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Abstract: In this paper, we consider nonlinear integration techniques, based on direct Padé 
approximation of the differential equation solution, and their application to conservative chaotic 
initial value problems. The properties of discrete maps obtained by nonlinear integration are 
studied, including phase space volume dynamics, bifurcation diagrams, spectral entropy, and the 
Lyapunov spectrum. We also plot 2D dynamical maps to enlighten the features introduced by 
nonlinear integration techniques. The comparative study of classical integration methods and Padé 
approximation methods is given. It is shown that nonlinear integration techniques significantly 
change the behavior of discrete models of nonlinear systems, increasing the values of Lyapunov 
exponents and spectral entropy. This property reduces the applicability of numerical methods based 
on Padé approximation to the chaotic system simulation but it is still useful for construction of 
pseudo-random number generators that are resistive to chaos degradation or discrete maps with 
highly nonlinear properties. 

Keywords: Numerical integration; Padé approximation; nonlinear systems; dynamical chaos; 
computer simulation; ODE solvers 

 

1. Introduction 

The influence of numerical methods on discrete models of chaotic systems is widely studied. 
While highly accurate numerical methods for chaotic problems integration have been recently 
developed [1,2], some studies reveal the negative aspects of popular discretization techniques [3,4] 
and discover the additional properties introduced by numerical errors [5]. Thus, when new class of 
integration methods appears, the collateral numerical effects are of certain interest. 

A relationship between Padé approximation and numerical solution of an ordinary differential 
equation is well known [6,7]. From this point of view, various integration methods implement 
various types of approximation leading to different properties, such as the order of accuracy and A-
stability [8]. Usually, the Padé approximant is contained in the numerical formula of the integration 
method indirectly. Meanwhile, direct expression of the increment function as a Padé approximant 
leads to a special class of nonlinear integration methods [9–12]. An analysis shows that these methods 
can demonstrate some new properties, inaccessible by linear one-step and multistep methods. The 
most promising application of these methods is the integration of problems with the singularity in 
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the solution that can possess higher numerical efficiency in comparison to classical approaches [10–
12]. Another attractive feature of these formulae is that they can achieve theoretical A-stability 
without implicit computations [13]. Although these methods deal well with singular nonlinear 
problems, no numerical evidence is found in the literature concerning their behavior in solving highly 
nonlinear ODEs, e.g., chaotic problems. When a continuous dynamical system is simulated using this 
technique, a presence of nonlinearity in the method itself can corrupt the original bifurcation pattern, 
phase space volume, and the other properties of the system. On the other hand, it may appear useful 
to avoid quasi-chaotic regimes, since some other nontrivial techniques are fruitful in dealing with 
this issue [14]. 

The aim of our study is to find out practical applicability of nonlinear integration technique 
based on direct Padé approximation to chaotic problems. The main motivation of the research is that 
the problem of finding a reliable numerical method for chaotic system simulation is still urgent in 
nonlinear science. Any type of discretization introduces undesirable nonlinear distortion in the 
differential equation solution [5]. To suppress the round-off and truncation errors, an extensive 
technique of extremely high order approximation and extended precision can be used [15], but long-
term simulation by such methods can only be performed on supercomputers. If double precision is 
used and the truncation error is reduced by an appropriate method order selection below the 
numerical noise, the round-off error anyway influences the simulation results [16], so a reasonable 
tradeoff between round-off and truncation error may result in simulation time economy with 
minimal decrease in reliability. Thus, more suitable integration scheme can result in a notable 
increase in simulation performance. The conservative flows [17] are the most influenced by 
discretization among the chaotic systems due to their unique symmetrical and energy properties [18]. 
Therefore, we chose the conservative Nosé–Hoover system as a practical example for our study. 

The last of the paper is organized as follows. In Section 2, integration methods, based on the 
direct Padé approximation of various orders, are introduced. In Section 3, bifurcation diagrams and 
Lyapunov spectrum are given for the Nosé–Hoover test chaotic system, and the results of long-term 
simulation analysis are described. We investigate the phase volume dynamics and calculate the 
spectral entropy including 2D dynamical maps for various discrete models of the test chaotic system. 
Finally, in Section 4 some conclusions are given. 

2. Materials and Methods  

2.1. Integration Methods Based on Padé Approximants 

For the initial value problem �̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) the numerical integration method is usually found in 
a form of a linear recurrence equation: 

( , )1y y h t ynn h= + Φ+  (1) 

where Фh denotes a so-called increment function. Digressing from this traditional approach, one can 
find a class of nonlinear methods based on a rational approximation of a form: 

( , )
1 ( , )

h t yhy ynn t yh

Θ
= ++ Φ−

 (2) 

where Θh denotes a special numerator increment function providing a required order of accuracy. Up 
to date, several methods of a class (2) have been derived. The most popular one is a simple nonlinear 
method proposed by L. Wuytack, C. Brezinski and some other researchers [8,9]: 

2 ( , )
1

( , ) ( , )
2

hf t yn ny ynn h
f t y f t yn n n n

= ++
′−

 (3) 
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It is of order 2 and represents the simplest Padé approximation of the solution [9]. Here, 𝑓𝑓′stands 
for the derivative with respect to time, namely, 

( , ) ( , ) ( , ) ( , )
f f

f t y t y f t y t y
y t

∂ ∂
′ = +

∂ ∂
 (4) 

In many practical cases, Equation (4) can be solved analytically, while any approximation of 
order 1 will also yield the 2nd-order of accuracy to the resulting method. For the linear test problem, 
the method (3) is A-stable and explicit. For a vector problem, the division and power in (3) should be 
performed in an element-wise manner [12]. 

To derive some high-order methods of this type, several techniques have been developed 
recently [11–13]. Here we show one general approach providing a simple way to obtain the Padé 
integration method of arbitrary order. We consider only the approximations of a type [(p–1)/(p–1)], 
where p stands for the order of the resulting method. 

Finding the derivatives of (2) and the derivatives of the corresponding Taylor series 

( , )1x x h t xnn h= + Φ+  

we require 

( ) ( )(0) (0)1 1
k kx yn n=+ +  

for all natural k from 1 to the desired order p. The obtained formulas are summarized in Table 1. To 
construct the method of the required order, the numerator and denominator must contain a sum of the 
terms given in a table of all orders from 1 up to the required one. In this type of an approximant, A-
stability of the resulting methods is provided for even orders. The A-stability for odd order 
approximants is missed as the power of h in the numerator is higher than in the denominator. 

Table 1. Terms of Padé methods of different accuracy order. 

Accuracy Order Numerator Denominator 

1 2
hfn−  fn−  

2  
2

h
fn′  

3 
3

2
( 4 3 )

12

h
f f fn n n′′ ′− +  

2

6

h
fn′′−  

4  
3

24

h
fn′′′  

5 
5

(4) 2
( 6 10 15 )

360

h
f f f f fn n n n n′′ ′′′ ′− − +  

4
(4)

120

h
fn−  

6  
5

(5)

720

h
fn  

For example, the method of order 4 is given as follows 

3
2 2( 4 3 )

12
1 2 3

2 6 24

h
hf f f fn n n n

y ynn h h h
f f f fn n n n

′′ ′− − +
= ++

′ ′′ ′′′− + −

. (5) 

To construct methods of order higher than 6, one should notice in Table 1 the numerator 
coefficients are derivatives of (y2)(p) by corresponding Taylor series multipliers, where terms 
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containing yn are missed and odd derivatives of y are taken with a negative sign. The denominator 
represents the Taylor series for 

( ( ) ) /1y t y hnn −−  

Since high order approximants contain high-order derivatives of the right-hand side function, 
they may be extremely complicated. Nevertheless, the success of Taylor series methods in some 
special problems motivates the further research of Padé methods. 

2.2. Hypothesis 

The hypothesis of this study is that Padé approximation methods can lead to finite-difference 
schemes with chaotic properties that are much different from schemes based on conventional 
methods. To explain the theory, we perform a brief sensitivity analysis here. We consider explicit 
second-order methods, namely Runge–Kutta 2 (explicit midpoint, EMP, or RK2) and Padé 2. The 
higher-order methods are omitted here, but the results for them are generally similar. Only 
autonomous IVPs �̇�𝑦(𝑡𝑡) = 𝑓𝑓(𝑦𝑦(𝑡𝑡)) are considered for simplicity, but the results persist for the time-
dependent systems since only the sensitivity to phase variable perturbation is analyzed. The RK2 
method is represented by the following equations. 

𝑦𝑦𝑛𝑛+
1
2

= 𝑦𝑦𝑛𝑛 +
ℎ

2
𝑓𝑓�𝑦𝑦𝑛𝑛�, (6) 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝑓𝑓 �𝑦𝑦𝑛𝑛+
1
2
�. (7) 

Let the current point of the solution 𝑦𝑦𝑛𝑛 have a small perturbation ε, so that its actual value is 
𝑦𝑦�𝑛𝑛 = 𝑦𝑦𝑛𝑛 + ε. When the explicit Runge–Kutta 2 is applied, the following equations appear. From (6), 
we obtain 

𝑦𝑦�
𝑛𝑛+

1
2

= 𝑦𝑦𝑛𝑛 + ε +
ℎ

2
𝑓𝑓�𝑦𝑦𝑛𝑛 + ε� 

which transforms after the Taylor expansion 

𝑓𝑓(𝑦𝑦𝑛𝑛 + ε) = 𝑓𝑓(𝑦𝑦𝑛𝑛) + ε 
∂f
∂y

(𝑦𝑦𝑛𝑛) + 𝑂𝑂(ε2) ≈  𝑓𝑓𝑛𝑛 + ε 𝑓𝑓𝑦𝑦 

to 

𝑦𝑦�
𝑛𝑛+

1
2

= 𝑦𝑦𝑛𝑛 + ε +
ℎ

2
(𝑓𝑓𝑛𝑛 + ε 𝑓𝑓𝑦𝑦) + 𝑂𝑂(ε2) (8) 

In a similar manner, using (8), the equation (7) yields 

𝑦𝑦�𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ε + ℎ𝑓𝑓𝑛𝑛 + ε 𝑓𝑓𝑦𝑦 +
ℎ2

2
𝑓𝑓𝑛𝑛𝑓𝑓𝑦𝑦 +

ℎ2𝑓𝑓𝑦𝑦
2

2
ε + 𝑂𝑂(ε2) 

So, the resulting perturbation after one integration step Δ𝑦𝑦𝑛𝑛+1 = 𝑦𝑦�𝑛𝑛+1 − 𝑦𝑦𝑛𝑛+1 is 

Δ𝑦𝑦𝑛𝑛+1 =  ε + ε 𝑓𝑓𝑦𝑦 +
ℎ2𝑓𝑓𝑦𝑦2

2
ε + 𝑂𝑂(ε2) (9) 

The same result is retained for arbitrary RK2 method. For the Padé 2 method the autonomous 
IVP, for which 𝑓𝑓′(𝑦𝑦) = 𝑓𝑓𝑦𝑦𝑓𝑓𝑛𝑛, reads 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 +
ℎ𝑓𝑓𝑛𝑛

1 −
ℎ
2 𝑓𝑓𝑦𝑦

 (10) 

in case 𝑓𝑓𝑛𝑛 ≠ 0. Denote 
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( ),
1

2

n
n

y

fF y h h f
=

−

 
(11) 

Taylor expansion of (11) near zero gives 

𝐹𝐹(𝑦𝑦𝑛𝑛,ℎ) = 𝐹𝐹(𝑦𝑦𝑛𝑛, 0) + ℎ
𝜕𝜕𝐹𝐹
𝜕𝜕ℎ

(𝑦𝑦𝑛𝑛, 0) + 𝑂𝑂(ℎ2) (12) 

Taking into account the relation 𝑓𝑓𝑦𝑦(𝑦𝑦𝑛𝑛 + ε) =  𝑓𝑓𝑦𝑦 + ε𝑓𝑓𝑦𝑦𝑦𝑦 + 𝑂𝑂(ε2) we obtain in a perturbed point 
𝑦𝑦𝑛𝑛 + ε the following equation: 

�̇�𝐹�𝑦𝑦𝑛𝑛 + ε, 0� = �
𝑓𝑓𝑛𝑛 + ε𝑓𝑓𝑦𝑦

1 −
ℎ
2 �𝑓𝑓𝑦𝑦 + 𝜀𝜀𝑓𝑓𝑦𝑦𝑦𝑦�

�

′

�

ℎ=0

=
�𝑓𝑓𝑛𝑛 + ε𝑓𝑓𝑦𝑦� �𝑓𝑓𝑦𝑦 + ε𝑓𝑓𝑦𝑦𝑦𝑦�

2
. (13) 

Substituting (13) into (12) and then (12) into (10), we eventually get 

𝑦𝑦�𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ε + ℎ𝑓𝑓𝑛𝑛 + ε 𝑓𝑓𝑦𝑦 +
ℎ2

2
𝑓𝑓𝑛𝑛𝑓𝑓𝑦𝑦 +

ℎ2(𝑓𝑓𝑦𝑦
2 + 𝑓𝑓𝑦𝑦𝑦𝑦𝑓𝑓𝑛𝑛)

2
ε + 𝑂𝑂(ε2) 

Therefore, 

Δ𝑦𝑦𝑛𝑛+1 =  ε + ε 𝑓𝑓𝑦𝑦 +
ℎ2(𝑓𝑓𝑦𝑦2 + 𝑓𝑓𝑦𝑦𝑦𝑦𝑓𝑓𝑛𝑛)

2
ε + 𝑂𝑂(ε2) (14) 

The difference between (9) and (14) includes the term ℎ2𝑓𝑓𝑦𝑦𝑦𝑦𝑓𝑓𝑛𝑛ε/2, which is absent in the Runge–
Kutta 2 scheme.  

For any RK method in a point 𝑦𝑦�𝑛𝑛+1 

𝑦𝑦�𝑛𝑛+1 =  𝑦𝑦𝑛𝑛 + ε + ℎΦ(𝑦𝑦𝑛𝑛 + ε) 

which, after Taylor expansion, produces 

𝑦𝑦�𝑛𝑛+1 =  𝑦𝑦𝑛𝑛 + ε + ℎ �Φ�𝑦𝑦𝑛𝑛� + ε
∂Φ

∂𝑦𝑦
�𝑦𝑦𝑛𝑛� + ⋯� (15) 

On the other hand, any Padé method 

𝑦𝑦�𝑛𝑛+1 =  𝑦𝑦𝑛𝑛 + ε +
ℎΩ(𝑦𝑦𝑛𝑛 + ε)

Φ(𝑦𝑦𝑛𝑛 + ε)
 

yields, considering the same Taylor expansion 

𝑦𝑦�𝑛𝑛+1 =  𝑦𝑦𝑛𝑛 + ε + ℎ�
Ω�𝑦𝑦𝑛𝑛�
Φ�𝑦𝑦𝑛𝑛�

+ ε

∂Ω
∂𝑦𝑦 �𝑦𝑦𝑛𝑛�Φ�𝑦𝑦𝑛𝑛� −

∂Φ
∂𝑦𝑦 �𝑦𝑦𝑛𝑛�Ω�𝑦𝑦𝑛𝑛�

Φ2�𝑦𝑦𝑛𝑛�
+ ⋯� (16) 

Comparing any methods of these types which possess equal accuracy order, one can see that 
(16) is more sensitive than (15) in case both partial derivatives in the numerator of (16) are nonzero. 

3. Results 

3.1. Bifurcation, Lyapunov Spectrum, and Spectral Entropy Analysis 

Nosé [19] and Hoover [20] proposed the following conservative dynamical system [21]. 
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;
2 1 .

x y

y x ayz

z b y

=

= − −

= −







 (17) 

In model (17) we denote a and b as system parameters. We plotted bifurcation diagrams for two 
discrete models of Nosé–Hoover obtained by different discrete operators (see Figure 1). Among 
second-order integrators, we chose the explicit midpoint method and Padé 2 method (3). Fourth-
order ODE solvers are represented by the explicit Runge–Kutta 4 (RK4) method [22] and Padé 4 
method given by the formula (5). Simulation time was 500 s, with the transient time of 100 s, and 
integration step size was 0.01 sec. All the experiments were performed in NI LabVIEW 2018 64-bit 
simulation system on Core i5 processor with double floating point precision. Parameter a varied 
within the range a ∈ [0; 10] with 0.05 step. One can see that the model obtained by the Padé 2 method, 
demonstrates chaotic behavior for nearly all investigated values of a, and lacks the nonchaotic 
interval from a = 6 to a = 9.5, where all other methods exhibit regular oscillations. 

 
Figure 1. Bifurcation diagrams for Nosé–Hoover models, obtained by nonlinear Padé 2 method (A) 
and linear (B) EMP method. Note, that a nonchaotic area between a = 6.3 and a = 9.5 disappeared on 
the left image, which indicates the significant changes in system dynamics. 

The experimental results for fourth-order methods are shown in Figure 2. One can see that Padé 
4 method introduces additional points that are observable on the bifurcation diagram. 

 
Figure 2. Bifurcation diagrams for Nosé–Hoover models, obtained by Padé 4 (A) and RK4 (B) 
methods, respectively. Note the artifacts appearing in Padé 4 diagram, which indicate the possible 
changes in system oscillations mode introduced by nonlinear integration technique. 

In computer simulations, the integration step size can also affect the behavior of the nonlinear 
models. To evaluate the impact of step size to the discrete models of system (17), we plotted step 
bifurcation diagrams, or h-diagrams (Figure 3) for Padé 4 and RK4 methods. Second-order methods 
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provide stable solutions only for relatively small step sizes due to relative stiffness of the system, thus 
their h-diagrams are not representative.  

 
Figure 3. Step bifurcation diagrams for Nosé–Hoover models, obtained by Padé 4 (A) and RK4 (B) 
methods, respectively. 

One can see from Figure 3 that the discrete models behave in a different manner. The model, 
obtained by RK4 method, only show phase shifts, while the oscillations mode remains nearly the 
same. The Padé 4 model is different: while the step size increases, the regime of oscillations 
unpredictably changes. This confirms the abovementioned increase in nonlinearity, which can be 
found in the bifurcation diagrams in Figures 1 and 2. The depicted problem is complicated by the 
varying numerical stability of studied methods; therefore we chose the 0.01 s. and 0.005 s. fixed step 
sizes for experimental study, which guaranteed the stability of solutions for all investigated methods.  

However, the bifurcation analysis is only a qualitative tool, so we performed an additional 
quantitative study. One of the known ways to measure chaos in dynamical systems is the calculation 
of the Lyapunov spectrum [23]. The analysis of the spectrum reveals the symmetry of the system 
through the sum of all exponents, which is zero for conservative flows. Our hypothesis is that 
changes, introduced by nonlinear integration techniques into the Nosé–Hoover system, would 
appear in spectrum plot. As a reference solution, we chose the Lyapunov spectrum obtained from 
simulation by the Dormand–Prince method of order 8 (DOPRI8) with extended precision. Figure 4 
represents the results for all investigated models: reference model by DOPRI8 and the studied models 
by Padé 2, Padé 4, and explicit midpoint method (EMP). Simulation time was set as 104 s. with the 
transient time of 100 s, and integration step size was 0.005 s. Parameter a varied within the range a ∈ 
[0.1; 10] with a 0.05 step. One can see that reference spectrum clearly indicates the symmetry of the 
system and the sum of Lyapunov exponents is nearly zero. Some digital noise was introduced due to 
the finite precision. The spectrum of the model, obtained by Padé 2 method, shows the significant 
increase of nonlinearity as predicted in Section 2.2. The graph obviously lacks the nonchaotic “well” 
in the range a ∈ [6.25; 9.5], which can be observed in the reference method. Additional “splashes” 
indicate the moments of trajectory destruction and stability loss. The explicit midpoint method, also 
being a nonsymmetric integrator, does not show such behavior and we can only notice the 
disappearance of spikes in a=4.85, which can be explained by round-off error. Another interesting 
phenomenon that remained undetected during the bifurcation analysis appears in Padé 4 model, 
which also tends to behave “more chaotic” than the reference model. Contrary to the reference 
method, the Padé 4 algorithm continuously increases the Lyapunov exponents, while a changes its 
value. Due to higher order of precision, we still can observe the “well” at a ∈ [6.25; 9.5] and relatively 
symmetric spectrum, but the sum of exponents is nonzero and second exponent is disturbed and 
obviously increases the value. The last is correct for Padé 2 method spectrum as well, but is not clearly 
visible due to the different scale. 
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Figure 4. Lyapunov spectrum for discrete models of the Nosé–Hoover system obtained by the 
different numerical integration methods: DOPRI8 reference solution (A), Padé 2 method (B), explicit 
midpoint method (C), and Padé 4 method (D). 

Moreover, the behavior of discrete models obtained by linear methods seems to be less 
dependent on accuracy order contrary to the nonlinear techniques.  

To clarify the obtained results, we investigated the phase volume dynamics and spectral entropy 
of the discrete models over long simulation time. 

3.2. Long-term Simulation and Phase Volume Dynamics 

In this section, we study the discretization effects appearing in computer models of chaotic 
systems during long-term simulations. It was previously shown [14] that every discrete system with 
finite data precision inevitably quits the chaotic regime of oscillations. We thus investigated the 
dynamics of the phase space volume for various discrete models of the Nosé–Hoover system. To 
obtain the phase volume plots, we calculated the changes in the volume of the system attractor with 
a 2000 s nonsliding window over long simulation time. We used the approximate algorithm and 
calculated the phase space volume as 𝑉𝑉 = ∏ (max(𝑥𝑥𝑖𝑖) − min(𝑥𝑥𝑖𝑖))𝑛𝑛

𝑖𝑖=0  with n=3 for the Nosé–Hoover 
system. To prove the experimental results, we added the spectral entropy estimation, which 
corresponds with the existence of self-organizing or chaotic processes in the flow [24]. The simulation 
was performed with the integration step h = 0.01 s., initial conditions were [0.2; 0; 0.2], and 
nonlinearity parameters were chosen a = b = 0.7. The overall simulation time was 106 s. Figure 5 
represents the simulation results for models obtained by linear integration techniques, showing the 
difference between second-order EMP and eighth-order DOPRI8 method. One can see the good 
correspondence between phase space volume and spectral entropy plots. 
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Figure 5. Phase space volume (A) and spectral entropy (B) dynamics for Nosé–Hoover models 
obtained by explicit Runge–Kutta methods. Note the chaos degradation in the explicit midpoint 
method (EMP) model. The Dormand–Prince 8 (DOPRI8) method is also prone to this defect, but 
manages to keep the solution chaotic over a relatively long simulation time due to high accuracy 
order. 

The EMP method tends to shrink the phase space of the discrete model, driving the system into 
regular nonchaotic oscillations as the values of phase space volume and spectral entropy 
asymptotically decrease after 27M points.  

Figure 6 illustrates the results for models obtained by nonlinear integration techniques. One can 
see that the solutions consequently pass through various chaotic regimes during the long-term 
simulation, exhibiting the phase transition behavior [25]. This variety of regimes may appear in 
DOPRI8 and EMP models only when values of nonlinearity parameters are changed. Thus, the 
nonlinear behavior of discrete models of Nosé–Hoover system is richer when they are obtained by 
numerical integration methods based on the direct Padé approximation. Another interesting 
observation one can see in a plot of the Padé 4 method. The chaos degradation occurs at 60M points, 
which resembles the behavior of EMP method. Nevertheless, the chaotic oscillations reappear at 
105M, completely restoring the initial behavior of the system. Thus, we can conclude that the 
diversity of oscillation modes in the discrete models obtained by Padé approximation methods 
provides switching between chaotic and nonchaotic oscillations, major changes in the appearance of 
attractor (see Figure 6), and other nonlinear effects. The nature of these phenomena is obviously in 
the nonlinear properties of the discrete operators described in Section 2.2. 
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Figure 6. Phase space volume (A) and spectral entropy evolution (B), calculated for Nosé–Hoover 
system models obtained by Padé 2 and Padé 4 numerical methods. 

Finally, we need to answer one more question: how does the application of nonlinear integration 
techniques affect the parameters space of the system? 

3.3. Dynamical maps 

The 2D dynamical maps show how the behavior of the system depends on two nonlinearity 
parameters. Reconsidering all previously reported results, we plotted dynamical maps for four 
discrete models of the Nosé–Hoover chaotic system (Figure 7). Parameters a and b of the system (1) 
varied within the range [0.15; 15] in this experiment, and the spectral entropy value was plotted as a 
pixel color on the map. One can see that Padé methods change the regime of oscillations in the discrete 
Nosé–Hoover model for any selected values of nonlinearity parameters. 

 
Figure 7. 2D spectral entropy maps of discrete models of Nosé–Hoover system. Note the noise, 
appearing in Padé 4 map (C) and completely destructed map in Padé 2 case (A). The map, obtained for 
linear EMP method (B) is close to the reference DOPRI8 solution (D).  



Entropy 2019, 21, 362 11 of 13 

 

While the Padé 4 method exhibits only a slightly «noised» map, the application of Padé 2 method 
completely changes the properties of the resulting model, making the entire map covered by «chaotic 
sea». The maps obtained by linear integration techniques are independent from the method’s order 
of accuracy that confirms the results of one-dimensional bifurcation and long-term simulations 
analysis. 

4. Conclusions & Discussion 

In this paper, the nonlinear integration techniques based on a direct Padé approximation of the 
solution have been applied to the conservative nonlinear chaotic system. As a test problem, we chose 
the Nosé–Hoover system and performed a series of numerical experiments with the discrete models 
of the system. We have clearly shown that the nonlinearity inherent to Padé integration methods 
introduces valuable distortion in the properties of the chaotic system. To evaluate these distortions 
numerically, the Lyapunov spectrum, phase space volume, and spectral entropy dynamics during a 
long-term simulation were studied. Two discrete models obtained by conventional integration 
techniques were compared with models obtained by nonlinear techniques. We constructed 
bifurcation diagrams and 2D spectral entropy maps to investigate the possible variety of oscillation 
modes. Bifurcation diagrams show that chaotic behavior appears in models obtained by nonlinear 
integration techniques for those parameter values where chaos does not appear in conventional 
models. The estimation of the Lyapunov spectrum shows that the methods based on a direct Padé 
approximation tend to increase chaotic behavior, which expresses in larger values of Lyapunov 
exponents and their positive dynamics with the increase of nonlinearity parameters. The symmetry 
of the continuous prototype system is broken in discrete models obtained by nonlinear integration 
techniques. The long-term simulation shows sufficient changes of phase space volume and spectral 
entropy during simulation for all the investigated methods. Unlike the conventional methods, 
nonlinear integration methods did not show any tendency to the volume suppression or long-term 
chaos degradation. Instead, they show notable phase volume jittering and ability to recover from 
nonchaotic regimes after a sufficient time periods. The 2D spectral entropy maps discover the 
“blurring” effect of the Padé methods and the extension of chaotic areas comparing to reference 
model. The spectral entropy is sufficiently higher in discrete models obtained by nonlinear 
integration techniques that can be useful in cryptographic applications.  

To summarize, our experimental study revealed not only the limitations of numerical methods 
based on a direct Padé approximation when simulating chaotic systems, but also opened the 
possibilities to construct highly nonlinear and less predictable discrete chaotic maps. Obtained 
models can be used as testbench systems in various statistical studies [25] or for simulation of 
nonstationary processes with multifractal properties. Though an accurate simulation with nonlinear 
integration techniques meets significant difficulties, these methods can improve the algorithms of 
pseudo-random number generators [26,27], making them able to avoid quasi-chaotic regimes during 
long-term runs. They also can provide improved topological mixing and diffusion properties 
required in chaos-based cryptosystems [28]. 
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