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Abstract: In the present article, we related the analytical solution of the fractional-order dispersive
partial differential equations, using the Laplace–Adomian decomposition method. The Caputo
operator is used to define the derivative of fractional-order. Laplace–Adomian decomposition
method solutions for both fractional and integer orders are obtained in series form, showing higher
convergence of the proposed method. Illustrative examples are considered to confirm the validity of
the present method. The fractional order solutions that are convergent to integer order solutions are
also investigated.

Keywords: Laplace–Adomian decomposition method; third-order dispersive equations; Caputo
operator; analytical solution

1. Introduction

Partial differential equations (PDEs) are used to model different physical phenomena in various
areas of applied sciences such as fluid dynamics, mathematical biology, quantum mechanics, chemical
kinetics and linear optics. In 1895, the Korteweg–de and Vries derived a non dimensionalized version
of an equation, known as the KdV equation. This model is used for the study of dispersive wave
phenomena in numerous fields of science and technology, like plasma physics and quantum mechanics.
The exact solution of the KdV may not be available, therefore a lot of analytical techniques have been
discussed for its approximate solution [1]. There are two important dispersive terms, namely third
and fifty order in KdV equations. The KdV equation of order five has been used to describe plasma
physics [2]. Numerical solutions of the fifth and third order dispersive KdV equations have been
studied in [3].

The non-linear nature is responsible for the complete study of any physical system, which shows
the importance of a non-linear term present in any model of the physical problems. In this connection,
reductive perturbation theories have been studied in [4] for the non-linear KdV. A variational method
has been suggested in [5] for the exact solution of KdV with higher-order nonlinearity. Numerical
solutions for the KdV Burgers equation have been successfully derived in [6] by using a compact-type
constrained interpolation profile method. Numerical results of KdV equations of order five are
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presented in [1] using homotopy perturbation transform method. The KdV equations of order
three and five have been discussed in [3] by using two numerical methods. Entropies based on
fractional calculus [7], integer and fractional dynamical systems can be solved by entropy analysis [8],
nonlinear partial differential equations [9] in entropy and convexity, as well as ractional derivative
advection–diffusion in two-dimensional semi-conductor systems and the dynamics of a national
soccer league [10,11]. The exact solution to differential equations (DEs) of fractional order with mixed
partial derivatives [12] are fractional linear differential equations with constant coefficients in Laplace
transform [13]. Laplace homotopy analysis method (LHAM) can be used to solve FDEs [14] systems of
non-linear FPDEs in a new analytical technique [15]. The solution to non-linear coupled space-time
fractional modified KdV equations was obtained by Feng’s first integral method [16]. Fractional PDEs
of order three have been solved by different methods, such as fractional variational iteration method
(FVIM) [17], classical Riccati equations method [18], fractional differential transform method(FDTM)
and modified fractional differential transform method (MFDTM) [19], spline method (SM) [20] and
homotopy analysis Sumudu transform method (HASTM) [21].

Among all these methods, the Laplace–Adomian decomposition method (LADM) is an efficient
analytical method to solve non-linear FDES. LADM is the combination of two powerful techniques,
the Adomian decomposition method and the Laplace transform. Further, LADM does not requireme
the predefined size declaration like the Runge–Kutta method. Therefor this technique is considered, an
ideal for those equations that represent nonlinear models. As compared to other analytical techniques,
LADM have less parameters, therefore LADM is an efficient technique, requiring no discretization and
linearization [22]. A comparison between the LADM and ADM for the analysis of FDEs is given in [23].
The Kundu–Eckhaus equation deals with quantum field theory, and the analytical solution of this
nonlinear PDEs has been studied in [24] using LADM. Multi-step Laplace Adomian decomposition
method have been described in [25] for non-linear FDEs. Analysis of smoke model have been studied
successfully by using LADM [26].

In view of the above literature, we made a successful attempt to obtain the analytical results of
dispersive FPDEs, using LADM. The results of the LADM are interesting and in better contact with
exact solutions for the problems.

2. Definitions and Preliminaries of Concepts

In this unit, among a few definitions of fractional calculus, presented in the article due to Riemann
Liouville, Grunewald Letnikov, Caputo, etc., first folk’s simple descriptions and introductions are
reconsidered, which we want to comprehend for our education.

Definition 1. R–L fractional integral

Iγ
x g(x) =

g(x) if γ = 0
1

Γ(γ)

∫ x
0 (x− υ)γ−1g(υ)dυ if γ > 0,

where Γ denotes the gamma function define by,

Γ(ω) =
∫ ∞

0
e−xxω−1dx ω ∈ C,

In this study, Caputo et al. [27] suggested a revise fractional derivative operator in order to overcome
inconsistency measured in the Riemann Liouville derivative [27,28]. The above mathematical statement described
a Caputo fractional derivative operator of initial and boundary condition for fractional as well as integer
order derivative.
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Definition 2. The Caputo operator of order γ for a fractional derivative is given by the following mathematical
expression for n ∈ N, x > 0, g ∈ Ct, t ≥ −1.

Dγg(x) =
∂γg(x)

∂tγ
=

In−γ
[

∂γg(x)
∂tγ

]
, if n− 1 < γ ≤ n, n ∈ N

∂γg(x)
∂tγ ,

Hence, we require the subsequent properties given in the next Lemma.

Lemma 1. If n− 1 < γ ≤ n with n ∈ N and g ∈ Ct with t ≥ −1, then

Iγ Iag(x) = Iγ+ag(x), a, γ≥0.

Iγxλ =
Γ(λ + 1)

Γ(γ + λ + 1)
xγ+λ, γ > 0, λ > −1, x > 0.

IγDγg(x) = g(x)−
n−1

∑
k=0

g(k)(0+)
xk

k!
, for x > 0, n− 1 < γ ≤ n.

In current study, the Caputo operator is reasonable as other fractional derivative operators have certain
disadvantages. Further information about fractional derivatives, are found in [29,30].

Definition 3. The Laplace transform of h(t), t > 0 is defined by [31]

H(s) = L[h(t)] =
∫ ∞

0
e−sth(t)dt.

Definition 4. The Laplace transform in term of convolution is given by

L[h1 ∗ h2] = L[h1(t)] ∗ L[h2(t)],

here h1 ∗ h2 define the convolution between h1 and h2,

(h1 ∗ h2)t =
∫ τ

0
h1(τ)h2(t− τ)dt.

The fractional derivative in term of a Laplace transform is

L
(

Dγ
t h(t)

)
= sγH(s)−

n−1

∑
k=0

sγ−1−kh(k)(0), n− 1 < γ < n,

where H(s) is the Laplace transform of h(t).

Definition 5. The Mittag–Leffler function, Eγ(p) for γ > 0 is represented as,

Eγ(p) =
∞

∑
n=0

pn

Γ(γn + 1)
γ > 0, p ∈ C.

Theorem 1. Here, we will study the convergence analysis as same manner in [32] of the LADM applied
to the fractional dispersive PDE of order three. Let us consider the Hilbert space H which may define by
H = L2((α, β)X[0, T]) the set of applications:

u : (α, β)X[0, T]→ with
∫
(α,β)X[0,T]

u2(x, s)dsdθ < +∞.
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Now we consider the fractional dispersive PDE of order three in the above assumptions and let us denote

L(u) =
∂γu
∂tγ

,

then the fractional dispersive PDE becomes, in an operator form

L(u) = −ϕ
∂ν(x, t)

∂x
− w

∂3ν(x, t)
∂x3 .

The LADM is convergence, if the following two hypotheses are satisfied:

(H1)(L(u)− L(v), u− v)≥k‖u− v‖2; k > 0, ∀u, vεH.

H(2) whatever may be M > 0, there exist a constant C(M) > 0 such that for u, vεH with ‖u‖≤M,
‖v‖≤M we have (L(u)− L(v), u− v)≤C(M)‖u− v‖‖w‖ for every wεH.

3. Idea of Fractional Laplace–Adomian Decomposition Method

3.1. LADM for Dispersive Equation of One-Dimensional

In this section, LADM is implemented to solve fractional dispersive PDE of order three.

∂γν(x, t)
∂tγ

+ w
∂3ν(x, t)

∂x3 = q(x, t), w, t ≥ 0, m− 1 < γ < m, (1)

q(x, t) is the source function.
Subject to initial and boundary conditions

ν(x, 0) = k(x), (2)

ν(0, t) = l0(t),

νx(0, t) = l1(t),

νxx(0, t) = l2(t).

(3)

With the help of Laplace transform, Equation (1) can be written as

L
[

∂γν(x, t)
∂tγ

]
+ L

[
w

∂3ν(x, t)
∂x3

]
= L [q(x, t)] , (4)

L [ν(x, t)] =
k(x)

s
+

1
sγ
L [q(x, t)]− 1

sγ
L
[

w
∂3ν(x, t)

∂x3

]
. (5)

The LADM solution ν(x, t) is represented by the following infinite series

ν(x, t) =
∞

∑
j=0

νj(x, t), (6)

and the nonlinear terms (if any) in problem are defined by the infinite series of Adomian polynomials,

Nν(x, t) =
∞

∑
j=0

Aj, (7)

Aj =
1
j!

[
dj

dλj

[
N

∞

∑
j=0

(λjνj)

]]
λ=0

, j = 0, 1, 2... , (8)
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and substitution of Equations (5) and (6) into Equation (4), we get

L
[

∞

∑
j=0

ν(x, t)

]
=

k(x)
s

+
1
sγ
L [q(x, t)]− 1

sγ
L
[

w
∂3νj(x, t)

∂x3

]
. (9)

Applying the linearity of the Laplace transform,

L [ν0(x, t)] =
ν(x, 0)

s
+

1
sγ
L [q(x, t)] = k(x, s),

L [ν1(x, t)] = − 1
sγ
L
[

w
∂3ν0(x, t)

∂x3

]
.

Generally, we can write

L
[
νj+1(x, t)

]
= − 1

sγ
L
[

∂3νj(x, t)
∂x3

]
, j ≥ 1. (10)

Applying the inverse Laplace transform in Equation (9)

ν0(x, t) = k(x, t),

νj+1(x, t) = −L−1

[
1
sγ
L
[

∂3νj(x, t)
∂x3

]]
. (11)

3.2. LADM for Dispersive Equation of Higher-Dimension

A dispersive PDE in higher dimension is represented as,

ν
γ
t + cνxxx + dνyyy + eνzzz = q(x, y, z, t),

t ≥ 0, c, d, e ≥ 0, m− 1 < γ < m,
(12)

where the source function is denoted by q(x, y, z, t). The initial condition is

ν(x, y, z, 0) = k(x, y, z). (13)

With the help of a Laplace transform, Equation (12) can be written as

L
[
ν

γ
t
]
+ L

[
cνxxx + dνyyy + eνzzz

]
= L [q(x, y, z, t)] , (14)

and using the differentiation property of the Laplace transform, we get

L
[

∞

∑
j=0

ν(x, y, z, t)

]
=

k(x, y, z)
s

+
1
sγ
L [q(x, y, z, t)]

− 1
sγ
L
[
cνxxx + dνyyy + eνzzz

]
.

(15)

Applying the linearity of the Laplace transform,

L [ν0(x, y, z, t)] =
ν(x, y, z, 0)

s
+

1
sγ
L [q(x, y, z, t)] = k(x, y, z, s),

L [ν1(x, y, z, t)] = − 1
sγ
L
[
cν0xxx + dν0yyy + eν0zzz

]
.



Entropy 2019, 21, 335 6 of 17

Generally, we can write

L
[
νj+1(x, y, z, t)

]
= − 1

sγ
L
[
cνjxxx + dνjyyy + eνjzzz

]
, j ≥ 1. (16)

Applying the inverse Laplace transform, in Equation (15)

ν0(x, y, z, t) = k(x, y, z, t),

νj+1(x, y, z, t) = −L−1
[

1
sγ
L
[
cνjxxx + dνjyyy + eνjzzz

]]
. (17)

4. Results

Example 1. Consider the following fractional dispersive KdV in Equation [33]

∂γν

∂tγ
+ 2

∂ν

∂x
+

∂3ν

∂x3 = 0, t > 0, 0 < γ≤1, (18)

with the initial condition
ν(x, 0) = sin x. (19)

Taking the Laplace transform of Equation (18),

L
[

∂γν

∂tγ

]
= −L

[
2

∂ν

∂x
+

∂3ν

∂x3

]
,

sγL [ν(x, t)]− sγ−1 [ν(x, 0)] = −L
[

2
∂ν

∂x
+

∂3ν

∂x3

]
.

Applying the inverse Laplace transform

ν(x, t) = L−1
[

ν(x, 0)
s
− 1

sγ
L
[

2
∂ν

∂x
+

∂3ν

∂x3

]]
,

ν(x, t) = sin x−L−1
[

1
sγ
L
[

2
∂ν

∂x
+

∂3ν

∂x3

]]
.

Using the ADM procedure, we get

∞

∑
j=0

νj(x, t) = sin x−L−1

[
1
sγ
L
[

2
∞

∑
j=0

∂νj

∂x
+

∞

∑
j=0

∂3νj

∂x3

]]
,

ν0(x, t) == sin x, (20)

νj+1(x, t) = −L−1

[
1
sγ
L
[

2
∞

∑
j=0

∂νj

∂x
+

∞

∑
j=0

∂3νj

∂x3

]]
,
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for j = 0, 1, 2, ..

ν1(x, t) = −L−1
[

1
sγ
L
[

2
∂ν0

∂x
+

∂3ν0

∂x3

]]
,

ν1(x, t) = −L−1
[cos x

sγ+1

]
= − cos x

tγ

Γ(γ + 1)
,

ν2(x, t) = −L−1
[

1
sγ
L
[

2
∂ν1

∂x
+

∂3ν1

∂x3

]]
,

ν2(x, t) = −L−1
[

sin x
s2γ+1

]
= − sin x

t2γ

Γ(2γ + 1)
.

(21)

The subsequent terms are

ν3(x, t) = −L−1
[

1
sγ
L
[

2
∂ν2

∂x
+

∂3ν2

∂x3

]]
,

ν3(x, t) = −L−1
[ cos x

s3γ+1

]
= cos x

t3γ

Γ(3γ + 1)
.

(22)

The LADM solution for Example 1 is

ν(x, t) = ν0(x, t) + ν1(x, t) + ν2(x, t) + ν3(x, t) + ...,

ν(x, t) = sin x− cos x
tγ

Γ(γ + 1)
− sin x

t2γ

Γ(2γ + 1)
+ cos x

t3γ

Γ(3γ + 1)
+ ...,

and so on. The solution in a series form is given by

ν(x, t) = sin x
(

1− t2γ

Γ(2γ + 1)
+

t4γ

Γ(4γ + 1)
− ...

)
− cos x

(
tγ

Γ(γ + 1)
− t3γ

Γ(3γ + 1)
+

t5γ

Γ(5γ + 1)
− ...

)
,

(23)

when γ = 1, then the LADM solution is

ν(x, t) = sin (x− t). (24)

Figure 1 consists of four graphs; (a) the exact solution of ν(x, t) and (b) LADM solution ν(x, t)
of Example 1 at γ = 1. Figure 1a,b indicate that the present method has strong agreement with the
exact solution for the problem. In Figure 1c,d, two graphs (c) and (d) are given, that represent the
analytical solution of Example 1 at fractional γ = 0.75 and 0.50, respectively. Figure 1c,d reflects that
fractional-order approaches to integer order solution surfaces of fractional order are convergent to
the integer order surface. It means that physically we can model any of the surfaces as desired by the
physical phenomena occurring in nature.

Example 2. We next consider the following fractional dispersive KdV equation [33]

∂γν

∂tγ
+

∂3ν

∂x3 +
∂3ν

∂y3 = 0, t > 0, 0 < γ≤1, (25)

with initial condition
ν(x, y, 0) = cos (x + y). (26)
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Taking Laplace transform of Equation (25),

L
[

∂γν

∂tγ

]
= −L

[
∂3ν

∂x3 +
∂3ν

∂y3

]
,

sγL [ν(x, y, t)]− sγ−1 [ν(x, y, 0)] = −L
[

∂3ν

∂x3 +
∂3ν

∂y3

]
.

Applying the inverse Laplace transform

ν(x, y, t) = L−1
[

ν(x, y, 0)
s

− 1
sγ
L
[

∂3ν

∂x3 +
∂3ν

∂y3

]]
,

ν(x, y, t) = cos(x + y)−L−1
[

1
sγ
L
[

∂3ν

∂x3 +
∂3ν

∂y3

]]
.

Using ADM procedure, we get

∞

∑
j=0

νj(x, y, t) = cos (x + y)−L−1

[
1
sγ
L
[

∞

∑
j=0

∂3νj

∂x3 +
∞

∑
j=0

∂3νj

∂y3

]]
,

ν0(x, y, t) = cos (x + y), (27)

νj+1(x, y, t) = −L−1

[
1
sγ
L
[

∞

∑
j=0

∂3νj

∂x3 +
∞

∑
j=0

∂3νj

∂y3

]]
,

for j = 0, 1, 2, ..

ν1(x, y, t) = −L−1
[

1
sγ
L
[

∂3ν0

∂x3 +
∂3ν0

∂y3

]]
,

ν1(x, y, t) = −2 sin (x + y)L−1
[

1
sγ+1

]
= −2 sin (x + y)

tγ

Γ(γ + 1)
,

ν2(x, y, t) = −L−1
[

1
sγ
L
[

∂3ν1

∂x3 +
∂3ν1

∂y3

]]
,

ν2(x, y, t) = −4 cos(x + y)L−1
[

1
s2γ+1

]
= −4 cos(x + y)

t2γ

Γ(2γ + 1)
.

(28)
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Figure 1. The (a) exact and (b) Laplace–Adomian decomposition method (LADM) solutions of ν(x, t)
of Example 1, at γ = 1. The LADM solution of ν(x, t) of Example 1, at (c) γ = 0.75 and (d) γ = 0.50.

The subsequent terms are

ν3(x, y, t) = −L−1
[

1
sγ
L
[

∂3ν2

∂3x
+

∂3ν2

∂y3

]]
,

ν3(x, y, t) = 8 sin (x + y)L−1
[

1
s3γ+1

]
= 8 sin (x + y)

t3γ

Γ(3γ + 1)
.

(29)

The LADM solution for Example 2 is

ν(x, y, t) = ν0(x, y, t) + ν1(x, y, t) + ν2(x, y, t) + ν3(x, y, t) + ...,

ν(x, y, t) = cos (x + y)− 2 sin (x + y)
tγ

Γ(γ + 1)
− 4 cos(x + y)

t2γ

Γ(2γ + 1)

+ 8 sin (x + y)
t3γ

Γ(3γ + 1)
+ ...,
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and so on. The solution in a series form is given by

ν(x, y, t) = cos (x + y)
(

1− 4t2γ

Γ(2γ + 1)
+

16t2γ

Γ(2γ + 1)
− . . .

)
− sin (x + y)

(
2tγ

Γ(γ + 1)
− 8t3γ

Γ(3γ + 1)
+

32t5γ

Γ(5γ + 1)
− . . .

)
,

(30)

when γ = 1, then LADM solution is

ν(x, y, t) = cos (x + y + 2t). (31)

Figure 2 consists of four graphs; (a) the exact solution of ν(x, y, t) and (b) LADM solution ν(x, y, t)
of Example 2 at γ = 1. Figure 2a,b indicate that the present method has strong agreement with exact
solution for the problem. In Figure 2c,d, two graphs (c) and (d) are given, that represents the analytical
solution of Example 2 at fractional γ = 0.75 and 0.50 respectively. Figure 2c,d reflects that as fractional
order approaches to integer order the solution surfaces of fractional order are convergent to the integer
order surface. It means that physically we can model any of the surfaces as desired by the physical
phenomena occurring in nature.

Example 3. Consider the following non-homogeneous fractional dispersive KdV equation [33]

∂γν

∂tγ
+

∂3ν

∂x3 = −sin πx sin t− π3cos πx cos t, 0 < γ≤1, (32)

with initial condition
ν(x, 0) = sin πx. (33)

Taking Laplace transform of Equation (32),

L
[

∂γν

∂tγ

]
= L

[
−sin πx sin t− π3cos πx cos t

]
−L

[
∂3ν

∂x3

]
,

sγL [ν(x, t)]− sγ−1 [ν(x, 0)] = L
[
−sin πx sin t− π3cos πx cos t

]
−L

[
∂3ν

∂x3

]
.

Applying an inverse Laplace transform

ν(x, t) = L−1
[

ν(x, 0)
s

+
1
sγ
L
[
−sin πx sin t− π3cos πx cos t

]
− 1

sγ
L
[

∂3ν

∂x3

]]
,

ν(x, t) = L−1
[

sin πx
s

]
+ L−1

[
1
sγ
L
[
−sin πx sin t− π3cos πx cos t

]]
−L−1

[
1
sγ
L
[

∂3ν

∂x3

]]
.
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Figure 2. The (a) Exact and (b) LADM solutions of ν(x, y, t) of Example 2, at γ = 1. The LADM solution
of ν(x, y, t) of Example 2, at (c) γ = 0.75 and (d) γ = 0.50.

Using the ADM procedure, we get

∞

∑
j=0

νj(x, t) = L−1
[

sin πx
s

]
+ L−1

[
1
sγ
L
[
−sin πx(t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!
)

]]

+ L−1
[

1
sγ
L
[
−π3cos πx(1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!
)

]]
−L−1

[
1
sγ
L
[

∞

∑
j=0

∂3νj

∂x3

]]
,

ν0(x, t) = sin πx

− sin πx
(

tγ+1

Γ(γ + 2)
− tγ+3

Γ(γ + 4)
+

tγ+5

Γ(γ + 6)
− tγ+7

Γ(γ + 8)
+

tγ+9

Γ(γ + 10)

)
− π3 cos πx

(
tγ

Γ(γ + 1)
− tγ+2

Γ(γ + 3)
+

tγ+4

Γ(γ + 5)
− tγ+6

Γ(γ + 7)
+

tγ+8

Γ(γ + 9)

)
,

(34)

νj+1(x, t) = −L−1

[
1
sγ
L
[

∞

∑
j=0

∂3νj

∂x3

]]
,
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for j = 0, 1, 2, ..

ν1(x, t) = −L−1
[

1
sγ
L
[

∂3ν0

∂x3

]]
,

ν1(x, t) = π3 cos πx
tγ

Γ(γ + 1)

− π3 cos πx
(

t2γ+1

Γ(2γ + 2)
− t2γ+3

Γ(2γ + 4)
+

t2γ+5

Γ(2γ + 6)
− t2γ+7

Γ(2γ + 8)
+

t2γ+9

Γ(2γ + 10)

)
+ π6 sin πx

(
t2γ

Γ(2γ + 1)
− t2γ+2

Γ(2γ + 3)
+

t2γ+4

Γ(2γ + 5)
− t2γ+6

Γ(2γ + 7)
+

t2γ+8

Γ(2γ + 9)

)
,

ν2(x, t) = −L−1
[

1
sγ
L
[

∂3ν1

∂x3

]]
,

ν2(x, t) = −π6 sin πx
t2γ

Γ(2γ + 1)

+ π6 sin πx
(

t3γ+1

Γ(3γ + 2)
− t3γ+3

Γ(3γ + 4)
+

t3γ+5

Γ(3γ + 6)
− t3γ+7

Γ(3γ + 8)
+

t3γ+9

Γ(3γ + 10)

)
+ π9 cos πx

(
t3γ

Γ(3γ + 1)
− t3γ+2

Γ(3γ + 3)
+

t3γ+4

Γ(3γ + 5)
− t3γ+6

Γ(3γ + 7)
+

t3γ+8

Γ(3γ + 9)

)
.

(35)

The LADM solution for Example 3 is

ν(x, t) = ν0(x, t) + ν1(x, t) + ν2(x, t) + ν3(x, t) + . . . ,

ν(x, t) = sin πx

− sin πx
(

tγ+1

Γ(γ + 2)
− tγ+3

Γ(γ + 4)
+

tγ+5

Γ(γ + 6)
− tγ+7

Γ(γ + 8)
+

tγ+9

Γ(γ + 10)

)
− π3 cos πx

(
tγ

Γ(γ + 1)
− tγ+2

Γ(γ + 3)
+

tγ+4

Γ(γ + 5)
− tγ+6

Γ(γ + 7)
+

tγ+8

Γ(γ + 9)

)
+ π3 cos πx

tγ

Γ(γ + 1)

− π3 cos πx
(

t2γ+1

Γ(2γ + 2)
− t2γ+3

Γ(2γ + 4)
+

t2γ+5

Γ(2γ + 6)
− t2γ+7

Γ(2γ + 8)
+

t2γ+9

Γ(2γ + 10)

)
+ π6 sin πx

(
t2γ

Γ(2γ + 1)
− t2γ+2

Γ(2γ + 3)
+

t2γ+4

Γ(2γ + 5)
− t2γ+6

Γ(2γ + 7)
+

t2γ+8

Γ(2γ + 9)

)
− π6 sin πx

t2γ

Γ(2γ + 1)

+ π6 sin πx
(

t3γ+1

Γ(3γ + 2)
− t3γ+3

Γ(3γ + 4)
+

t3γ+5

Γ(3γ + 6)
− t3γ+7

Γ(3γ + 8)
+

t3γ+9

Γ(3γ + 10)

)
+ π9 cos πx

(
t3γ

Γ(3γ + 1)
− t3γ+2

Γ(3γ + 3)
+

t3γ+4

Γ(3γ + 5)
− t3γ+6

Γ(3γ + 7)
+

t3γ+8

Γ(3γ + 9)

)
+ ...

when γ = 1, then the LADM solution is

ν(x, t) = sin πx cos t. (36)

Figure 3 consists of three graphs; (a) the exact solution of ν(x, t) and (b) LADM solution ν(x, t)
of Example 3 at γ = 1. Figure 3a,b indicate that the present method has strong agreement with exact
solution for the problem. In Figure 3c, graphs (c) are given, that represent the analytical solution of
Example 3 at fractional γ = 0.75 respectively. Figure 3c reflects that the fractional order approaches
to integer order, the solution surfaces of fractional order are convergent to the integer order surface.
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It means that physically we can model, any of the surfaces as desired by the physical phenomena
occurring in nature.

Figure 3. The (a) Exact and (b) LADM solutions of ν(x, t) of Example 3, at γ = 1. The LADM solution
of ν(x, t) of Example 3, at (c) γ = 0.75.

Example 4. Consider the following non-homogeneous fractional dispersive KdV equation in three dimensional
space [33]

∂γν

∂tγ
+

∂3ν

∂x3 +
1
8

∂3ν

∂y3 +
1

27
∂3ν

∂z3 = −sin(x + 2y + 3z) cos t

+ sin(x + 2y + 3z) cos t, t > 0, 0 < γ≤1,
(37)

with the initial condition
ν(x, y, z, 0) = 0. (38)

Taking Laplace transform of Equation (37),

L
[

∂γν

∂tγ

]
= L [sin(x + 2y + 3z) cos t]−L [3 cos(x + 2y + 3z) sin t]

−L
[

∂3ν

∂x3 +
1
8

∂3ν

∂y3 +
1
27

∂3ν

∂z3

]
,
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sγL [ν(x, y, z, t)]− sγ−1 [ν(x, y, z, 0)] = L [sin (x + 2y + 3z) cos t]

−L [3 cos(x + 2y + 3z) sin t]−L
[

∂3ν

∂x3 +
1
8

∂3ν

∂y3 +
1

27
∂3ν

∂z3

]
.

Applying inverse Laplace transform

ν(x, y, z, t) = L−1
[

ν(x, y, z, 0)
s

+
1
sγ
L [sin (x + 2y + 3z) cos t]

]
+ L−1

[
1
sγ
L [−3 cos (x + 2y + 3z) sin t]

]
−L−1

[
1
sγ
L
[

∂3ν

∂x3 +
1
8

∂3ν

∂y3 +
1

27
∂3ν

∂z3

]]
,

ν0(x, y, z, t) = L−1
[

1
sγ
L
[

sin (x + 2y + 3z)
(

1− t2

2!
+

t4

4!
− t6

6!
+

t8

8!

)]]
.

Using the ADM procedure, we get

∞

∑
j=0

νj(x, y, t) = L−1
[

1
sγ
L
[
−3 cos (x + 2y + 3z)

(
t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!

)]]

−L−1

[
1
sγ
L
[

∞

∑
j=0

∂3νj

∂x3 +
1
8

∞

∑
j=0

∂3νj

∂y3 +
1

27

∞

∑
j=0

∂3νj

∂z3

]]
,

ν0(x, y, z, t) =

sin(x + 2y + 3z)
(

tγ

Γ(γ + 1)
− tγ+2

Γ(γ + 3)
+

tγ+4

Γ(γ + 5)
− tγ+6

Γ(γ + 7)
+

tγ+8

Γ(γ + 9)

)
,

(39)

ν1(x, y, z, t) = L−1
[

1
sγ
L
[
−3 cos (x + 2y + 3z)

(
t− t3

3!
+

t5

5!
− t7

7!
+

t9

9!

)]]
−L−1

[
1
sγ
L
[

∂3ν0

∂x3 +
1
8

∂3ν0

∂y3 +
1

27
∂3ν0

∂z3

]]
,

νj+1(x, y, z, t) = −L−1

[
1
sγ
L
[

∞

∑
j=0

∂3νj

∂x3 +
1
8

∞

∑
j=0

∂3νj

∂y3 +
1

27

∞

∑
j=0

∂3νj

∂z3

]]
,

for j = 0, 1, 2, . . .

ν1(x, y, z, t) = 0,

νj+1(x, y, z, t) = 0.
(40)

This readily yields the exact solution

ν(x, y, z, t) =

sin(x + 2y + 3z)
(

tγ

Γ(γ + 1)
− tγ+2

Γ(γ + 3)
+

tγ+4

Γ(γ + 5)
− tγ+6

Γ(γ + 7)
+

tγ+8

Γ(γ + 9)

)
,

(41)

when γ = 1, then LADM solution is

ν(x, y, t) = sin (x + 2y + 3z)sin t. (42)

Figure 4 consists of two graphs; (a) the exact solution of ν(x, y, t) and (b) the LADM solution
ν(x, y, t) of Example 4 at γ = 1. Figure 4a,b indicate that the present method has strong agreement
with exact solution for the problem. In Figure 4c,d, two graphs (c) and (d) are given, that represent the
analytical solution of Example 4 at fractional γ = 0.75 and 0.50 respectively. Figure 4c,d reflects that,
as fractional order approaches to integer order, the solution surfaces of fractional order are convergent
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to the integer order surface. It means that physically we can model, any of the surfaces as desired by
the physical phenomena occurring in nature.

Figure 4. The (a) exact and (b) LADM solutions of ν(x, y, z, t) of Example 4, at γ = 1. The LADM
solution of ν(x, y, z, t) of Example 4, at (c) γ = 0.75 and (d) γ = 0.50.

5. Conclusions

In this paper, the analytical solutions of third order dispersive fractional partial differential
equations are determined, using LADM. The fractional derivatives are described by the Caputo
operator. The LADM, solutions are obtained at fractional and integer orders for all problems. The
results revealed the highest agreement with the exact solutions for the problems. The LADM solutions
for some numerical examples have shown the validity of the proposed method. It is also investigated
that the fractional order solutions are convergent to the exact solution for the problems as fractional
order approaches to integer order. The implementation of LADM to illustrative examples have
also confirmed that the fractional order mathematical model can be the best representation of any
experimental data as compare to integer order model. Moreover, by taking different fractional orders,
we can find a way to set suitable mathematical model for any experimental data, and thus found
reasonable consequences. Hence, it is concluded that LADM is the best tool for the solution of FPDEs,
as compare to ADM, VIM and DTM in literature. LADM provide the highest rate of convergence to
the exact solution for the problems. In future, LADM can be used to find the analytical solution of
other non-linear FPDEs, which are frequently used in science and engineering. LADM, solutions for
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fractional order problems will prove the better understanding of the real world problems represented
by FPDEs.
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