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Abstract: A Bayesian design of the input signal for linear dynamical model discrimination has been
proposed. The discrimination task is formulated as an estimation problem, where the estimated
parameter indexes particular models. As the mutual information between the parameter and model
output is difficult to calculate, its lower bound has been used as a utility function. The lower bound
is then maximized under the signal energy constraint. Selection between two models and the small
energy limit are analyzed first. The solution of these tasks is given by the eigenvector of a certain
Hermitian matrix. Next, the large energy limit is discussed. It is proved that almost all (in the sense of
the Lebesgue measure) high energy signals generate the maximum available information, provided
that the impulse responses of the models are different. The first illustrative example shows that the
optimal signal can significantly reduce error probability, compared to the commonly-used step or
square signals. In the second example, Bayesian design is compared with classical average D-optimal
design. It is shown that the Bayesian design is superior to D-optimal design, at least in this example.
Some extensions of the method beyond linear and Gaussian models are briefly discussed.
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1. Introduction

Discrimination of various dynamical models of the same process has a wide area of applications,
especially in multiple-model fault detection and isolation [1–4] and, in many other estimation and
control problems [5–7], it is necessary to choose the most likely dynamical model from a finite set.
The discrimination task can be formulated as an estimation problem, where the estimated parameter θ

indexes particular models. The problem can also be considered as a finite-dimensional approximation
of more general identification tasks [8]. As the error probability or variance of the estimator of θ

usually depends on the input signal, it is important to select a signal that minimizes error probability
or maximizes a utility function that encodes the purpose of the experiment. Selection of an input signal
that maximizes a utility function is strongly related to optimal experimental design [9].

Experimental design methods can be divided into classical and Bayesian. The classical methods,
also called optimal experimental design, typically use various functionals of the Fisher information
matrix as a utility function. These methods are widely described in the literature and work well if the
model is linear in its parameters (see [8,10–12] and the review article [9]). Unfortunately, in typical
identification tasks, the solution of model equation and the covariance depends non-linearly on θ,
even if the model equation is linear. This implies that the information matrix and the utility function
depend on the parameter θ to be estimated. Therefore, only locally-optimal design can be obtained [13].
To obtain more robust methods, an averaging over the prior parameter distribution or minimax
design [14], [8] (Section 6.1) are commonly used, but these methods are not fully Bayesian.

Bayesian optimal design uses the utility function, a functional of the posterior distribution
(see [15,16] and the review articles [13,17,18]). The most commonly used utility functions are mutual
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information between parameters and model output, Kullback-Leibler divergence between the prior
and posterior distributions, and the determinant of the posterior covariance matrix [13,16]. In contrast
to classical methods, in Bayesian design the utility function does not depend on the parameters to
be estimated. Hence, the method can cope with non-linear problems. The utility function, which is
suitable for model discrimination, is the error probability of the MAP estimator of θ [19]. Such a utility
function is generally difficult to calculate (see [19]), but the result of Feder & Merhav [20] implies that
the error probability of the MAP estimator is upper-bounded by some decreasing function of mutual
information between θ and the output of the system. Hence, the maximization of mutual information
creates the possibility of reducing the error probability, provided that appropriate estimator is used.
However, the most serious problem that inhibits the development of this idea is great computational
complexity in calculating the mutual information.

The main contribution of this article is a fully-Bayesian (in the terminology of [13]) method for
finding an input signal that maximizes the mutual information between θ and the system output.
Maximization of information or, equivalently, maximization of the output entropy has been proposed
by many authors (see, e.g., [13,15,17,18,21–23]), but the mutual information is very hard to compute
and the problem is often intractable. To overcome this serious difficulty, instead of mutual information
the lower bound, given by Kolchinsky & Tracey [24], has been used. This is a pairwise-distance based
entropy estimator and it it useful here, since it is differentiable, tight, and asymptotically reaches the
maximum possible information (see [24] (Sections 3.2, 4, 6)). Maximization of such a lower bound,
under the signal energy (i.e., the square of the signal norm) constraints, is much simpler, gives
satisfactory solutions, and allows for practical implementation of the idea of maximizing information.
This is illustrated with examples. Moreover, it is shown that, for certain cases, this problem reduces to
a solution of a certain eigenproblem.

The article is organized as follows. In Section 2, the estimation task is formulated and the upper
bound of the error probability and the lower bound of the mutual information are given. In Section 2.1,
a selection between two models is discussed and an exact solution is given. Design of input signals with
small energy, which is required in some applications, is described in Section 2.2. In Section 2.3, the large
energy limit is discussed. An application to linear dynamical systems with unknown parameters is
given in Section 3. An example of finding the most likely model among three stochastic models with
different structures is given in Section 4. Comparison with classical D-optimal design is performed in
Section 5. The article ends with conclusions and references.

2. Maximization of Mutual Information between the System Output and Parameter

Let us consider a family of linear models

Y = FθU + Z, (1)

where θ ∈ 1, 2, ..., r, Y, Z ∈ RnY , and U ∈ RnU . The matrices Fθ are bounded. The parameter θ is
unknown. The prior distribution of θ is given by

P(θ = i) = p0,i, i = 1, ..., r. (2)

The random variable Z is conditionally normal (i.e., p(Z|θ) = N(Z, 0, Sθ)), where the covariance
matrices Sθ are given a priori and Sθ > 0, for all θ. The variable U is called the input signal. In all
formulas below, the input signal U is a deterministic variable. The set of admissible signals is given by

S$ = {U ∈ RnU ; UTU 6 $}. (3)

Under these assumptions, and after applying Bayes rule:
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p(Y|U) =
r

∑
θ=1

p0,θ N(Y, FθU, Sθ), (4)

p(Y|θ, U) = N(Y, FθU, Sθ), (5)

p(θ|Y, U) =
p0,θ N(Y, FθU, Sθ)
r
∑

j=1
p0,jN(Y, FjU, Sj)

. (6)

The entropies of Y and θ and the conditional entropies are defined as

H(θ) = −
r

∑
θ=1

p0,θ ln p0,θ , (7)

H(θ|Y, U) = −
∫

p(Y|U)

(
r

∑
θ=1

p(θ|Y, U) ln p(θ|Y, U)

)
dY, (8)

H(Y|U) = −
∫

p(Y|U) ln p(Y|U)dY, (9)

H(Y|θ) = 1
2

r

∑
θ=1

p0,θ ln ((2πe)ny |Sθ |) . (10)

The mutual information between θ and Y is defined as (see [25] (pp. 19, 250))

I(Y; θ|U) = H(θ|U)− H(θ|Y, U) = H(Y|U)− H(Y|θ, U).

As H(θ|U) = H(θ) and H(Y|θ, U) = H(Y|θ), then I(Y; θ|U) is given by

I(Y; θ|U) = H(θ)− H(θ|Y, U) = H(Y|U)− H(Y|θ). (11)

The MAP estimator of θ is defined as

θ̂(Y, U) = arg max
θ∈{1,...,r}

p(θ|Y, U).

The error probability of θ̂ is given by (see [20])

Pe(U) = 1−
∫ (

max
θ∈{1,...,r}

p(θ|Y, U)

)
p(Y|U)dY.

It follows from Fano’s inequality ([25] (p. 38)), that Pe is lower bounded by an increasing function
in H(θ|Y, U). Feder & Merhav [20] proved that 2Pe(U) 6 H(θ|Y, U) log2 e. As H(θ|Y, U) = H(θ)−
I(Y; θ|U) and H(θ) does not depend on U, then the maximization of I(Y; θ|U) creates the possibility
of reducing Pe, and the optimal signal is given by

U∗($) = arg max
U∈S$

I(Y; θ|U). (12)

To overcome the problems associated with the calculation of I(Y; θ|U), we will use its lower bound.

Lemma 1. (Information bounds). For all U ∈ RnU ,

Il(U) 6 I(Y; θ|U) 6 H(θ), (13)
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where

Il(U) = −
r

∑
i=1

p0,i ln

(
r

∑
j=1

p0,je
−Di,j(U)

)
, (14)

Di,j(U) = 1
4 UTQi,jU + 1

2 ln | 12 (Si + Sj)| − 1
4 ln |Si||Sj|, and (15)

Qi,j = (Fi − Fj)
T(Si + Sj)

−1(Fi − Fj). (16)

Proof. According to (4), p(Y|U) is finite Gaussian mixture. For such mixtures, the information bounds
are known. A detailed proof, based on Chernoff α-divergence, is given in [24] (Section 4).

Lemma 2. Let θ̂(Y, U) = arg maxθ∈{1,...,r} p(θ|Y, U) be the MAP estimator of θ, and let Pe(U) denote its
error probability. There exists a continuous, increasing, and concave function f : [0, H(θ)] → [0, 1− r−1],
such that

Pe(U) 6 f (H(θ)− Il(U)) 6 1
2 (H(θ)− Il(U)) log2 e. (17)

Proof. Feder & Merhav [20] (see Theorem 1 and Equation (14)) proved that there exists an increasing,
continuous, and convex function φ : [0, 1− r−1]→ [0, H(θ) log2 e], such that

2Pe(U) 6 φ(Pe(U)) 6 H(θ|Y, U) log2 e. (18)

As H(θ|Y, U) = H(θ)− I(Y; θ|U) and Il(U) 6 I(Y; θ|U), then φ(Pe(U)) 6 (H(θ)− Il(U)) log2 e.
The function g = φ−1 is increasing, continuous, concave, and it follows from (18) that 2g(η) 6 η.
Hence, Pe(U) 6 φ−1((H(θ) − Il(U)) log2 e) = g((H(θ) − Il(U)) log2 e) 6 1

2 (H(θ) − Il(U)) log2 e.
Taking f (η) = g(η log2 e) we obtain the result.

Now, the approximate solution of (12) is given by

U∗($) = arg max
U∈S$

Il(U). (19)

As Il is smooth and S$ is compact, (19) is well-defined.

2.1. Selection between Two Models

Suppose that θ takes only two values, 1 and 2, with prior probabilities p0,1 and p0,2 = 1− p0,1,
respectively. It’s easy to check, by direct calculation, that

e−Il(U) = (p0,1 + p0,2e−D1,2(U))p0,1(p0,1e−D1,2(U) + p0,2)
p0,2 . (20)

Equation (20) implies that the maximization of Il is equivalent to the maximization of D1,2. On the
basis of (15), we have the following optimization: task

max
UTU6$

UTQ1,2U. (21)

The solution of (21) is the eigenvector of Q1,2 corresponding to its largest eigenvalue; that is,

Q1,2U∗ = λmax(Q1,2)U∗, ||U∗||2 = $. (22)

2.2. Small Energy Limit

In many practical applications, the energy of an excitation signal must be small. The second order
Taylor expansion of (14) gives
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Il(U) = 1
4 UTQU −

r

∑
i=1

p0,i ln
r

∑
j=1

αi,j + o(||U||2), (23)

where

Q =
r

∑
i=1

p0,i


r
∑

j=1
αi,jQi,j

r
∑

j=1
αi,j

 , and (24)

αi,j = p0,je
−Di,j(0). (25)

If the value of $ (see (3)) is small, then the last term in (23) can be omitted. As the second term
does not depend on U, we have the following optimization task:

max
UTU6$

UTQU. (26)

The solution of (26) is the eigenvector of Q corresponding to its largest eigenvalue.

2.3. Large Energy Limit

We will investigate asymptotic behaviour of I(Y; θ|U) when ||U|| → ∞. On the basis of Lemma 1,
the condition

min
i 6=j

UTQi,jU > 0 (27)

guarantees that lim$→∞ I(Y; θ|$U) = H(θ). It is also possible that lim$→∞ I(Y; θ|$U) < H(θ), for some
U. Such signals are weakly informative and they cannot generate the maximum information, even if
their amplitude tends to infinity. Let S1 denote the unit ball in RnU and let µ be the Lebesgue measure
on S1. The set of weakly informative signals is defined as

Ω = {U ∈ S1 : lim
$→∞

I(Y; θ|$U) < H(θ)}. (28)

Theorem 1. µ(Ω) = 0 if and only if Fi 6= Fj, for all i 6= j.

Proof. ⇐: On the basis of Lemma 1 and (28), Ω = ∪i 6=jΩi,j, where Ωi,j = {ξ ∈ S1 : ξTQi,jξ = 0}.
Since Si + Sj is positive-definite and Fi 6= Fj then, on the basis of (16), the matrix Qi,j has at least one
positive eigenvalue. Hence, µ(Ωi,j) = 0 and µ(Ω) = ∑

i 6=j
µ(Ωi,j) = 0. ⇒: The condition µ(Ω) = 0

implies that µ(Ωi,j) = 0. Hence, Qi,j has at least one positive eigenvalue, which is possible only if
Fi 6= Fj.

As a conclusion, we have the following result.

Theorem 2. Let θ̂(Y, U) = arg maxθ∈{1,...,r} p(θ|Y, U), be the MAP estimator of θ and let Pe(U) denote its
error probability. If Fi 6= Fj for all i 6= j, then, for any ε > 0, there exists a number $ > 0 and a signal U ∈ S$,
such that Pe(U) < ε.

Proof. By the assumption, and from Theorem 1, the set S1 \ Ω is non-empty. If U ∈ S1 \ Ω,
then mini 6=j UTQi,jU > 0 and, from Lemma 1, we get lim$→∞ Il($U) = lim$→∞ I(Y; θ|$U) = H(θ).
Now, Lemma 2 implies that 2Pe(U) 6 (H(θ)− Il($U)) log2 e < ε, for sufficiently large $.
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3. Application to Linear Dynamical Systems

Consider, now, the family of linear systems

xk+1 = Aθ xk + Bθuk + Gθwk, k = 0, 1, 2, ..., N − 1, (29)

yk = Cθ xk + Dθvk, k = 1, 2, ..., N, (30)

where the prior distribution of θ is given by (2) and xk ∈ Rn, yk ∈ Rm, wk ∈ Rnw , vk ∈ Rm,
wk ∼ N(0, Inw), and vk ∼ N(0, Im). The variables w0, ..., wN−1, v1, ..., vN are mutually independent.
The initial condition is zero. The solution of (29) with initial condition x0 = 0 has the form

xk =
k−1

∑
i=0

Ak−i−1
θ Bθui +

k−1

∑
i=0

Ak−i−1
θ Gθwi. (31)

If we denote X = col(x1, ..., xN), Y = col(y1, ..., yN), U = col(u0, ..., uN−1), W = col(w0, ..., wN−1),
and V = col(v1, ..., vN), then (31) and (30) can be rewritten as

X = BθU + GθW, and (32)

Y = CθX +DθV, (33)

where the matrices Bθ , Gθ , Cθ , and Dθ follow forms (30) and (31). The variables W and V are
independent, where W ∼ N(0, INnw) and V ∼ N(0, INm). Substituting (32) into (33) we get
Equation (1), where Fθ = CθBθ , Z = CθGθW + DθV. The conditional density of Z has the form
p(Z|θ) = N(Z, 0, Sθ), where the covariance matrix is given by

Sθ = DθDT
θ + CθGθGT

θ CT
θ . (34)

Hence, the results of Section 2 can be applied to the dynamical system (29) and (30).

4. Example

In some fault detection and isolation problems [3,4], there is a need to determine which of the
known models of the process is the most adequate. It is, therefore, important to find a signal that
emphasizes the differences between these various models. As an example of this type of problem,
let us consider three stochastic continuous-time models:

dx = (Aθ x + Bθu)dt + Gθdw, (35)

where θ ∈ {1, 2, 3}, x(t) ∈ Rθ , x(0) = 0, u(t), w(t) ∈ R, w is a standard Wiener process, and

A1 = −1, B1 = 1, G1 = 0.05, (36)

A2 =

[
0 1
−3 −2.5

]
, B2 =

[
0
3

]
, G2 =

[
0

0.05

]
, (37)

A3 =

 0 1 0
−3 −3.5 1
0 0 −10

 , B3 =

 0
0
30

 , G3 =

 0
0

0.05

 . (38)

The step responses of these models are similar and they are difficult to experimentally distinguish
from each other if the noise level is significant. The observation equation has the form

yk = x1(tk) + 0.05vk, k = 1, 2, ..., N, (39)
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where vk ∼ N(0, 1), tk = kT0, T0 = 0.1, and x1 is the first component of x(t). If xk = x(tk) and
u(t) = uk, t ∈ [tk−1, tk), then, after discretization, the state xk and the output yk are described by (29)
and (30), with appropriate matrices Aθ , Bθ , Cθ , Gθ , and Dθ . The matrices Fθ and Sθ are calculated by
using (31)–(34). Let us observe that, although the orders of the systems are different, the size of both Fθ

and Sθ is always N × N. We are interested in the maximization of Il(U). The solutions of (19) and (26)
with a uniform prior, $ = N, and N = 200 steps, are shown in the upper part of Figure 1. The step
responses and the optimal responses are shown in the bottom part of Figure 1.

Let us observe that, in contrast to the step signal, the optimal signal clearly distinguishes the
systems—although the energy of all input signals was the same and equal to N.

Let Ust, Usq ∈ ∂S1 denote the normalized step and square signal with period of three, respectively,
and let U∗($) denote the optimal signal. To check the validity of the results, the error probabilities
Pe($Ust), Pe($Usq), and Pe(U∗($)) were estimated by Monte Carlo simulation with 106 trials and
N = 50 steps. The results are shown in Figure 2. It was observed that the optimal signal gives
an error probability several thousand times smaller than the step or square signal with the same energy.
The second observation is that Pe($Usq) initially increased with $. To explain this, let us note that
Inequality (17) does not guarantee that Pe is decreasing function of $. Hence, it is possible that Pe

increases in certain directions, although Theorem 2 guarantees that Pe tends to zero, provided that
signal norm tends to infinity.

0 2 4 6 8 10 12 14 16 18

t [s]

-2

-1

0

1

2

 u
(t

)

Small    

energy   

limit    

Numerical             

maximization of I
l
(U)

2 4 6 8 10 12 14 16 18 20

t [s]

-1

0

1

 y
1
, 

y
2
, 

y
3

Step response

Optimal input response

Figure 1. (Top) Numerical solution of (19) and the small energy approximation (26), for $ = N = 200.
(Bottom) Step responses and optimal responses of all systems.
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Figure 2. Error probability of the MAP estimator for the optimal signal (.), step signal (+), and square
(*) signal with period of three. The number of steps is N = 50. The error probability has been estimated
by a Monte Carlo method with 106 trials. Standard error bars were multiplied by factor of 10 for
better visibility.

5. Comparison with the Average D-Optimal Design

Classical methods of signal design for parameter identification use various functionals of
the Fisher information matrix as a utility function. One of the most popular is D-optimal design,
which consists of finding a signal that maximizes the determinant of the information matrix (see [10–12]
and the review article [9]). These methods are well-suited to models that are linear in their parameters.
Unfortunately, in typical identification and discrimination tasks, the output is a non-linear function
of the parameters and the information matrix depends on unknown parameters to be identified.
One of the possibilities for avoiding this problem is the averaging of the utility function over the
prior parameter distribution. This method is called average D-optimal design (see [14,26] and [9]
(Sections 5.3.5 and 6), for details). The Bayesian design, described in the previous sections, will be
compared with the average D-optimal design. To that end, let us consider a finite family of linear
models (see also [12] (pp. 91–93))

yk =
bθz−1

1− aθz−1 uk + σvvk, (40)

where θ ∈ {1, 2, 3, 4}, aθ = 0.6 + 0.1(θ − 1), bθ = 1 − aθ , σv = 0.1, and vk ∼ N(0, 1). The prior
distribution of θ is uniform (i.e., p0,θ = 0.25). The state space representation of (40) has the form

xk+1 = aθ xk + bθuk, (41)

yk = xk + σvvk, (42)

which is consistent with (29) and (30). The Fisher information matrix is given by

MF(θ, U) =
1

Nσ2
v

N

∑
k=1

dkdT
k , (43)
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where dk = (ξk, ηk)
T and ξk = ∂yk

∂aθ
, ηk = ∂yk

∂bθ
, denote the sensitivity of the output yk to changes in

parameters a and b, respectively. The derivatives ξk and ηk fulfil the sensitivity equations

ξk = 2aθξk−1 − a2
θξk−2 + bθuk−2, (44)

ηk = aθηk−1 + uk−1, k = 1, 2, ..., N, (45)

with zero initial conditions. The average D-optimal design consists in finding a signal U that maximizes
the expectation of the determinant of the information matrix (see [9] (Sections 5.3.5 and 6), [14], [11]
(Chapter 6), and [12] for details). Hence, the utility function to be maximized has the form

J(U) =
4

∑
θ=1

p0,θ |MF(θ, U)|, (46)

with the energy constraints given by (3). Maximization of the utility function (46) has been performed
for various signal energies and the error probability of the MAP estimator was estimated by Monte
Carlo with 105 trials. The same procedure was repeated using Bayesian design for (41) and (42).
The results are shown in Figure 3. The error rate of Bayesian method is significantly smaller when
compared to D-optimal design, at least in this example. In particular, the signal shown in the
upper-right part of Figure 3 gives an error probability approximately three times smaller than that of
D-optimal signal, although the energy of both signals was the same.

Figure 3. Error probability of theMAP estimator (see Section 2), as a function of signal norm and
the exemplary input signals (top right) generated by D-optimal and Bayesian methods. The error
probability was calculated by a Monte Carlo method with 105 trials. Standard error bars were multiplied
by a factor of 10 for better visibility.

6. Possible Extensions of the Results

In this section, we will briefly discuss some possible extensions of the results to an infinite set of
parameters and beyond linear and Gaussian models.
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6.1. Non-Linear Models

Although the article refers to linear models, it is possible to extend the results to non-linear models
of the form

Y = Fθ(U) + Z, (47)

where the conditional density of variable Z is given by

p(Z|θ, U) = N(Z, 0, Sθ(U)) (48)

and Sθ(U) > 0, for all U ∈ Uad, θ ∈ {1, ..., r}. Under these assumptions, the density of Y still remains
a Gaussian mixture and the information lower bound takes the form

Il(U) = −
r

∑
i=1

p0,i ln

(
r

∑
j=1

p0,je
−Di,j(U)

)
, (49)

where

Di,j(U) = 1
4 (Fi(U)− Fj(U))T(Si(U) + Sj(U))−1(Fi(U)− Fj(U))+

+ 1
2 ln | 12 (Si(U) + Sj(U))| − 1

4 ln |Si(U)||Sj(U)|.
(50)

6.2. Non-Gaussian Models

If p(Z|θ, U) is non-Gaussian distribution, then it is possible, on the basis of Equation (10) in [24],
to construct an information lower bound of the form

Il(U) = −
r

∑
i=1

p0,i ln

(
r

∑
j=1

p0,je
−Cα(pi ||pj)

)
, (51)

where
Cα(pi||pj) = − ln

∫
p(Z|i, U)α p(Z|j, U)1−αdZ (52)

is the Chernoff α-divergence and α ∈ [0, 1]. Unfortunately, calculation of (52) is difficult if nY is large.

6.3. Infinite Set of Parameters

Let us consider following model:

Y = F(θ)U + Z, (53)

where p(Z|θ) = N(Z, 0, S(θ)) and θ ∈ Rp. If we assume that prior density of θ is Gaussian; that is,

p0(θ) = N(θ, mθ , Sθ), Sθ > 0, (54)

then
p(Y) =

∫
p0(θ)N(Y, F(θ)U, S(θ)), (55)

and p(Y) can be approximated by a finite Gaussian mixture

p(Y|U) =
∫

p0(θ)N(Y, F(θ)U, S(θ))dθ ≈
Na

∑
j=1

p0,jN(Y, F(θj)U, S(θj)), (56)



Entropy 2019, 21, 351 11 of 13

where p0,j > 0 and
Na
∑

j=1
p0,j = 1. It’s possible to calculate weights and nodes in (56) by using

multidimensional quadrature. If nθ is large, then an appropriate sparse grid should be used.
To illustrate the method, we will show only a simple, second-order quadrature with 2nθ points.

Lemma 3. The approximate value of the integral J( f ) =
∫

N(θ, mθ , Sθ) f (θ)dθ is given by

J( f ) ≈ 1
2nθ

2nθ

∑
j=1

f (θj), (57)

where
θ2i−1 = mθ − S0.5

θ ei, θ2i = mθ + S0.5
θ ei, i = 1, ..., nθ (58)

and ei is ith basis vector. If f (θ) = 1
2 θT Aθ + bTθ + c, then equality holds in (57).

Proof. Direct calculation.

Application of Lemma 3 to (56) gives p0,j = p0 = (2nθ)
−1, Na = 2nθ . Now, since (56) is a Gaussian

mixture, the results of Section 2 can be utilized and the information lower bound takes the form

Il(U) = −p0

r

∑
i=1

ln

(
r

∑
j=1

e−Di,j(U)

)
− ln p0, (59)

where Di,j and θj are given by (15), (16), and (58), respectively, and Fj = F(θj), Sj = S(θj).
The approximate solution of (12) can be found by maximization of (59) with the constraints (3).

7. Discussion and Conclusions

An effective Bayesian design method for linear dynamical model discrimination has been
developed. The discrimination task is formulated as an estimation problem, where the estimated
parameter θ indexes particular models. To overcome the computational complexity, instead of I(Y; θ|U),
its lower bound (Il(U)), proposed by Kolchinsky & Tracey [24], was used as a utility function.
This bound is especially useful, as it is differentiable, tight, and reaches the maximum available
information H(θ). It has been proved, on the basis of the results of Feder & Merhav [20], that the
error probability of the MAP estimator (see Lemma 2) is upper bounded by 1

2 (H(θ)− Il(U)) log2 e.
The maximization of Il(U) has been considered under the signal energy constraint, but other kinds
of constraints can also be easily implemented. It was shown that the maximization of Il(U), in the
case of two parameters, is equivalent to maximization of a quadratic form on the sphere (see also [3]).
Next, the small energy limit was analyzed. It was proved that the solution is given by an eigenvector
corresponding to maximal eigenvalue of some Hermitian matrix. This result can serve as starting point
for numerical maximization of Il(U). If the energy of the signal tends to infinity, then almost all (in the
sense of the Lebesgue measure) signals generate maximum information, provided that the impulse
responses of the models are pairwise different. Under these conditions, it was proved that Pe of the
MAP estimator tends to zero.

An example of discrimination of three stochastic models with different structures was given.
It is easy to observe, from Figure 1, that, in contrast to the step signal, the optimal signal clearly
distinguished the systems, although the energy of both signals was the same. The Pe of the MAP
estimator was calculated by Monte Carlo simulation. It was observed that the square signal gave
an error probability several thousand times greater than the optimal signal with the same energy.
Hence, we conclude that the error probability and the accuracy of MAP estimator depends very
strongly on the excitation signal. Although Theorem 2 implies that lim$→∞ Pe($U) = 0 for almost all
U, there exist signals such that Pe($U) is locally increasing. This is the case of a high-frequency square
signal, as illustrated in Figure 2.
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It was shown, in Section 5 (see Figure 3), that Pe of the MAP estimator corresponding to Bayesian
design was a few times smaller than Pe generated by D-optimal design, at least in the analyzed example.
This result suggests that Bayesian design can be applied to non-linear problems and that it is superior
to classical D-optimal design.

Some extensions of the results to the infinite set of parameters and beyond linear and Gaussian
assumptions were briefly discussed in Section 6. Extension to non-linear models seems to be easy,
but the non-Gaussian case is difficult and a deeper analysis is required. The case of an infinite set
of parameters was discussed in Section 6.3. It was shown that the measurement density can be
approximated by a finite Gaussian mixture, after which the results of Section 2 could be directly applied.
The general conclusion of this analysis is that the information bounds can be easily constructed, as long
as the measurement density is a mixture of Gaussian distributions.

An analytical gradient formula must be provided for the effective numerical maximization of
Il(U). The matrix inversions and the determinants in (15) and (16) should be calculated by SVD.
To reduce the computational complexity and required memory resources, the symmetries appearing in
(15) and (16), and the fact that Di,i = 0, should be utilized. The determinants in (15) and the matrices
Fi, Si can be calculated off-line, but the matrices Qi,j may require too much memory if N and r are large.
Therefore, Qi,j was calculated on-line.

Applications of the presented methods in dual control problems [5] are expected as part of our
future work. An additional area in applications is the issue of automated testing of dynamical systems.
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Abbreviations

ξ ∼ N(m, S) means that ξ has normal distribution with mean m and covariance S. The density
of a normally-distributed variable is denoted by N(x, m, S) = 2π−

n
2 |S|− 1

2 exp(−0.5(x − m)TS−1(x − m)).
The symbol col(a1, a2, ..., an) denotes a column vector. The set of symmetric, positive-definite matrices of dimension
n is denoted by S+(n).
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