 1. Sketches and the corresponding 3D models.

Although there are large interdomain visual perception discrepancies and significant intradomain
visual perception diversity for sketch-based 3D model retrieval, the 3D models and sketches of the
same class share common semantic content. Motivated by these findings, we propose a novel approach
for sketch-based 3D model retrieval by constructing a deep common semantic space embedding using
a triplet network (DCSSE). First, 3D models are described by a group of views. Then, a common
modality space is constructed by translating one mode to another based on cross entropy. Finally,
a common semantic space embedding is learned based on a triplet network, and the essential features
of sketches and 3D models are generated simultaneously by synthetically considering the two domains.
The retrieval experiments on Shape Retrieval Contest (SHREC) 2013 and SHREC 2014 demonstrate the
effectiveness of our approach.

This paper makes the following contributions. (1) A cross-entropy-based common modality space
is constructed for sketches and 3D models, which reduces interdomain visual perception discrepancies.
(2) A DCSSE is generated between sketches and 3D models via synthetical consideration of the sketches,
the 3D models and their shared semantics. (3) A novel combination of deep metric learning with
cross-domain transformation is adopted, which has more relaxed constraints and is more consistent
with the two characteristics of sketch-based 3D model retrieval. (4) The approach outperforms all
state-of-the-art methods on two large benchmark datasets.

2. Related Work

At present, sketch-based 3D model retrieval is the most concerned hot spot in the field of 3D model
retrieval. Researchers have proposed a variety of methods for sketch-based 3D model retrieval [3-6].
Earlier methods such as Histogram of Gradient [7], Gabor local line [8], View Context [9,10], part-based
features [11,12], cross-domain manifold ranking (CDMR) [13], Shape2Vec [14] and composite
features [15] algorithms have extracted handcrafted features for sketches and 3D models. However,
due to the complexity of 3D models and the large interdomain visual perception discrepancies, these
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methods cannot objectively and reasonably capture the essential features of 3D models and sketches,
and consequently, their accuracies are insufficient.

With the wide application of deep learning in computer vision, several deep feature learning-based
methods are proposed. As 3D model representation is unstructured, it cannot be directly inputted
into the deep learning model. Some of these methods describe 3D models using low-level feature
vectors, such as physics-constrained deep neural network (PCDNN) [16], deep correlated metric
learning (DCML) [17], deep correlated holistic metric learning (DCHML) [18], and semantic embedding
space (SEM) [19], and then input the vectors into the deep learning model to generate the final
features. These methods try to automatically learn and construct the features of complex models;
however, they lose original information when extracting low-level features and fail to make full use
of the characteristics of the deep learning algorithm. In addition, these methods do not consider
the relationship between the sketches and the 3D models when extracting their features, resulting in
unsatisfactory retrieval accuracies.

Another kind of deep feature learning-based method for sketch-based 3D model retrieval
describes 3D models using a group of projected views, and then separately adopts two convolutional
neural networks (CNNs) for the views and sketches, finally combines them by constructing the
specific loss between the features of the two domains using methods such as the Siamese network
(Siamese) [20], the learned Wasserstein barycentric representation (LWBR) [21], deep cross-modality
adaptation (DCA) [22], and multiview attention network (MVAN) [23]. These methods have achieved
state-of-the-art performance. However, the sketches are generally quite abstract with large local and
global deviations from the original model [3]. As a result, any methods that extract features of views
and sketches separately fail to explore the related features between the sketches and the 3D models.
In addition, these methods construct a metric network by minimizing the loss to compel the features
of the sketches and the 3D models of the same class to be identical or almost identical, which may be
too restrictive for heterogeneous data.

3. Proposed Method

As illustrated in Figure 2, the proposed approach consists of two parts: the DCSSE model and
online retrieval.

(1) DCSSE is composed of three layers: the data layer, the visual perception layer and the semantic
feature layer. The inputs of DCSSE are the labeled 3D model dataset M; = {M;,1 <i < ny}
and the sketch dataset S = {S;,1 < i < ns}, where n,, is the number of 3D models and #; is the
number of sketches. In the data layer, a 3D model M; can be represented as [ views {V?, 1<j< l}
by data preprocessing, which ensures both the inputted 3D models and the sketches occupy 2D
space and share the same data form. Then, in the visual perception layer, data translation is used
to construct a common modality space based on cross entropy, impelling all inputted data to
share a similar visual perception. Furthermore, in the semantic feature layer, for any 3D model
M; and any sketch S;, their feature embeddings { f (V{) , 1< < l} and f (S;) can be generated
after deep metric learning, and a common semantic space F is constructed.

(2) The online retrieval: Based on DCSSE, we can further extract the features of the user sketch
and 3D models, calculate the distance between the user sketch and 3D models and return the
retrieval results.

In the remainder of this section, we will elaborate on each step.
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Figure 2. Framework of our proposed approach.
3.1. The Data Layer: Intradomain Data Preprocessing

Given the 3D model dataset M and the sketch dataset S, the purpose of data preprocessing in the
data layer is to uniformly convert the data of the two different modalities into 2D images with the
same data form.

3.1.1. 3D Model Preprocessing

For the 3D model dataset M, a mapping function ¢,, : M — R™ "> is established and a
multiview representation set V = {4)m (M) = {Vl], 1<j<], V1] € Rmxm} ,1 <i<mny ¢ isobtained
by 3D model preprocessing, where [ is the number of views (images) and m x m is the size of the views.
Comparing all kinds of multiview 3D model retrieval algorithms, we can see that the view-rendering
method proposed by Multi-view Convolutional Neural Networks (Su-MVCNN) is excellent [24,25].
Therefore, in this paper, we use this method to construct a multiview representation of a given
3D model.

Taking 12 views as an example, the multiview rendering of a 3D model is shown in Figure 3.
First, the 3D model is normalized into a unit sphere via translation and scaling. Second, as shown in
Figure 3, along the red circle on the unit sphere surface, 12 virtual cameras are set at an interval of
30 degrees, and the cameras are positioned to point toward the sphere center. Finally, each view is
rendered using the Phong reflection model [26].

NS0, |

Figure 3. Multiview rendering of 3D models.
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As shown in Figure 3, because the views are uniformly located in different views of the 3D model,
there is a strong mutual relationship between them. In addition, there is strong complementarity and
low correlation between views; thus, the multiview representation obtained by this method constitutes
a relatively complete description of the 3D model.

3.1.2. 2D Sketch Preprocessing

For the sketch dataset S, a mapping function ¢s : S — R"*™ is established and a 2D image
S={¢s (S;) =S;,S; € R™™ 1 < i< ny} is obtained by sketch preprocessing, where m x m is the size
of the output images. Here, we directly use the bilinear interpolation algorithm to complete the size
transformation of the sketch image.

3.2. The Visual Perception Layer: Interdomain Data Translation

Although both the 3D models and the hand-drawn sketches have been represented in a 2D space
with the same image sizes by intradomain data preprocessing, they are significantly different in terms
of visual perception. Specifically, the multiview representations are accurate and informative, while
the hand-drawn sketches are concise and abstract. To further narrow the interdomain differences and
highlight the commonality of categories, we analyze the characteristics of views and sketches, achieve
sketch-to-view and view-to-sketch interdomain translation, evaluate translation validity using cross
entropy, and construct a 2D common modality space in this subsection.

3.2.1. View-To-Sketch Translation

Since views contain complete visual information from a certain perspective of a 3D model and
hand-drawn sketches mainly contain outline information of the 3D model, the translation from
view-to-sketch can be accomplished by choosing a reasonable edge extraction algorithm. In this
work, the model in [8], which detects Canny edges on the depth buffer (also known as the z-buffer),

is used to translate the multiview representation set V to the extended sketch set Sy= {7y_s (Vl] ) ,
1 <i < ngl<j<lI}.

3.2.2. Sketch-To-View Translation

Compared with the views of the 3D model, the information contained in sketches is abstract, finite,
and ambiguous, making it extremely difficult to generate high-quality views directly from sketches.
In recent years, GAN [27], the generative adversarial network, has been proposed for high-quality
image-to-image translation. Accordingly, inputting standardized sketch set S without any paired data,

we achieve sketch-to-view translation and generate the extended view set Vo= {75y (5;),1 <i < n,}
using CycleGAN [28].

3.2.3. Construction of 2D Common Modality Space Based on Cross Entropy

Some translation results of the view-to-sketch and sketch-to-view translations using the methods
mentioned in Sections 3.2.1 and 3.2.2 are shown in Figure 4. Compared to the original sketches, the
sketch translated from a given view loses some of the local detail information, such as the eyes of
the dolphin; compared to original views, the view translated from a given sketch has problems with
missing or additional texture information. In conclusion, neither translation is perfect.

To evaluate which kind of translation is more effective for the construction of the 2D common
modality space to support cross-domain retrieval, cross-entropy [29], a metric of the difference between
two probability distributions, is introduced to evaluate the two kinds of translation. Specifically, the
gray-level histograms of images are used as statistical features. Let r =0, ..., 255 be the gray value,
V(k,r) be the average probability value of all views corresponding to the k-class 3D models in the
database when their gray value is 7, Sy (k, r) be the average probability value of all sketches translated
from views of the k-class 3D models when the gray value is , S(k, r) be the average probability value
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of all k-class sketches in the database when their gray value is r, and Vg(k, r) be the average probability
value of all views translated from k-class sketches when the grayscale value is r. The cross entropy of
view-to-sketch translation is defined as follows:

H(S, S 6255Sk I 1 1
(S, V)—k;x;) (k,r) Ogm 1)

where c is the number of sketch classes in the database (equal to the number of 3D model classes).
The cross entropy of sketch-to-view translation is defined as follows:

c 255 1
H(V,Vs) = V(k,r)log ——— 2
( S) k:Zng) ( 1’) og Vs(k,r) ( )

where c is the number of sketch classes in the database (equal to the number of 3D model classes).

View &———— > Sketch Sketch e——— View

A

D43

l,_ - —

Figure 4. Translation results of the view-to-sketch and sketch-to-view translations.

Figure 5 shows the intraclass cross entropy values of the view-to-sketch translation and
sketch-to-view translations on the SHREC 2013 dataset. It can be seen that, regardless of the class
to which the images belong, the cross-entropy values of the view-to-sketch translation are smaller
than those of the sketch-to-view translation, demonstrating that the sketches translated by views
can better simulate the probability distribution of the original sketches. We performed the same
experiment on the SHREC14 dataset, and the results are the same. Based on this discovery, we choose
the view-to-sketch translation to construct the common modality space C = S U Sy for sketches and
3D models to impel the inputted data to share a similar visual perception.
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Figure 5. Comparison of intra-class cross entropy.
3.3. The Semantic Feature Layer: Cross-Domain Common Semantic Space Embedding

As shown in Figure 6, the modality sharing between 3D models and sketches has been constructed
through the interdomain data translation; however, data of different classes in this common modality
space are mixed and indistinguishable. To solve this issue, a deep metric learning model is introduced
to build a common feature space, narrowing the distance of the same class and widening the sample
distance of different classes.

Data transformation Metric learning

0 T ;
Os% o |
|
|
|
|
|

A

|
|
|

______ %
| Yy A
|
|
|

o ©

Common modality space Common semantic space

Figure 6. Illustration of the common modality space and the common semantic space. The color
represents the modality and the shape represents the class. Input data come from two modalities
(i.e., sketches and views of 3D shapes). First, the two types of input data are translated into a common
modality space, where data of different modalities share a common space; however, data in different
classes are mixed and indistinguishable. Then, a common semantic space is constructed using deep
metric learning, where the same kinds of samples are nearer and different kinds of samples are farther.

Typical deep metric learning includes Siamese and triplet networks. Compared with the Siamese
network with contrastive loss, the triplet network [30] learns a ranking function for retrieval, which has
more relaxed constraints. Therefore, considering the large interdomain visual perception discrepancies
and the significant intradomain visual perception diversity for sketch-based 3D model retrieval,
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the triplet network with deep ranking loss is chosen to construct a common semantic space F for
cross-modality retrieval. As shown in Figure 7, the details are as follows:

(1) Selection of triples. The anchor training samples in the triples are selected from the normalized
sketch dataset S, and positive and negative training samples are selected from the extended
sketch dataset Sy. Positive samples must have the same class as a given anchor training sample,
while negative training samples must have a different class.

(2) Construction of the CNNs. Sketch-based 3D model retrieval is very complex, but the
information in each sketch is relatively sparse. Therefore, taking AlexNet as the prototype [31],
a medium-sized CNN is constructed. This network consists of eight layers; the first five layers
are convolutional layers, the middle two layers are fully connected layers, and the last layer is
the feature output layer Feat. The details are shown in Table 1.

(3) Establishment of the loss function. Given the ith triplets x7, xf, x!' of the objects, we take x{
to be the anchor sample, xlp to be the same class as x{, x}' to be of a different class, f (x) to be
the embedded feature representation of the network, and F to be the embedded feature space.
The metric function should satisfy the following:

®)

where « is the interval threshold and requires the minimum distance difference between the same
class and different classes to be «.

The corresponding loss function can be expressed as follows:
: a p 2 a ny| 2
L(f) = argmin ¥ (||f (x) = £ (<) ||, = 1 (<) = £ (<)II3 + @
i +

Here, (g),=0if g < 0, otherwise (g), =g.
(4) Implementation.

Data augmentation. For each sketch and each view of the 3D models, the image is first resized to
[256, 256]. Then, a 225 x 225 image is randomly cropped from the image, or its deformation is rotated
30 degrees forward and backward, with the per-pixel mean subtracted.

Data shuffle. Notably, to enhance the generalizability of the network, we randomly disrupted the
order of the training data when generating training sets to prevent the same kind of training samples
from appearing in a single batch during training.

Training. DCSSE is trained by the stochastic gradient descent (SGD) + Newton momentum
method with a mini-batch size of 125. Here, SGD training is fast and can converge at a faster speed for
large datasets; however, there is an instability problem. The introduction of Newton momentum can
restrain oscillation and enhance the stability of network learning when the gradient direction before is
different from that after iteration. The update formulas are as follows:

where, 0,0, is the set of updated parameters, 6 is the set of original parameters, A is the current learning
rate, V0 is the gradient of the parameters at the current position, v;_; is the momentum accumulated
in all previous steps, and ¢ is the weight of momentum. Here, the learning rate A is initialized as 0.0001
and ¢ is set to 0.9. Furthermore, as in Formula (6), an algorithm of adaptive learning rates adjusts the
network’s weight to enhance the convergence speed.

Anew—/\/k (1+f)/*0¢) (6)



Entropy 2019, 21, 369

9of 15

Here, Ay is the learning rate, A is the original learning rate, a is the number of iterations, and k
and <y are parameters used to update the learning rate and are set to 0.75 and 0.0001, respectively.

-

Common modality

space C

anchor

positive

negative

Training
samples

CNNs

Triplet
Loss

Common semantic
space F

Figure 7. Construction of the common semantic space F based on triplet convolutional neural

networks (CNNs).

Table 1. Network structure of the constructed CNN. Abbreviations: Convolution (Conv), Rectified

Linear Unit (Relu), Normalization (Norm), Pooling (Pool), Full connected layer (Fc), and Feature (Feat).

Layer Filter Size Stride Pad Feature Maps Input Size Output Size
Convl 11 x 11 4 0 96 225 x225x1 54 x 54 x 96
Relul - - - 54 x 54 x96 54 x 54 x96
Norm1 - - - - 54 x 54 x96 54 x 54 x 96
Pooll 3x3 2 0 96 54 x 54 x 96 27 x 27 x 96
Conv2 5x5 - 2 256 27 x 27 x 96 27 x 27 x 256
Relu2 - - - - 27 x 27 x 256 27 x 27 x 256
Norm?2 - - - - 27 x 27 x 256 27 x 27 x 256
Pool2 3x3 2 0 256 27 x 27 x 256 13 x 13 x 256
Conv3 3x3 0 1 384 13 x 13 x 256 13 x 13 x 384
Relu3 - - - - 13 x 13 x 384 13 x 13 x 384
Conv4 3x3 0 1 384 13 x 13 x 384 13 x 13 x 384
Relu4 - - - - 13 x 13 x 384 13 x 13 x 384
Conv5b 3x3 0 1 256 13 x 13 x 384 13 x 13 x 256
Relu5 - - - - 13 x 13 x 256 13 x 13 x 256
Pool5 3x3 2 0 256 13 x13x256 6% 6 %256
Fc6 - - 6 % 6 x 256 4096
Relu6 - - - - 4096 4096
Dropout6 - - - - 4096 4096
Fc7 - - - - 4096 4096
Relu? - - - - 4096 4096
Dropout 7 - - - - 4096 4096
Feat - - - - 4096 200

3.4. Cross-Domain Distance Metric

Given a sketch S; € S, let its feature be denoted as the d-dimensional vector x =

{f(Si) = (x1,x2, ...,

x4),1 <i<mns};givena3Dmodel My € M, letits feature be the I x d dimensional

matrix y= {yf:f(V;() = (y{,yé, ...,y{i) ,1<j<I1,1<k<mny}, wherel is the number of views, 1

and n,, are the number of sketches and 3D models, respectively. The distance from the sketch S; to the
3D model M, can be denoted as D(x — y). Four kinds of distance metrics are proposed in this paper,

as follows.

(1) D(x — y) is defined as the average distance from a sketch feature to all view features of a
3D model, calculated as follows:
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D(x —y) = A<j<l @)
(2) D(x — y) is defined as the minimum distance from a sketch feature to all view features of a
3D model, calculated as follows:

D(x =) :minjd(x,yj),l <j<lI ®)

In Formulas (7) and (8), d(x,y/) is the distance between the sketch feature vector x and the feature
vector i/ of the jth view of the 3D model. Here, both the Euclidean distance and the Wasserstein
distance (earthmover’s distance) can be selected; they are calculated as follows:

Euclidean distance:

. d )
dx,y) =\ | Y (xi — ) ©)
i=1
Wasserstein distance: L
d(x,y") =Y Y dimfim (10)
i=1m=1

where, d;,, is the spatial distance from x; to y{n ,and fiy, is the amount of soil moved from x; to y{n.

Four kinds of distance metrics, EUD_Ave, EUD_Min, EMD_Ave, and EMD_Min are acquired
by substituting the Euclidean distance and the Wasserstein distance into the expressions (7) and (8)
respectively. Accordingly, the similarity between a query sketch and all 3D models can be calculated
and compared so that the sketch-based 3D model retrieval can be realized.

4. Experiments

4.1. Datasets and Evaluation Metrics

We conduct experiments on two large-scale sketch-based 3D model retrieval datasets, namely
SHREC 2013 and SHREC 2014.

SHREC 2013 [3,5]: This dataset is composed of 7200 sketches and 1258 3D models, divided into
90 classes. The number of 3D models in each class varies from 4 to more than 184, while the number of
sketches for each class is equal to 80. In the experiment, 50 sketches per class are randomly selected
for training and the remaining 30 sketches per class are used for testing; a total of 1258 3D models are
targeted for retrieval.

SHREC 2014 [4,6]: Compared with the SHREC 2013 dataset, this dataset has more classes and
models. Specifically, this dataset has 13,680 sketches and 8978 3D models, divided into 171 classes.
The number of 3D models in the different classes varies greatly from less than 10 to more than 300.
The number of sketches for each class is also equal to 80, and for each class 50 sketches are for training,
and 30 sketches are for testing.

To comprehensively evaluate the performance of the proposed method, we employ seven
commonly adopted performance metrics in the 3D model retrieval field [5,6]: The precision-recall
diagram, the nearest neighbor (NN), the first tier (FT),the second tier (ST), the E measures (E), the
discounted cumulative gain (DCG) and the average precision (AP).

4.2. Comparison of Different Distances

In this section, we will compare the effects of the proposed retrieval method using four different
distances. Table 2 shows the comparison results on the SHREC 2013 dataset. In Table 2, for
all evaluation criteria, the method using the EUD_Ave distance outperforms the other methods.
Through analysis, we found two reasons for this result: First, the average distance could fully consider
the comprehensive information of all views’ features; and second, there is no direct comparison
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between the different feature components. Therefore, the Wasserstein distance is not as good as the
Euclidean distance.

Table 2. Retrieval performance comparisons using different distances on the SHREC 2013 dataset.
The nearest neighbor (NN), the first tier (FT),the second tier (ST), the E measures (E), the discounted
cumulative gain (DCG) and the average precision (AP). The best performance indicators are marked
as bold.

- NN FT ST E DCG AP

EUD_Ave 0.849 0.772 0.858 0.410 0.888 0.817
EUD_Min 0816 0.744 0.847 0406 0.869 0.790
EMD_Ave 0.844 0.764 0.852 0407 0.886 0.812
EMD_Min 0813 0.741 0.845 0406 0.868 0.787

4.3. Comparison with the State-Of-The Art Methods

Retrieval from the SHREC 2013 dataset. In this subsection, the proposed method is tested on
the SHREC 2013 dataset and compared with the state-of-the-art methods, including the cross domain
manifold ranking method (CDMR) [13], the sketch-based retrieval method with view clustering
(SBR-VCQ) [5], the spatial proximity method (SP) [32], Fourier descriptors on 3D model silhouettes
(FDC) [5], the Siamese network (Siamese) [20], the deep correlated metric learning (DCML) [17], the
learned Wasserstein barycentric representation method (LWBR) [21], and semantic embedding space
(SEM) [19] methods.

We use standard precision-recall curves to visualize our results. Figure 8 shows that our proposed
method significantly outperforms the state-of-the-art methods. (1) Our method has the highest
precision. For every recall value, our method gives better precision than the competing methods.
On average, the precision values are 63%, 89%, and 77% higher than those of LWBR, DCML and
Siamese, respectively. (2) The precision of our method is very stable: The precision-recall curve is
closer to the horizontal line when the recall is less than 80%, and higher than 55% until the recall is
100%. This finding indicates that 80% of the related models within the target object’s class are returned
as the top hits.

1 T T T T

09 F 1
0.8 .
0.7 F 1 [——OURS
——LWBR
06 | DCML
IS Siamese
Los5t J Aono(EFSD)
o \ —— Li(SBR-2D-3D-NUM-50)
& oal —©6— Li(SBR-VC-NUM-50)
Li(SBR-VC-NUM-100)
03 . Saavedra(FDC)
0.2} 1
0.1} T ]
=S —=—=C—o BN\
0 ! 1 =4 1 — Aﬁ’)
0 0.2 0.4 0.6 0.8 1
Recall

Figure 8. Precision-recall comparisons on the SHREC 2013 dataset

Except for the precision-recall curve, other standard metrics, including NN, FT, ST, E, DCG and
AP, are also calculated and compared with the state-of-art methods. Table 3 shows the results on the
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SHREC 2013 dataset, which indicate that the proposed method is comparable to that of SEM [19] and
has an evident advantage over other classical methods for every criterion.

Table 3. Performance comparisons of different evaluation criteria on the SHREC 2013 dataset. The best
performance indicators are marked as bold.

Methods NN FT ST E DCG AP

CDMR [13] 0279 0203 029 0.166 0458 0.250
SBR-VC[5] 0.164 0.097 0.149 0.085 0.348 0.116
SP [32] 0.017 0.016 0.031 0.018 0.240 0.026
FDC [5] 0.053 0.038 0.068 0.041 0.279 0.051
Siamese [20] 0.405 0.403 0.548 0.287 0.607 NA
DCML[17] 0.650 0.634 0.719 0.348 0.766 NA
LWBR[21] 0712 0.725 0.785 0.369 0.814 NA
SEM [19] 0.823 0.828 0.860 0.403 0.884 NA

OURS 0.849 0.772 0.858 0.410 0.888 0.817

Figure 9 presents some examples of sketch-based 3D model retrieval results using the proposed
method. The query’s labels and sketches are listed on the left, and the top 10 retrieved models are
listed on the right side in ascending order of distance. The correct results are framed in black, and the
incorrect results are framed in red. For the classes of airplane, chair, hand, guitar and palm tree that all
10 retrieved models are correct, while for the classes of dog, dolphin and horse, the first few results
retrieved are correct, and the last ones are incorrect. This finding is because the classes of dog, dolphin
and horse contain only 7, 5 and 6 models, respectively.
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Figure 9. Some retrieval examples on the SHREC 2013 dataset.
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Retrieval from the SHREC14 dataset. In this subsection, the proposed method is tested on
the SHREC 2014 dataset and compared with the state-of-the-art methods, including BF-fGALIF [8],
CDMR [13], SBR-VC [5], Siamese network [20], DCML [17], LWBR [21], SEM [19], BOF-JESC [33], and
MVPR [34].

Figure 10 shows the precision—recall curves. Obviously, the proposed method is still significantly
better than other methods and very stable for every recall value. Table 4 shows performance
comparisons of different evaluation criteria on the SHREC 2014 dataset and reveals that the proposed
method also dominates for every criterion when using a large dataset.

1 T T T

091 .
08
—— OURS
L ——LWBR
0.7 DCML
Siamese
06 Furuya (BF-fGALIF)
g : = - = Furuya (CDMR (sigma-SM=0.1, alpha=0.3))
B —O— Furuya (CDMR (sigma-SM=0.1, alpha=0.6))
K] 05+ Furuya (CDMR (sigma-SM=0.05, alpha=0.3))
q‘_) Furuya (CDMR (sigma-SM=0.05, alpha=0.6))
o —Li (SBR-VC (alpha=0.5))
04t - - - -Li (SBR-VC (alpha=1))
Tatsuma (OPHOG)
- - = Tatsuma (SCMR-OPHOG)
0.3 Zou (BOF-JESC (FV-PCA32-Words128))
Zou (BOF-JESC (Words800-VQ))
0.2 Zou (BOF-JESC (Words1000-VQ))
011
0
0

Recall
Figure 10. Precision—-recall comparisons on the SHREC 2014 dataset.

Table 4. Performance comparisons of different evaluation criteria on the SHREC 2014 dataset. The best
performance indicators are marked as bold.

Methods NN FT ST E DCG AP
BF-fGALIF [8] 0.115 0.051 0.078 0.036 0.321 0.044
CDMR [13] 0.109 0.057 0.089 0.041 0.328 0.054
SBR-VC [5] 0.095 0.050 0.081 0.037 0.319 0.050
BOF-JESC (Words800-VQ) [33] 0.086 0.043 0.068 0.030 0.310 0.041
Siamese [20] 0239 0.212 0316 0.140 0496 NA
DCML [17] 0272 0275 0345 0171 0498 NA
LWBR [21] 0.403 0378 0455 0.236 0581 NA
MVPR [34] 0546 0506 0642 0301 0.715 0.543
SEM [19] 0.804 0.749 0.813 0.395 0.870 NA
OURS 0.830 0.708 0.807 0.384 0.871 0.745

5. Conclusions

In this paper, we presented an effective approach for sketch-based 3D model retrieval using deep
common semantic space embedding (DCSSE). To reduce the visual perception gap between sketches
and 3D models, we transformed the data of two different domains into one common modality based
on cross entropy evaluation. Furthermore, we learned the features of the sketches and 3D models
simultaneously via deep common semantic embedding. We trained the deep embedding using a
triplet network according to the characteristics of the cross-domain data. Finally, four distance metrics
are used to calculate the sketch query and 3D models in the database. The experiments on the
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large-scale datasets SHREC 2013 and SHREC 2014 demonstrate that the proposed approach is superior
to state-of-the-art algorithms.
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