M entropy MBPY

Article
Measuring Software Modularity Based on
Software Networks

Yiming Xiang !, Weifeng Pan >*{9, Haibo Jiang ?, Yunfang Zhu ? and Hao Li 3

1 School of Management and E-Business, Zhejiang Gongshang University, Hangzhou 310018, China;

futuretech@zjgsu.edu.cn

School of Computer Science and Information Engineering, Zhejiang Gongshang University,
Hangzhou 310018, China; hbjiang88@163.com (H.].); yunfangzj@163.com (Y.Z.)

Department of Computer Science, Western Michigan University, Kalamazoo, MI 49008, USA;
hao.81.li@wmich.edu

Correspondence: wfpan@zjgsu.edu.cn

check for
Received: 14 February 2019; Accepted: 24 March 2019; Published: 28 March 2019 updates

Abstract: Modularity has been regarded as one of the most important properties of a successful
software design. It has significant impact on many external quality attributes such as reusability,
maintainability, and understandability. Thus, proposing metrics to measure the software modularity
can be very useful. Although several metrics have been proposed to characterize some
modularity-related attributes, they fail to characterize software modularity as a whole. A complex
network uses network models to abstract the internal structure of complex systems, providing
a general way to analyze complex systems as a whole. In this paper, we introduce the complex
network theory into software engineering and employ modularity, a metric widely used in the field
of community detection in complex network research, to measure software modularity as a whole.
First, a specific piece of software is represented by a software network, feature coupling network
(FCN), where methods and attributes are nodes, couplings between methods and attributes are edges,
and the weight on the edges denotes the coupling strength. Then, modularity is applied to the FCN to
measure software modularity. We apply the Weyuker’s criteria which is widely used in the field of
software metrics, to validate the modularity as a software metric theoretically, and also perform an
empirical evaluation using open-source Java software systems to show its effectiveness as a software
metric to measure software modularity.

Keywords: modularity; Java software; complex networks; software metrics; software maintenance

1. Introduction

“High cohesion and low coupling" is one of the most important principles in object-oriented
(OO) designs [1]. ‘Cohesion’ is the indication of the coupling within a module, while ‘coupling’ is the
indication of the coupling between modules. When designing a piece of software, we usually strive
for high cohesion (a cohesive module) and low coupling (couplings between modules should be less),
which promotes the formation of a modular structure in a piece of software. Modularity has been
regarded as one of the most important properties of a software design, which has significant impact on
many external quality attributes such as reusability, maintainability, and understandability. By saying
modularity, it usually means the notion of interdependence within modules and independence between
modules [2].

We cannot control what we cannot measure [3]. Thus, to control software modularity, we need
quantitative techniques to assess it. One of the effective techniques is to provide some metrics to
characterize modularity-related attributes such as module coupling, cohesion and interface size [4].

Entropy 2019, 21, 344; d0i:10.3390/e21040344 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-6355-1385
http://dx.doi.org/10.3390/e21040344
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/21/4/344?type=check_update&version=2

Entropy 2019, 21, 344 2of 14

However, many of these metrics only focus on one aspect of modularity, either coupling or cohesion.
They cannot take into consideration both the coupling and cohesion to character software modularity,
and cannot draw a whole picture of the software modularity. Worse still, they are usually used to
characterize some local features of a piece of software, e.g., the number of classes that a class couples
with, the number of methods that a class has, etc. They failed to explore the rich information in the
whole structure of a specific software system. Due to a lack of suitable tools and theories, people
seldom characterize the modularity of a specific software system as a whole.

As we all know, any software system is composed of a set of software elements (e.g., methods,
attributes, classes, etc.) and their couplings (e.g., “method call”, “inheritance”, “extends”, etc.), which
constitute the topological structure of the software [5]. The software structure of a specific piece of
software is formed in the whole production process of the software and can be naturally represented
by a network (or a graph). In recent years, many attempts have been made to employ complex
network theories to analyze software structures and their dynamics by a network representation
(usually named software networks) of the software structure, where software elements are nodes, and
their couplings are edges [5-8]. They found that a software network is a complex network that has
non-trivial topological features that are not observed in simple networks such as lattices or random
graphs. Their work opens up an interdisciplinary research between complex networks and software
engineering, and many physics-like laws of software networks have been revealed such as “scale-free”
and “small-world” [5-8]. From the point of view of entropy, software structure changes from chaos to
order in the whole production process [9,10]. Furthermore, complex network theories have also been
applied to refactor software [11], identify important software elements such as important packages
and classes [12], and prioritize test cases [13]. Such a novel interdisciplinary research provides us with
an effective tool to analyze software as a whole.

In this paper, our aim is to characterize software modularity as a whole using complex network
theories. To fulfill this task, we first propose a feature coupling network (FCN) to represent the software
structure at the method and attribute level, where methods and attributes are nodes, couplings between
methods and attributes are edges, and the weight on the edges denotes the coupling strength. Then,
we employ modularity, a metric widely used in the field of community detection in complex network
research, to measure software modularity as a whole. We apply the widely accepted Weyuker’s
criteria [14] to validate our modularity theoretically, and also perform an empirical evaluation using
open-source Java software systems to show its effectiveness as a metric to measure software modularity.
Note that our approach now can only be applied to software developed using Java since our own
developed software now can only parse Java software.

The main contributions of this work can be summarized as follows:

e We characterize software modularity as a whole. The existing metrics usually only characterized
some modularity-related attributes—either coupling or cohesion. They cannot take both the
coupling and cohesion into consideration to character software modularity. In this work, we use
software networks to represent software, and apply the metric modularity in complex network
research to character software modularity. Thus, we can characterize software modularity as

a whole.
o The proposed metric modularity considers the coupling strength between software elements which

has been neglected by the existing metrics. Our proposed software network, FCN, is a weighted
software network. The weight on the edges denotes the coupling strength between software
elements. The calculation of modularity considers the weight on the edge. Thus, our metric is more

reasonable since it conforms to the reality of a specific piece of software.
e The proposed modularity is validated theoretically using widely accepted evaluation criteria, and

empirically using open source Java software systems. The data set and software used to compute
software modularity are available for download [15] (see in Supplementary Materials).

The rest of this paper is organized as follows. Section 2 reviews the related work. Section 3
describes our approach in detail, with a focus on the definition of FCN and the software modularity

Entropy 2019, 21, 344 3of 14

metric. Section 4 presents the theoretical and empirical validations of our proposed metric. We conclude
in Section 5.

2. Related Work

The existing research work to measure software modularity mainly focuses on measuring the
coupling between software elements and the cohesion of software elements. In this section, we
summarize the existing metrics on measuring coupling and cohesion at different levels of granularity.
Generally, cohesion measurement should rely on the coupling measurement.

Chidamber and Kemerer [16] proposed Lack of Cohesion in Methods (LCOM) to measure class
cohesion. Eder et al. [17] defined three types of cohesion in OO software systems, i.e., method cohesion,
class cohesion, and inheritance cohesion. Ott et al. [18] defined a class cohesion metric based on
data slice for OO software systems. Bieman and Kang [19] defined two class cohesion metrics, Tight
Class Cohesion (TCC) and Loose Class Cohesion (LCC), to measure class cohesion by counting the
number of pairs of methods in a class that access common attributes. Bansiya and Davis [20] defined
a metric, Cohesion Among Methods of Classes (CAMC), to measure class cohesion by quantifying
the similarity of methods according to their parameter lists. Briand et al. [21] applied an interaction
graph to represent software structure, and proposed a suite of cohesion metrics. Morris [22] measured
module cohesion by quantifying the fan-in of objects that the module contains. Patel et al. [23] proposed
a metric to measure subprogram cohesion by quantifying the similarity between different pairs of
subprograms. Martin [24] defined a metric, Relational Cohesion (RC), to measure package cohesion
by using the ratio of the number of data relations and number of components in a package. Lee and
Liang [25] defined a metric, Information-based CoHesion (ICH) based on information flow. Chidamber
and Kemerer [16] proposed a CK (Chidamber & Kemerer) metric suite to measure software couplings.
Jenkins et al. [26] defined a metric, I., to measure software stability based on the classes and their
couplings. Qu et al. [27] explored the community structure in software systems and measured class
cohesion using community detection techniques. Gu et al. [28] proposed a new metric to measure
class cohesion based on computing the average clustering coefficient of software network at the
class level. Zhang et al. [29] applied community detection techniques to measure the cohesion of a
software system.

However, most of these metrics focus mainly on one aspect of modularity, either coupling or
cohesion. They neglect to consider both of the coupling and cohesion to measure software modularity,
cannot drawing a whole picture of the software modularity. Worse still, they mainly focus on the
characterization of some local features of a piece of software. There is a need for metrics to characterize
the software modularity as a whole.

3. The Proposed Approach

Figure 1 shows an overview of our approach to measure software modularity using complex
network theories. Our approach is mainly composed of three steps. First, we extract software structural
information from the source code of a software system by static analysis. Second, we propose the FCN
to represent the extracted software structural information. Finally, we apply the modularity metric
widely used in complex network theories to measure software modularity as a whole. We will detail
the three parts in the following subsections.

3.1. Software Information Extraction

In this work, we choose to analyze software systems coded in Java simply for our own developed
analysis software, SNAP [12], now can only analyze software systems coded in Java, and Java is one of
the most successful and popular programming languages.

As mentioned above, we use a software network to represent software elements and their
couplings at the method and attribute level. Thus, software elements and their couplings in a specific
Java software system should be extracted first. To this aim, we perform a static analysis of the source

Entropy 2019, 21, 344 4 of 14

code of the software and extract structural information at the feature (In this work, if not mentioned,
the term “feature” designates both the methods and attributes from here on) level, i.e., we extract
methods, attributes, and their couplings. Here, we consider two types of couplings between features,
i.e., “method-call” couplings and “method-access-attribute” couplings.

methods, attributes, FCN 4
Java software systems| goftware | and couplings Feature couplin 5%
(Javaar, .etassj— information network building| b d
extraction S
K4
c
EE ; 1 kik; i
Output modularity | — _—_ A L 18(ci, ;) |l iNPUt
« i i)
J results | 2m 4 2m
Modl.lr-lrz-;rai\;alues Compute software modularity

Figure 1. An overview of the proposed approach.

Note that, when computing the software modularity, we should refer to the class structure of
the software. Thus, we also extract class information, i.e., we extract all classes, and the methods
and attributes they contain. It should also be noted that we only consider the software elements that
are actually defined in the software. For those classes that are defined in the imported libraries will
be ignored, since their source codes are not always available in the source code distribution of the
software [12].

3.2. Feature Coupling Network

The structural information obtained in Section 3.1 will be further represented by FCN, which is
defined as follows.

Definition 1 (FCN). FCN is a weighted undirected graph representing features (methods and attributes) and
their couplings in a specific software system. Specifically, nodes in FCN denote the methods and attributes in the
software, and edges in FCN denote the coupling between methods and attributes, i.e., “method-call” couplings
and “method-access-attribute” couplings. The weight on the edge denotes the multiplicity of couplings such
as method my calls method my three times. Note that each method or attribute is represented by only one node.
Thus, FCN can be defined as

FCN = (N, E, ¢), 1)

where N is the node set, E is the edge set, and 1 is a symmetric matrix storing the weight on the edge between all
pairs of nodes if they are linked together by an edge in FCN. Specifically, if method i couples with method j, the
entries ;j and pj; (i = ;i) of ¢ stores the weight on the edge between method i and method j. The weight
on the edge provides us a more accurate representation of the software structure at the feature level and can be
obtained by simply counting their occurrences in our extracted structural information (see Section 3.1).

Figure 2 gives a simple example to show the process to build FCN from Java source code. The notes
beside the nodes denote the method name or attribute name that the node denotes, and the notes
beside the edges denote the weight on that edge. Since method “d()” accesses attribute “a” one time,
calls method “b()” one time, and calls method “c()” two times, there are three edges between “d()” and
“a”,“d()” and “b()”, and “d()” and “c()”, with the weights being 1, 1, and 2, respectively. Since method
“b()” calls method “c()” one time, there is one edge between “b()” and “c()” with weight being 1. Since
method “f()” calls method “c()” one time, there is one edge between “f()” and “c()” with the weight
being 1. Since method “e()” calls method “f()” one time, there is one edge between “e()” and “f()” with
the weight being 1.

Entropy 2019, 21, 344 5o0f 14

public class Y
{
public void e() {f();}
public void f() {
X x =new X();
x.¢();

public class X
{ private int a;
public void b() {c();}
public void ¢() {}
public void d() {
at++b();¢();c();

Figure 2. A simple code segment (top) and its corresponding FCN (Feature Coupling Network)
(bottom).

3.3. Software Modularity

In software engineering, developers are advocated to incorporate related attributes and methods
into modules, and reduce the coupling between modules. The “module" in software is very similar to
the concept “community" in complex network research. In complex networks, communities are subsets
of densely connected nodes such there is a higher density of edges in the community than between
communities. Community structure has become one of the most important network properties that
can be observed in many networked systems. Software systems also have community structures
when representing software systems as software networks [11,30]. Generally, packages are the natural
communities of classes and interfaces, and classes and interfaces are the natural communities of
methods and attributes [30]. Thus, we can use the quality index that is used to quantify the community
structure in complex networks to measure software modularity.

In complex networks, many quality indexes have been proposed to evaluate the community
structure such as MQ [31], EVM [32], and modularity (Q) [33]. Arguably, Q proposed by Newman and
Girvan is the most widely used and famous quality index. It is also used to measure the density of
edges within communities compared with edges between communities. In this work, we also use Q to
compute the software modularity. For a weighted undirected network, our modularity metric can be
defined as) ok

Q=7 ZZ]: [Ajj — ﬁ]é(cl» ¢i), 2)
where m is the sum of the weights on all the edges in the network, A;; is the weight on the edge
between nodes i and j, k; and k; are the sum of the weights on the edges attached to nodes i and j,
respectively, ¢; and ¢; are the communities that nodes i and j belong to, respectively, and J is a simple
delta function that takes 1 when c; equals ¢;, 0, otherwise.

Obviously, we can observe from Equation (2) that § function makes sure a coupling between two
nodes from two different communities makes no contribution to Q. Two nodes linked by one edge in
a community make a positive contribution to Q while two isolated nodes in a community provide a
negative contribution to Q.

Generally, a higher modularity value denotes a more reasonable community structure where
nodes in the community densely coupled with each other than between communities. When computing
Q of FCN, we take the class or interface structure in the software as the nature community of methods
and attributes, i.e., methods and attributes defined in the same class or interface belong to the same

Entropy 2019, 21, 344 6 of 14

community. Then, by using Q to FCN, we can obtain the software modularity, which is a measurement
of the degree of the “high cohesion and low coupling" that the software adheres to.

3.4. Pseudo-Code of the Algorithm to Compute Q

Algorithm 1 shows the pseudo-code of the algorithm that we used to compute Q, where k is an
array used to store the the sum of the weights on the edges attached to node 7, and getClass(i) is a
function used to return the class that feature i is defined in.

Algorithm 1 Pseudo-code of the algorithm to compute Q

Input:
FCN, |N| (number of nodes in FCN), and A (¢ in FCN).
Output:
Print the Q.
sum_2m =0, sum_sigma = 0;
: fori =1to |[N| do
k[i] =0; / /k;
forj=1to|N|do
sum_2m += Ali][j]; //2m
if A[i][j] > 0 then
klil+ = A[i][j];
end if
end for
end for
: fori =1to |N|do
forj=1to|N|do
if getClass(i) == getClass(j) then
sum_sigma+ = Ali][j] — k[i] * k[j]/sum_2m;
end if
end for
end for
: Q = sum_sigma/sum_2m;
: print Q;

RS N N U o

el T T T e T S S S S S
RS N A S LU~ S R vl =

4. Evaluations

In this section, we validated our software modularity metric theoretically using the widely accept
criteria, and also empirically evaluated the metric using a set of Java software systems. Our empirical
experiments were carried out on a ThinkPad E420S machine with Window 7 OS, a 2.30 GHz Intel Core
i5-2410M CPU, and 6 GB RAM.

In the following sections, we list the research questions that we focus on (Section 4.1), and our
answers to the research questions (Section 4.2).

4.1. Research Questions

In this work, our evaluations aimed at addressing the following four research questions (RQs):

e RQ1: Does Q satisfy Weyuker’s nine properties? Q is a metric used to measure software
modularity and also can be classified into the category of complexity metrics. Weyuker’s nine
properties are widely used and famous criteria to validate the usefulness of software complex
metrics. We wish to know whether our Q also satisfies Weyuker’s nine properties.

Entropy 2019, 21, 344 7 of 14

e RQ2: What about the Q values obtained in different software systems? Different software systems
may have different Q values. For interests, we wish to examine the Q values obtained in different

software systems.

e RQ3: Can Q tell the software using design patterns from two function-equivalent software
systems? Using design patterns in software development is regarded as an effective way to
improve software quality. However, design pattern implementations may suffer from some of the
typical problems and heavily affect the software modularity. As an effective metric, Q should have
the ability to reflect such a degradation in software modularity. Thus, we wish to know whether
our Q has the ability to tell the software using design pattern from two function-equivalent
software systems (one uses design patterns, and the other not).

o RQ4: Is Q scalable to large software systems? In practise, a software metric will be applied to
software systems with different sizes. Thus, we wish to know whether Q can be applied to larger
software systems.

4.2. Answers to Research Questions

In this section, we performed theoretical analysis and empirical experiments to answer the RQs
raised in Section 4.1.

4.2.1. RQ1: Does Q Satisfy Weyuker’s Nine Properties?

Weyuker’s nine properties are the widely used and most famous criteria to evaluate the efficiency
and robustness of any software complexity metric [14]. It is a theoretical framework that is designed
to check whether a metric is qualified as an effective metric. In this section, we also validate our Q
using Weyuker’s nine properties property-by-property. In the following paragraphs, M denotes any
software complexity metric. In this work, M refers to Q.

Property 1 (Non-coarseness). (3P)(3E)(M(P) # M(E)), where P and E are two different programs.

Proof. Two different Java software systems P and E usually have different feature sets and coupling
sets (couplings between features). Furthermore, their class structures may also be different. Thus,
we can assume that the FCNs built from the two software systems may be different, which results in
different Q values for the two software systems. Therefore, Q does adhere to Property 1. O

Property 2 (Granularity). Let c be a non-negative number; then, there are only finitely many programs P with
M(P) =c.

Proof. Since the universe of discourse deals with a finite number of applications. Thus, there are only
a finite amount of software systems with the same FCNs and class structures which satisfty Q = c.
Therefore, Q does adhere to Property 2. O

Property 3 (Non-uniqueness). There are two different programs P and E such that M(P) = M(E).

Proof. A large number of software systems have been developed and deployed. It is a reasonable
assumption that there might exist two software systems with a same FCN and class structure. Therefore,
Q does adhere to Property 3. [

Property 4 (Design Details are Important). (3P)(3E)(P = E&M(P) # M(E)).

Proof. There are many function-equivalent software systems with different FCNs and class structures.
Thus, their Q values are different. For example, in Table 3, we list two different versions of software
with the same set of functionalities. Obviously, the two different versions have different Q values.
Therefore, Q does adhere to Property 4. 0O

Entropy 2019, 21, 344 8 of 14

Property 5 (Monotonicity). (3P)(3E)(M(P) < M(P+ E)&M(E) < M(P +E)).

Proof. This property is originally proposed to check size-related metrics. Our Q metric is not a
size-related metric. Therefore, Property 5 is not applicable to evaluate our Q metric. [

Property 6 (Non-equivalence of Interaction). (3P)(3E)(3R)(M(P) = M(E))&(M(P+R) = M(E+R)).

Proof. P and E are two different software systems satisfying M(P) = M(E). R is another software
program that can be correctly combined with P and E. Though the combination of P and R may
produce a different FCN when compared with the combination of E and R, their Q values may be
same. For example, suppose that R is a very simple software only with one method defined in one
class. The combination of P and R only adds one isolated node to the FCN of P, which will not affect
the Q value of P. Similarly, the combination of E and R also only adds one isolated node to the FCN
of E, which will not affect the Q value of E. Thus, M(P) = M(E). Therefore, Property 6 is satisfied

by Q. O

Property 7 (Significance of Permutation). For two programs, P and E (E are formed by permuting the order
of the statements of P), and it can be found such that M(P) # M(E).

Proof. This property is originally proposed for procedure-oriented metrics, and does not hold for OO
metrics. Therefore, Property 7 is not satisfied by Q. [

Property 8 (No Change on Renaming). If P is a renaming of E, then M(P) = M(E).
Proof. AsFCN and class structures are independent of the name of software, Q satisfies Property 8. [
Property 9 (Interaction Increases Complexity). (3P)(3E) (M(P)+ M(E) < M(P +E)).

Proof. Suppose P and E are two very simple software systems only with one method defined in one
class; then, we can obtain their Q values being 0, i.e., M(P) = M(E) = 0. It is a reasonable assumption
that combining P and E may result in a new FCN that has edges linking the two nodes together,
making Q > 0,i.e,, M(P + E) > 0. Therefore, Q satisfies Property 9. O

To sum up, our Q metric passes the examination of a large part (7/9) of the Weyuker’s properties,
only with two exceptions, i.e., Properties 5 and 7. As mentioned above, Property 5 is not applicable
to Q since it is proposed for size-related metrics, and our Q is not a size-related metric. Property 7
is not applicable to Q since it is proposed for procedure-oriented metrics, and our metric is an OO
metric. These exceptions have also been observed in other work [16,34-36]. Therefore, our Q metric is
a well-structured metric. It can be used to compute software modularity as a whole.

4.2.2. RQ2: What about the Q Values Obtained in Different Software Systems?

Different software systems usually have different Q values. In this section, we performed
experiments to examine the Q values obtained in different software systems.

(1) Subject Systems

We randomly chose a set of twelve Java software systems (see Table 1) to show the Q values
obtained in different software systems. These systems are open-source and can be downloaded from
their websites. Table 1 provides the basic information of the subject software systems, including
their names, the domains that they belong to, the directory of the source code distribution that we
analyzed, KLOC (thousand lines of code), and the URLs to download the corresponding software
system. Without loss of generality, our subject software systems differ in size from each other, with

Entropy 2019, 21, 344 9of 14

the smallest KLOC being 2.705 and the largest KLOC being 97.880. Note that the KLOC counts the
practical lines of code in the software. It does not include the comment lines and blank lines.

(2) Experiment Process and Results Analysis

According to the steps shown in Figure 1, we analyze the source code, extract the structural
information, and build the FCNs for the twelve software systems. For illustration purposes, we
show the FCNs for the subject software systems jmeter and jfreechart in Figure 3. Enlarging the
corresponding figure can give you the details of the figure such as the feature name that each node
denotes, the edge that exists between some pairs of features, and the weight on each edge.

Table 2 shows the |[N| (number of nodes), |E| (number of edges), and Q of the FCN of the
corresponding software system. Obviously, a large part (8/12) of the subject software systems have a
relative small value of Q with values 0.2 < Q < 0.4. Only four software systems have a Q value larger
than 0.4 and smaller than 0.6.

Table 1. Subject software systems.

Systems Domain Directory KLOC URLs
jmeter-3.0 testing src/core 37.951 https:/ /jmeter.apache.org/
jfreechart-1.0.19 tool source 97.880 http:/ /www jfree.org/
ant-1.6.1 parsers src/main 81.515 https:/ /ant.apache.org/
struts-2.5.2 middleware src/core 48.347 https:/ /struts.apache.org/
freemind-1.0.1 data visualization src 45.049 http:/ /freemind.sourceforge.net/
bcel-6.0 programming src 29.206 https:/ /commons.apache.org/
language
mybatis-3 middleware src 20.385 http:/ /www.mybatis.org
colt-1.2.0 sdk src 34.709 https://dst.Ibl.gov/ACSSoftware/
jbullet-2.72.2.4 middleware com 22.297 http:/ /jbullet.advel.cz/
junit4-r4.12 testing src 9.296 https://junit.org/junit4/
jxtaim-0.1i communications src 12.423 http:/ /jxtaim.sourceforge.net/
commons-email-1.4 communications src 2.705 https:/ /commons.apache.org/

Table 2. Q values of the subject software systems.

Systems |N| |E| Q
jmeter-3.0 3339 2342 0.4292
jfreechart-1.0.19 11,946 9967 0.2429
ant-1.6.1 11,858 14,437 0.3589
struts-2.5.2 5089 3301 0.5099
freemind-1.0.1 6620 8742 0.4062
bcel-6.0 3984 3667 03113
mybatis-3 3193 3131 0.3131
colt-1.2.0 4735 6497 0.4650
jbullet-2.72.2.4 3288 4065 0.3603
junit4-r4.12 1576 1406 0.3277
jxtaim-0.1i 1531 1429 0.3039

commons-email-1.4 375 256 0.3422

https://jmeter.apache.org/
http://www.jfree.org/
https://ant.apache.org/
https://struts.apache.org/
http://freemind.sourceforge.net/
https://commons.apache.org/
http://www.mybatis.org
https://dst.lbl.gov/ACSSoftware/
http://jbullet.advel.cz/
https://junit.org/junit4/
http://jxtaim.sourceforge.net/
https://commons.apache.org/

Entropy 2019, 21, 344 10 of 14

ﬁeﬂa@é runs

«{fs}\ FAARFIL
B i = S
R T

AN TR RS %%¥%%&%%%%**w*
Q ‘\XKNNRXP'\"’XX\\N\"
Js\i}”\x\g\fﬂ\%\ NRX‘\,\N}\!FT “ﬂw'f”%"%’%‘k*{%”“;{XY‘}%%XX%}%&%@X}-

/3."}.‘\1..3_3.,}«3.y\QQm\\\\\“\:\\]\\“\\\“\[\
NESFESSNNNNN
e

TIITIITT

(a) FCN for jmeter. (b) FCN for jfreechart.

feaseas

Figure 3. FCNs for jemter and jfreechart.

4.2.3. RQ3: Can Q Tell the Software Using Design Patterns from Two Function-Equivalent
Software Systems?

Using design patterns in software development is regarded as an effective way to improve
software quality [37]. However, design pattern implementations may suffer from some of the typical
problems and heavily affect the software modularity [38]. Thus, it is reasonable to assume that Q can
be used to tell the software using design pattern from two function-equivalent software systems (one
uses design patterns, and the other not).

(1) Subject Systems

We chose five simple software systems (see Table 3), each of which has two function-equivalent
versions. One version (“before” for short) does not apply any design pattern, and the other (“after” for
short) applies one design pattern. The design pattern each software used is the same as the name of
the software. Table 3 provides the basic information of the subject software systems, including their
names, LOC (lines of code), and |N| and |E| of the FCN of the corresponding software system. Note
that the LOC counts the practical lines of code in the software. It does not include the comment lines
and blank lines.

(2) Experiment Process and Results Analysis

According to the steps shown in Figure 1, we analyze the source code, extract the structural
information, and build the FCNs for the five software systems. For illustration purposes, we show
the FCNs for software “Builder” before and after applying the “Builder” design pattern in Figure 4.

Entropy 2019, 21, 344 11 of 14

Enlarge the figures can give you the details of the figures such as the feature name that each node
denotes, the edge that exists between some pairs of features, and the weight on each edge.

Table 3. Descriptions of the subject software systems and their Q values.

Design Pattern Version LOC |N| |E| Q
) before 130 11 8 0.2656
Builder after 161 29 19 0.2041
) before 59 10 9 —0.0787
Composite after 60 1 8 —0.119%
before 34 13 6 —0.1667
Decorator after 39 15 5 —0.1800
before 112 4 1 0
Iterator after 174 12 7 —0.0078
before 61 5 4 0.1550
State after 83 1 5 0.1200

NO_NAME.JTable_Table.JTab able@S d
dBagLayout_Table.m_table

NO_NAME.BuilderDel

GridBagLayout_Blilder.m_panel

NO_NAME Builder.start] row#void E.Builder.set_widtl_and_height@int@int#void

NO_NAME Builder.build_cell@String#void :_Builder.m_table

NO_NAME GridBaglLayout_Builder.c t_result#C

IO_NAME.GridBagLay L_Builder.start_row#void

NO_NAM| BulldevDe@r@\@Slrlng#void
NO_NAME.JTable Blilder.start_¥@Void % GridLayout_Builder.m_panel
NO_NAMI e_Buildefbuild_cell@String#voi

(b) FCN for Builder (after)

Figure 4. FCNs for the software Builder before and after applying the “Builder” design pattern.

Entropy 2019, 21, 344 12 of 14

Table 3 also shows the Q values that we computed from the five systems. Obviously, the Q
value for the software using design patterns is smaller than that of software that does not use design
patterns. It confirms to our assumption that design pattern implementations indeed will affect
software modularity.

4.2.4. RQ4: Is Q Scalable to Large Software Systems?

In practise, a software metric will be applied to software systems with different sizes. Thus, we
wish to know whether Q can be applied to larger software systems. To this aim, we track the execution
time of each main step to evaluate the scalability of Q. As mentioned in Section 3, our approach is
mainly composed of three steps:

(i) Extracting structural information from the source code of software systems.
(i) Building FCNs for software systems.
(iii) Computing the software modularity according to Equation (2).

In Table 4, we show the CPU time that is required to execute each step of our approach when
applied to subject software systems we chose in Section 4.2.2. We can observe that step (i) is the most
time-consuming step of our approach, and the other two steps take less than one second. Though
jfreechart and ant are large in size with the number of features being 11,946 and 11,858, respectively,
the total CUP time used to compute Q is less than one minute. Thus, our approach can be scalable to
large software systems. It is the answer to RQ4.

Table 4. CPU time required for each step.

Step jmeter jfreechart ant struts freemind bcel mybatis
i 6s 35s 30s 8s 15s 11s 5s
ii Os 0s Os Os 0s 0s 0s
iii 0s 0s Os Os Os Os 0s

Step colt jbullet junit4 jxtaim commons-email
i 13s 7s 2s 2s Os
ii 0s 0s Os 0s 0s
iii Os 0s Os Os Os

5. Conclusions

In this paper, we defined a novel metric, modularity (Q), to measure software modularity from the
perspective of software as a whole. Our metric is based on a network representation (i.e., FCN) of the
software structure at the method and attribute level, and applied the metric (i.e., Q) widely used in
complex network theories to compute the value of software modularity. FCN is a weighted undirected
software network, which considers the coupling frequencies between methods and attributes to assign
weights on the edges.

Our metric is evaluated theoretically using widely accepted criteria, and empirically using
open source software systems. The results show the effectiveness of Q as a metric to measure
software modularity.

Supplementary Materials: The whole data sets generated and/or analyzed during the current study are available

from the corresponding author on reasonable request. The sample data and our own developed software are
available online at https://www.icloud.com/iclouddrive/0zRViWdWuiQkYTueyNbCIB49 A#2018modularity.

Author Contributions: W.P. conceived of the idea and designed the model and wrote the paper; Y.X., H]., Y.Z. and
H.L. performed the simulations and analyzed the data. All authors have read and approved the final manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 61702378
and 61603163), and the Commonwealth Project of Science and Technology Department of Zhejiang Province
(No. LGF19F020007).

https://www.icloud.com/iclouddrive/0zRViWdWuiQkYTueyNbCIB49A#2018modularity

Entropy 2019, 21, 344 13 of 14

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of

this paper.

References

1. Pressman, R.S. Software Engineering: A Practitioner’s Approach; McGraw-Hill: New York, NY, USA, 1992.

2. Sullivan, K.J,; Griswold, W.G.; Cai, Y.F; Hallen, B. The structure and value of modularity in software design.
In Proceedings of the 8th European Software Engineering Conference and 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineering (ESEC/FSE-9), Vienna, Austria, 10-14 September 2001;
pp- 99-108.

3. Fenton, N.E; Pfleeger, S.L. Software Metrics: A Rigorous and Practical Approach, 2nd ed.; International Thomson
Computer Press: London, UK, 1996.

4. Sarkar, S.; Kak, A.C.; Rama, G.M. Metrics for measuring the quality of modularization of large-scale
object-oriented software. IEEE Trans. Softw. Eng. 2008, 34, 700-720. [CrossRef]

5. Mpyers, C.R. Software systems as complex networks: Structure, function, and evolvability of software
collaboration graphs. Phys. Rev. E 2003, 68, 046116. [CrossRef]

6. Potanin, A.; Noble, J.; Frean, M.; Biddle, R. Scale-free geometry in OO programs. Commun. ACM 2005, 48,
99-103. [CrossRef]

7. Concas, G.; Marchesi, M.; Pinna, S.; Serra, N. Power-laws in a large object-oriented software system.
IEEE Trans. Softw. Eng. 2007, 33, 687-708. [CrossRef]

8. Pan, WEF; Ming, H.; Chang, CK,; Yang, Z.].; Kim, D.-K. ElementRank: Ranking Java Software Classes and
Packages using Multilayer Complex Network-Based Approach. IEEE Trans. Softw. Eng. 2019. [CrossRef]

9. Canfora, G.; Cerulo, L.; Cimitile, M.; Penta, M.D. How changes affect software entropy: An empirical study.
Empir. Softw. Eng. 2014, 19, 1-38. [CrossRef]

10. Li, H; Hao, L.Y,; Chen, R. Multi-level formation of complex software systems. Entropy 2016, 18, 178.
[CrossRef]

11. Pan, W.F; Li, B.; Ma, Y.T.; Liu, J. Class structure refactoring of object-oriented softwares using community
detection in dependency networks. Front. Comput. Sci. 2009, 3, 396—404. [CrossRef]

12. Pan, WE; Song, B.B,; Li, K.S.; Zhang, K.J. Identifying key classes in object-oriented software using generalized
k-core decomposition. Future Gener. Comput. Syst. 2018, 81, 188-202. [CrossRef]

13. Pan, W.E; Li, B, Ma, Y.T.; Liu, J. Test case prioritization based on complex software networks.
Acta Electron. Sin. 2012, 40, 2456-2465.

14. Weyuker, EJ. Evaluating software complexity measures. IEEE Trans. Softw. Eng. 1988, 14, 1357-1365.
[CrossRef]

15. Apple Inc. Available online: https://www.icloud.com/iclouddrive/0zRViWdWuiQkY TueyNbCIB49A#
2018modularity (accessed on 23 March 2019).

16. Chidamber, S.R.; Kemerer, C.F. A metrics suite for object-oriented design. IEEE Trans. Softw. Eng. 1994, 20,
476-493. [CrossRef]

17. Eder, J.; Kappel, G.; Schre, M. Coupling and cohesion in object-oriented systems. In Proceedings of the
Conference on Information and Knowledge; ACM Press: New York, NY, USA, 1992.

18. Ott, L.M.; Bieman,].M. Program slices as an abstraction for cohesion measurement. Inf. Softw. Technol. 1998,
40, 691-699. [CrossRef]

19. Bieman,].M.; Kang, B.K. Cohesion and reuse in an objectoriented system. In Proceedings of the Symposium
on Software Reusability (SSR 1995), Seattle, WA, USA, 29-30 April 1995; pp. 259-262.

20. Bansiya, J.; Davis, C. A hierarchical model for objectoriented design quality assessment. IEEE Trans.
Softw. Eng. 2002, 28, 4-17. [CrossRef]

21. Briand, L.C.; Morasca, S.; Basili, V.R. Defining and validating measures for object-based high-level design.
IEEE Trans. Softw. Eng. 1999, 25, 722-743. [CrossRef]

22. Morris, K. Metrics for Object-Oriented Software Development Environments. Master’s Thesis, Sloan School
of Management, MIT, Cambridge, MA, USA, 1989.

23. Patel, S.; Chu, W.C.; Baxter, R. A measure for composite module cohesion. In Proceedings of the 14th

International Conference on Software Engineering, Melbourne, Australia, 11-15 May 1992; pp. 38—48.

http://dx.doi.org/10.1109/TSE.2008.43
http://dx.doi.org/10.1103/PhysRevE.68.046116
http://dx.doi.org/10.1145/1060710.1060716
http://dx.doi.org/10.1109/TSE.2007.1019
http://dx.doi.org/10.1109/TSE.2019.2946357
http://dx.doi.org/10.1007/s10664-012-9214-z
http://dx.doi.org/10.3390/e18050178
http://dx.doi.org/10.1007/s11704-009-0054-y
http://dx.doi.org/10.1016/j.future.2017.10.006
http://dx.doi.org/10.1109/32.6178
https://www.icloud.com/iclouddrive/0zRViWdWuiQkYTueyNbCIB49A#2018modularity
https://www.icloud.com/iclouddrive/0zRViWdWuiQkYTueyNbCIB49A#2018modularity
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1016/S0950-5849(98)00092-5
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/32.815329

Entropy 2019, 21, 344 14 of 14

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Martin, R. Agile Software Development, Principles, Patterns, and Practices; Prentice-Hall: New York, NY,
USA, 2002.

Lee, Y.S.; Liang, B.S. Measuring the coupling and cohesion of an object-oriented program based on
information flow. In Proceedings of the International Conference on Software Quality, Maribor, Slovenia,
6-8 November 1995; pp. 81-90.

Jenkins, S.; Kirk, S.R. Software architecture graphs as complex networks: A novel parttion scheme to measure
stability and evolution. Inf. Sci. 2007, 177, 2587-2601. [CrossRef]

Qu, Y,; Guan, X.H.; Zheng, Q.H.; Liu, T.; Wang, L.D.; Hou, Y.Q.; Yang, Z.]. Exploring community structure of
software call graph and its applications in class cohesion measurement. . Syst. Softw. 2015, 108, 193-210.
[CrossRef]

Gu, A H,; Zhou, X.F; Li, Z.H.; Li, Q.F; Li, L. Measuring Object-Oriented Class Cohesion Based on Complex
Networks. Arab. J. Sci. Eng. 2017, 42, 3551-3561. [CrossRef]

Zhang, J.; Wu, J.].; Xia, Y.X.; Ye, EH. Measuring cohesion of software systems using weighted directed
complex networks. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems
(ISCAS 2018), Florence, Italy, 27-30 May 2018; pp. 1-5.

Pan, W.E; Li, B.; Jiang, B.; Liu, K. RECODE: Software package refactoring via community detection in
bipartite software networks. Adv. Complex Syst. 2014, 17, 1450006. [CrossRef]

Mancoridis, S.; Mitchell, B.S.; Rorres, C.; Chen, Y.; Gansner, E.R. Using automatic clustering to produce
high-level system organizations of source code. In Proceedings of Sixth International Workshop on Program
Comprehension (IWPC 1998), Ischia, Italy, 26 June 1998; pp. 45-53.

Tucker, A.; Swift, S.; Liu, X. Variable grouping multivariate time series via correlation. IEEE Trans. Syst. Man
Cybern. Part B Cybern. 2001, 31, 235-245. [CrossRef]

Newman, M.E]. Fast algorithm for detecting community structure in networks. Phys. Rev. 2004, 69, 066133.
[CrossRef]

Cherniavsky, J.C.; Smith, C.H. On Weyuker’s axioms for software complexity measures. IEEE Trans.
Softw. Eng. 1991, 17, 636-638. [CrossRef]

Gursaran; Roy, G. On the applicability of Weyuker Property 9 to object-oriented structural inheritance
complexity metrics. IEEE Trans. Softw. Eng. 2001, 27, 381-384. [CrossRef]

Harrison, W. An entropy-based measure of software complexity. IEEE Trans. Softw. Eng. 1992, 18, 1025-1029.
[CrossRef]

Tsantalis, N.; Chatzigeorgous, E.; Stephanides, G.; Halkidis, S.T. Design pattern detection using similarity
scoring. IEEE Trans. Softw. Eng. 2006, 32, 896-909. [CrossRef]

Monteiro, M.P.,; Gomes,]J. Implementing design patterns in Object Teams. Softw. Pract. Exp. 2013,
43,1519-1551. [CrossRef]

@ (© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2007.01.021
http://dx.doi.org/10.1016/j.jss.2015.06.015
http://dx.doi.org/10.1007/s13369-017-2588-x
http://dx.doi.org/10.1142/S0219525914500064
http://dx.doi.org/10.1109/3477.915346
http://dx.doi.org/10.1103/PhysRevE.69.066133
http://dx.doi.org/10.1109/32.87287
http://dx.doi.org/10.1109/32.917526
http://dx.doi.org/10.1109/32.177371
http://dx.doi.org/10.1109/TSE.2006.112
http://dx.doi.org/10.1002/spe.2154
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	The Proposed Approach
	Software Information Extraction
	Feature Coupling Network
	Software Modularity
	Pseudo-Code of the Algorithm to Compute Q

	Evaluations
	Research Questions
	Answers to Research Questions
	RQ1: Does Q Satisfy Weyuker's Nine Properties?
	RQ2: What about the Q Values Obtained in Different Software Systems?
	RQ3: Can Q Tell the Software Using Design Patterns from Two Function-Equivalent Software Systems?
	RQ4: Is Q Scalable to Large Software Systems?

	Conclusions
	References

