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Abstract: In this paper, we consider nonlinear integration techniques, based on direct Padé
approximation of the differential equation solution, and their application to conservative chaotic
initial value problems. The properties of discrete maps obtained by nonlinear integration are
studied, including phase space volume dynamics, bifurcation diagrams, spectral entropy, and the
Lyapunov spectrum. We also plot 2D dynamical maps to enlighten the features introduced by
nonlinear integration techniques. The comparative study of classical integration methods and Padé
approximation methods is given. It is shown that nonlinear integration techniques significantly
change the behavior of discrete models of nonlinear systems, increasing the values of Lyapunov
exponents and spectral entropy. This property reduces the applicability of numerical methods based
on Padé approximation to the chaotic system simulation but it is still useful for construction of
pseudo-random number generators that are resistive to chaos degradation or discrete maps with
highly nonlinear properties.

Keywords: Numerical integration; Padé approximation; nonlinear systems; dynamical chaos;
computer simulation; ODE solvers

1. Introduction

The influence of numerical methods on discrete models of chaotic systems is widely studied. While
highly accurate numerical methods for chaotic problems integration have been recently developed [1,2],
some studies reveal the negative aspects of popular discretization techniques [3,4] and discover the
additional properties introduced by numerical errors [5]. Thus, when new class of integration methods
appears, the collateral numerical effects are of certain interest.

A relationship between Padé approximation and numerical solution of an ordinary differential
equation is well known [6,7]. From this point of view, various integration methods implement various
types of approximation leading to different properties, such as the order of accuracy and A-stability [8].
Usually, the Padé approximant is contained in the numerical formula of the integration method
indirectly. Meanwhile, direct expression of the increment function as a Padé approximant leads to
a special class of nonlinear integration methods [9–12]. An analysis shows that these methods can
demonstrate some new properties, inaccessible by linear one-step and multistep methods. The most
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promising application of these methods is the integration of problems with the singularity in the
solution that can possess higher numerical efficiency in comparison to classical approaches [10–12].
Another attractive feature of these formulae is that they can achieve theoretical A-stability without
implicit computations [13]. Although these methods deal well with singular nonlinear problems, no
numerical evidence is found in the literature concerning their behavior in solving highly nonlinear
ODEs, e.g., chaotic problems. When a continuous dynamical system is simulated using this technique,
a presence of nonlinearity in the method itself can corrupt the original bifurcation pattern, phase space
volume, and the other properties of the system. On the other hand, it may appear useful to avoid
quasi-chaotic regimes, since some other nontrivial techniques are fruitful in dealing with this issue [14].

The aim of our study is to find out practical applicability of nonlinear integration technique
based on direct Padé approximation to chaotic problems. The main motivation of the research is
that the problem of finding a reliable numerical method for chaotic system simulation is still urgent
in nonlinear science. Any type of discretization introduces undesirable nonlinear distortion in the
differential equation solution [5]. To suppress the round-off and truncation errors, an extensive
technique of extremely high order approximation and extended precision can be used [15], but
long-term simulation by such methods can only be performed on supercomputers. If double precision
is used and the truncation error is reduced by an appropriate method order selection below the
numerical noise, the round-off error anyway influences the simulation results [16], so a reasonable
tradeoff between round-off and truncation error may result in simulation time economy with minimal
decrease in reliability. Thus, more suitable integration scheme can result in a notable increase in
simulation performance. The conservative flows [17] are the most influenced by discretization among
the chaotic systems due to their unique symmetrical and energy properties [18]. Therefore, we chose
the conservative Nosé–Hoover system as a practical example for our study.

The last of the paper is organized as follows. In Section 2, integration methods, based on the
direct Padé approximation of various orders, are introduced. In Section 3, bifurcation diagrams and
Lyapunov spectrum are given for the Nosé–Hoover test chaotic system, and the results of long-term
simulation analysis are described. We investigate the phase volume dynamics and calculate the spectral
entropy including 2D dynamical maps for various discrete models of the test chaotic system. Finally,
in Section 4 some conclusions are given.

2. Materials and Methods

2.1. Integration Methods Based on Padé Approximants

For the initial value problem
.
y = f (t, y) the numerical integration method is usually found in a

form of a linear recurrence equation:

yn+1 = yn + hΦh(t, y) (1)

where Φh denotes a so-called increment function. Digressing from this traditional approach, one can
find a class of nonlinear methods based on a rational approximation of a form:

yn+1 = yn +
hΘh(t, y)
Φ−h(t, y)

(2)

where Θh denotes a special numerator increment function providing a required order of accuracy. Up to
date, several methods of a class (2) have been derived. The most popular one is a simple nonlinear
method proposed by L. Wuytack, C. Brezinski and some other researchers [8,9]:

yn+1 = yn +
h f 2(tn, yn)

f (tn, yn) −
h
2

f ′(tn, yn)

(3)
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It is of order 2 and represents the simplest Padé approximation of the solution [9]. Here, f ′ stands
for the derivative with respect to time, namely,

f ′(t, y) =
∂ f
∂y

(t, y) f (t, y) +
∂ f
∂t

(t, y) (4)

In many practical cases, Equation (4) can be solved analytically, while any approximation of order
1 will also yield the 2nd-order of accuracy to the resulting method. For the linear test problem, the
method (3) is A-stable and explicit. For a vector problem, the division and power in (3) should be
performed in an element-wise manner [12].

To derive some high-order methods of this type, several techniques have been developed
recently [11–13]. Here we show one general approach providing a simple way to obtain the Padé
integration method of arbitrary order. We consider only the approximations of a type [(p–1)/(p–1)],
where p stands for the order of the resulting method.

Finding the derivatives of (2) and the derivatives of the corresponding Taylor series

xn+1 = xn + hΦh(t, x)

we require
x(k)n+1(0) = y(k)n+1(0)

for all natural k from 1 to the desired order p. The obtained formulas are summarized in Table 1.
To construct the method of the required order, the numerator and denominator must contain a
sum of the terms given in a table of all orders from 1 up to the required one. In this type of an
approximant, A-stability of the resulting methods is provided for even orders. The A-stability for odd
order approximants is missed as the power of h in the numerator is higher than in the denominator.

Table 1. Terms of Padé methods of different accuracy order.

Accuracy Order Numerator Denominator

1 −h f 2
n − fn

2 h
2

f ′n

3 h3

12
(−4 f ′′n fn + 3 f ′n

2) −
h2

6
f ′′n

4 h3

24
f ′′′n

5 h5

360
(−6 f (4)n fn − 10 f ′′n

2 + 15 f ′′′n f ′n) −
h4

120
f (4)n

6 h5

720
f (5)n

For example, the method of order 4 is given as follows

yn+1 = yn +
h f 2

n −
h3

12
(−4 f ′′n fn + 3 f ′n

2)

fn −
h
2

f ′n +
h2

6
f ′′n −

h3

24
f ′′′n

. (5)

To construct methods of order higher than 6, one should notice in Table 1 the numerator coefficients
are derivatives of (y2)(p) by corresponding Taylor series multipliers, where terms containing yn are
missed and odd derivatives of y are taken with a negative sign. The denominator represents the Taylor
series for

(y(tn−1) − yn)/h



Entropy 2019, 21, 362 4 of 12

Since high order approximants contain high-order derivatives of the right-hand side function,
they may be extremely complicated. Nevertheless, the success of Taylor series methods in some special
problems motivates the further research of Padé methods.

2.2. Hypothesis

The hypothesis of this study is that Padé approximation methods can lead to finite-difference
schemes with chaotic properties that are much different from schemes based on conventional methods.
To explain the theory, we perform a brief sensitivity analysis here. We consider explicit second-order
methods, namely Runge–Kutta 2 (explicit midpoint, EMP, or RK2) and Padé 2. The higher-order
methods are omitted here, but the results for them are generally similar. Only autonomous IVPs
.
y(t) = f (y(t)) are considered for simplicity, but the results persist for the time-dependent systems
since only the sensitivity to phase variable perturbation is analyzed. The RK2 method is represented
by the following equations.

y
n+

1
2

= yn +
h
2

f (yn), (6)

yn+1 = yn + h f

y
n+

1
2

. (7)

Let the current point of the solution yn have a small perturbation ε, so that its actual value is
ỹn = yn + ε. When the explicit Runge–Kutta 2 is applied, the following equations appear. From (6),
we obtain

ỹ
n+

1
2

= yn + ε+
h
2

f (yn + ε)

which transforms after the Taylor expansion

f (yn + ε) = f (yn) + ε
∂f
∂y

(yn) + O
(
ε2

)
≈ fn + ε fy

to
ỹ

n+
1
2

= yn + ε+
h
2

(
fn + ε fy

)
+ O

(
ε2

)
(8)

In a similar manner, using (8), the equation (7) yields

ỹn+1 = yn + ε+ h fn + ε fy +
h2

2
fn fy +

h2 f 2
y

2
ε+ O

(
ε2

)
So, the resulting perturbation after one integration step ∆yn+1 = ỹn+1 − yn+1 is

∆yn+1 = ε+ ε fy +
h2 f 2

y

2
ε+ O

(
ε2

)
(9)

The same result is retained for arbitrary RK2 method. For the Padé 2 method the autonomous IVP,
for which f ′(y) = fy fn, reads

yn+1 = yn +
h fn

1−
h
2

fy

(10)

in case fn , 0. Denote

F(yn, h) =
fn

1−
h
2

fy

(11)
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Taylor expansion of (11) near zero gives

F(yn, h) = F(yn, 0) + h
∂F
∂h

(yn, 0) + O
(
h2

)
(12)

Taking into account the relation fy(yn + ε) = fy + ε fyy + O
(
ε2

)
we obtain in a perturbed point

yn + ε the following equation:

.
F(yn + ε, 0) =

 fn + ε fy

1−
h
2

(
fy + ε fyy

)

′
∣∣∣∣∣∣∣∣∣∣
h=0

=

(
fn + ε fy

)(
fy + ε fyy

)
2

. (13)

Substituting (13) into (12) and then (12) into (10), we eventually get

ỹn+1 = yn + ε+ h fn + ε fy +
h2

2
fn fy +

h2
(

f 2
y + fyy fn

)
2

ε+ O
(
ε2

)
Therefore,

∆yn+1 = ε+ ε fy +
h2

(
f 2
y + fyy fn

)
2

ε+ O
(
ε2

)
(14)

The difference between (9) and (14) includes the term h2 fyy fnε/2, which is absent in the
Runge–Kutta 2 scheme.

For any RK method in a point ỹn+1

ỹn+1 = yn + ε+ hΦ(yn + ε)

which, after Taylor expansion, produces

ỹn+1 = yn + ε+ h
(
Φ(yn) + ε

∂Φ
∂y

(yn) + . . .

)
(15)

On the other hand, any Padé method

ỹn+1 = yn + ε+
hΩ(yn + ε)

Φ(yn + ε)

yields, considering the same Taylor expansion

ỹn+1 = yn + ε+ h


Ω(yn)

Φ(yn)
+ ε

∂Ω
∂y

(yn)Φ(yn) −
∂Φ
∂y

(yn)Ω(yn)

Φ2(yn)
+ . . .

 (16)

Comparing any methods of these types which possess equal accuracy order, one can see that (16)
is more sensitive than (15) in case both partial derivatives in the numerator of (16) are nonzero.

3. Results

3.1. Bifurcation, Lyapunov Spectrum, and Spectral Entropy Analysis

Nosé [19] and Hoover [20] proposed the following conservative dynamical system [21].
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.
x = y;

.
y = −x− ayz;
.
z = b

(
y2
− 1

)
.

(17)

In model (17) we denote a and b as system parameters. We plotted bifurcation diagrams for
two discrete models of Nosé–Hoover obtained by different discrete operators (see Figure 1). Among
second-order integrators, we chose the explicit midpoint method and Padé 2 method (3). Fourth-order
ODE solvers are represented by the explicit Runge–Kutta 4 (RK4) method [22] and Padé 4 method
given by the formula (5). Simulation time was 500 s, with the transient time of 100 s, and integration
step size was 0.01 sec. All the experiments were performed in NI LabVIEW 2018 64-bit simulation
system on Core i5 processor with double floating point precision. Parameter a varied within the range
a ∈ [0; 10] with 0.05 step. One can see that the model obtained by the Padé 2 method, demonstrates
chaotic behavior for nearly all investigated values of a, and lacks the nonchaotic interval from a = 6 to
a = 9.5, where all other methods exhibit regular oscillations.

1 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Bifurcation diagrams for Nosé–Hoover models, obtained by nonlinear Padé 2 method (A)
and linear (B) EMP method. Note, that a nonchaotic area between a = 6.3 and a = 9.5 disappeared on
the left image, which indicates the significant changes in system dynamics.

The experimental results for fourth-order methods are shown in Figure 2. One can see that Padé 4
method introduces additional points that are observable on the bifurcation diagram.
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Figure 2. Bifurcation diagrams for Nosé–Hoover models, obtained by Padé 4 (A) and RK4 (B) methods,
respectively. Note the artifacts appearing in Padé 4 diagram, which indicate the possible changes in
system oscillations mode introduced by nonlinear integration technique.

In computer simulations, the integration step size can also affect the behavior of the nonlinear
models. To evaluate the impact of step size to the discrete models of system (17), we plotted step
bifurcation diagrams, or h-diagrams (Figure 3) for Padé 4 and RK4 methods. Second-order methods
provide stable solutions only for relatively small step sizes due to relative stiffness of the system, thus
their h-diagrams are not representative.
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Figure 3. Step bifurcation diagrams for Nosé–Hoover models, obtained by Padé 4 (A) and RK4 (B)
methods, respectively.

One can see from Figure 3 that the discrete models behave in a different manner. The model,
obtained by RK4 method, only show phase shifts, while the oscillations mode remains nearly the same.
The Padé 4 model is different: while the step size increases, the regime of oscillations unpredictably
changes. This confirms the abovementioned increase in nonlinearity, which can be found in the
bifurcation diagrams in Figures 1 and 2. The depicted problem is complicated by the varying numerical
stability of studied methods; therefore we chose the 0.01 s. and 0.005 s. fixed step sizes for experimental
study, which guaranteed the stability of solutions for all investigated methods.

However, the bifurcation analysis is only a qualitative tool, so we performed an additional
quantitative study. One of the known ways to measure chaos in dynamical systems is the calculation
of the Lyapunov spectrum [23]. The analysis of the spectrum reveals the symmetry of the system
through the sum of all exponents, which is zero for conservative flows. Our hypothesis is that
changes, introduced by nonlinear integration techniques into the Nosé–Hoover system, would appear
in spectrum plot. As a reference solution, we chose the Lyapunov spectrum obtained from simulation
by the Dormand–Prince method of order 8 (DOPRI8) with extended precision. Figure 4 represents the
results for all investigated models: reference model by DOPRI8 and the studied models by Padé 2,
Padé 4, and explicit midpoint method (EMP). Simulation time was set as 104 s. with the transient
time of 100 s, and integration step size was 0.005 s. Parameter a varied within the range a ∈ [0.1; 10]
with a 0.05 step. One can see that reference spectrum clearly indicates the symmetry of the system
and the sum of Lyapunov exponents is nearly zero. Some digital noise was introduced due to the
finite precision. The spectrum of the model, obtained by Padé 2 method, shows the significant increase
of nonlinearity as predicted in Section 2.2. The graph obviously lacks the nonchaotic “well” in the
range a ∈ [6.25; 9.5], which can be observed in the reference method. Additional “splashes” indicate
the moments of trajectory destruction and stability loss. The explicit midpoint method, also being
a nonsymmetric integrator, does not show such behavior and we can only notice the disappearance
of spikes in a = 4.85, which can be explained by round-off error. Another interesting phenomenon
that remained undetected during the bifurcation analysis appears in Padé 4 model, which also tends
to behave “more chaotic” than the reference model. Contrary to the reference method, the Padé 4
algorithm continuously increases the Lyapunov exponents, while a changes its value. Due to higher
order of precision, we still can observe the “well” at a ∈ [6.25; 9.5] and relatively symmetric spectrum,
but the sum of exponents is nonzero and second exponent is disturbed and obviously increases the
value. The last is correct for Padé 2 method spectrum as well, but is not clearly visible due to the
different scale.

Moreover, the behavior of discrete models obtained by linear methods seems to be less dependent
on accuracy order contrary to the nonlinear techniques.

To clarify the obtained results, we investigated the phase volume dynamics and spectral entropy
of the discrete models over long simulation time.
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Figure 4. Lyapunov spectrum for discrete models of the Nosé–Hoover system obtained by the different
numerical integration methods: DOPRI8 reference solution (A), Padé 2 method (B), explicit midpoint
method (C), and Padé 4 method (D).

3.2. Long-term Simulation and Phase Volume Dynamics

In this section, we study the discretization effects appearing in computer models of chaotic systems
during long-term simulations. It was previously shown [14] that every discrete system with finite
data precision inevitably quits the chaotic regime of oscillations. We thus investigated the dynamics
of the phase space volume for various discrete models of the Nosé–Hoover system. To obtain the
phase volume plots, we calculated the changes in the volume of the system attractor with a 2000 s
nonsliding window over long simulation time. We used the approximate algorithm and calculated the

phase space volume as V =
n∏

i=0
(max(xi) −min(xi)) with n = 3 for the Nosé–Hoover system. To prove

the experimental results, we added the spectral entropy estimation, which corresponds with the
existence of self-organizing or chaotic processes in the flow [24]. The simulation was performed with
the integration step h = 0.01 s., initial conditions were [0.2; 0; 0.2], and nonlinearity parameters were
chosen a = b = 0.7. The overall simulation time was 106 s. Figure 5 represents the simulation results
for models obtained by linear integration techniques, showing the difference between second-order
EMP and eighth-order DOPRI8 method. One can see the good correspondence between phase space
volume and spectral entropy plots.

The EMP method tends to shrink the phase space of the discrete model, driving the system into
regular nonchaotic oscillations as the values of phase space volume and spectral entropy asymptotically
decrease after 27M points.

Figure 6 illustrates the results for models obtained by nonlinear integration techniques. One
can see that the solutions consequently pass through various chaotic regimes during the long-term
simulation, exhibiting the phase transition behavior [25]. This variety of regimes may appear in DOPRI8
and EMP models only when values of nonlinearity parameters are changed. Thus, the nonlinear
behavior of discrete models of Nosé–Hoover system is richer when they are obtained by numerical
integration methods based on the direct Padé approximation. Another interesting observation one
can see in a plot of the Padé 4 method. The chaos degradation occurs at 60M points, which resembles
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the behavior of EMP method. Nevertheless, the chaotic oscillations reappear at 105M, completely
restoring the initial behavior of the system. Thus, we can conclude that the diversity of oscillation
modes in the discrete models obtained by Padé approximation methods provides switching between
chaotic and nonchaotic oscillations, major changes in the appearance of attractor (see Figure 6), and
other nonlinear effects. The nature of these phenomena is obviously in the nonlinear properties of the
discrete operators described in Section 2.2.

 

2 

 

 

 

 

 

 

Figure 5. Phase space volume (A) and spectral entropy (B) dynamics for Nosé–Hoover models obtained
by explicit Runge–Kutta methods. Note the chaos degradation in the explicit midpoint method (EMP)
model. The Dormand–Prince 8 (DOPRI8) method is also prone to this defect, but manages to keep the
solution chaotic over a relatively long simulation time due to high accuracy order.

 

3 

 

 

 

Figure 6. Phase space volume (A) and spectral entropy evolution (B), calculated for Nosé–Hoover
system models obtained by Padé 2 and Padé 4 numerical methods.

Finally, we need to answer one more question: how does the application of nonlinear integration
techniques affect the parameters space of the system?
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3.3. Dynamical maps

The 2D dynamical maps show how the behavior of the system depends on two nonlinearity
parameters. Reconsidering all previously reported results, we plotted dynamical maps for four discrete
models of the Nosé–Hoover chaotic system (Figure 7). Parameters a and b of the system (1) varied
within the range [0.15; 15] in this experiment, and the spectral entropy value was plotted as a pixel
color on the map. One can see that Padé methods change the regime of oscillations in the discrete
Nosé–Hoover model for any selected values of nonlinearity parameters.

1 
 

 

Figure 7. 2D spectral entropy maps of discrete models of Nosé–Hoover system. Note the noise,
appearing in Padé 4 map (C) and completely destructed map in Padé 2 case (A). The map, obtained for
linear EMP method (B) is close to the reference DOPRI8 solution (D).

While the Padé 4 method exhibits only a slightly «noised» map, the application of Padé 2 method
completely changes the properties of the resulting model, making the entire map covered by «chaotic
sea». The maps obtained by linear integration techniques are independent from the method’s order of
accuracy that confirms the results of one-dimensional bifurcation and long-term simulations analysis.

4. Conclusions & Discussion

In this paper, the nonlinear integration techniques based on a direct Padé approximation of the
solution have been applied to the conservative nonlinear chaotic system. As a test problem, we chose the
Nosé–Hoover system and performed a series of numerical experiments with the discrete models of the
system. We have clearly shown that the nonlinearity inherent to Padé integration methods introduces
valuable distortion in the properties of the chaotic system. To evaluate these distortions numerically,
the Lyapunov spectrum, phase space volume, and spectral entropy dynamics during a long-term
simulation were studied. Two discrete models obtained by conventional integration techniques were
compared with models obtained by nonlinear techniques. We constructed bifurcation diagrams
and 2D spectral entropy maps to investigate the possible variety of oscillation modes. Bifurcation
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diagrams show that chaotic behavior appears in models obtained by nonlinear integration techniques
for those parameter values where chaos does not appear in conventional models. The estimation of the
Lyapunov spectrum shows that the methods based on a direct Padé approximation tend to increase
chaotic behavior, which expresses in larger values of Lyapunov exponents and their positive dynamics
with the increase of nonlinearity parameters. The symmetry of the continuous prototype system is
broken in discrete models obtained by nonlinear integration techniques. The long-term simulation
shows sufficient changes of phase space volume and spectral entropy during simulation for all the
investigated methods. Unlike the conventional methods, nonlinear integration methods did not show
any tendency to the volume suppression or long-term chaos degradation. Instead, they show notable
phase volume jittering and ability to recover from nonchaotic regimes after a sufficient time periods.
The 2D spectral entropy maps discover the “blurring” effect of the Padé methods and the extension
of chaotic areas comparing to reference model. The spectral entropy is sufficiently higher in discrete
models obtained by nonlinear integration techniques that can be useful in cryptographic applications.

To summarize, our experimental study revealed not only the limitations of numerical methods
based on a direct Padé approximation when simulating chaotic systems, but also opened the possibilities
to construct highly nonlinear and less predictable discrete chaotic maps. Obtained models can be used
as testbench systems in various statistical studies [25] or for simulation of nonstationary processes
with multifractal properties. Though an accurate simulation with nonlinear integration techniques
meets significant difficulties, these methods can improve the algorithms of pseudo-random number
generators [26,27], making them able to avoid quasi-chaotic regimes during long-term runs. They
also can provide improved topological mixing and diffusion properties required in chaos-based
cryptosystems [28].
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