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Abstract: Information geometry is the study of the intrinsic geometric properties of manifolds
consisting of a probability distribution and provides a deeper understanding of statistical inference.
Based on this discipline, this letter reports on the influence of the signal processing on the geometric
structure of the statistical manifold in terms of estimation issues. This letter defines the intrinsic
parameter submanifold, which reflects the essential geometric characteristics of the estimation issues.
Moreover, the intrinsic parameter submanifold is proven to be a tighter one after signal processing.
In addition, the necessary and sufficient condition of invariant signal processing of the geometric
structure, i.e., isometric signal processing, is given. Specifically, considering the processing with
the linear form, the construction method of linear isometric signal processing is proposed, and its
properties are presented in this letter.

Keywords: information geometry; intrinsic parameter submanifold; isometric signal processing

1. Introduction

Information geometry was pioneered by Rao [1] in 1945, and the more concise framework was
built up by Chentsov [2], Efron [3,4], and Amari [5]. In information geometry, the research object is
the statistical manifold, which consists of a parameterized family of probability distributions with
a topological structure, M = {p(x; ξ)}. Given the Fisher information matrix as the Riemannian
metric, the distance between any two points (probability distributions) can be calculated [6]. In such
a manifold, the distance between two points stands for the intrinsic measure for the dissimilarity
between two probability distributions [7]. As information geometry provides a new perspective on
signal processing, there are many applications of it. In estimation issues, based on the Riemannian
distance, the natural gradient has been employed [8–10]. The intrinsic Cramér–Rao bound is a
tighter bound of both biased and unbiased estimators and derives from the Grassmann manifold [11].
In addition, the geometric structure (considering the distance between all pairs of points) can be
used as an evaluation of the quality of the observation model, which has been applied in waveform
optimization [12]. In optimization problems under the matrix constraint, the geometric structure
was utilized [13–15]. Moreover, there are also many significant works of detection based on the
distance [16–20]. Furthermore, in image processing, based on the Grassmann manifold, the target
recognition in the SAR (Synthetic Aperture Radar) image is proposed [21].

As this new general theory has revealed the capability to solve statistical problems, the further
development of information geometry demands the unambiguous relationship between the geometric
structure and the intrinsic characteristic of common issues. This letter focuses on the influence of the
signal processing on the statistical manifold in terms of estimation issues. In the estimation issues,
the signal processing is the common means to mine for the information of a desired parameter.
Accompanying signal processing, the geometric structure of the considered statistical manifold,
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to which the distribution of the observed data belongs, would change. The purpose of this letter
is studying the geometric structure change accompanying signal processing and proposing an
appropriate processing based on the change of the structure.

This research will be presented in the following way. At first, according to the essence of the
estimation issues, the intrinsic parameter submanifold, which reflects the geometric characteristic of
the issues, has been defined. Then, we show that the statistical manifold will become a tighter one after
processing and give the necessary and sufficient condition of the invariant signal processing of the
geometric structure (named isometric signal processing). Considering the more specific condition that
the processing is linear, the construction method of linear isometric processing is proposed. Moreover,
the properties of the constructed processing are presented.

The following notations are adopted in this paper: the math italic x, lowercase bold italic x, and
uppercase bold A denote the scalars, vectors, and matrices, respectively. Constant matrix I indicates
the identity matrix. Symbols (·)H , (·)T , and (·)∗ indicate the conjugate transpose operator, transpose
operator, and the complex conjugate, respectively. In addition, [A]ij indicates the ith row jth column
element of matrix A, and rk(A) is the rank of matrix A. Moreover, A ≥ 0 means that the matrix A is a
positive semidefinite matrix. Finally, E(·) indicates the statistical expectation of a random variable.

2. Intrinsic Parameter Submanifold

LetM = {p(x, ξ)} be a statistical manifold with coordinate system ξ, which consists of a family of
probability distributions. Consider an estimation issue on the statistical manifoldM; the observed data
x = (x1, x2, . . . , xN) belong to one of the probability distributions p(x, ξ) inM. Suppose the desired
parameter θ is implied in parameter ξ and the relation between θ and ξ can be expressed as a mapping,
h : θ 7→ ξ. As an instance, in the distance measurement of the pulse-Doppler radar, the desired
distance r is embedded in the statistical mean µ of the observed data, i.e., µ = h(r) = P(t − 2r/c)
(P(t) means the pulse signal, and c is the velocity of light).

Actually, not all p(x, ξ) inM are concerned with the estimation issue; the considered probability
distributions {p(x, h(θ))} not cover the whole manifold, they are only from a submanifold, which is
the essential manifold in the issue. In the above example, the considered distributions are screened by
the pulse signal P(t) (the statistical mean µ is able to be expressed as P(t− 2r/c)).

Definition 1 (Intrinsic parameter submanifold). The manifold S = {p(x, h(θ))} is the intrinsic parameter
submanifold ofM = {p(x, ξ)}, with coordinate system θ.

The Riemannian metric of submanifold S is defined as Ix(θ), the Fisher information matrix
associated with parameter θ, as in Figure 1. Actually, the distance of two points on the submanifold is
defined by using the Riemannian metric [6].
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Figure 1. The intrinsic parameter submanifold.

Remark 1. When the Fisher information matrices G1, G2 belonging to two observation models satisfy G1 ≥ G2,
the observation model with G1 is suggested to be better than another in terms of the estimation problem.
The reason is that the distance D1(θ1, θ2) (defined by G1) is larger than D2(θ1, θ2) (defined by G2), because of
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the definition of the distance on the manifold. That means the two parameters θ1, θ2 are easier to discriminate in
the manifold with G1 than G2.

Furthermore, the above remark also can be explained in traditional statistical signal processing.
In estimation theory, the Fisher information also plays an important role, as the CRLB (Cramér–Rao
Lower Bound) inequality. Therefore, in the traditional estimation theory, the same conclusion can
be educed.

3. Signal Processing on the Intrinsic Parameter Submanifold

3.1. Geometric Structure Change by Signal Processing

In estimation issues, the signal is often processed to another form to obtain accurate estimates.
Consider the signal processing y = g(x), where x indicates the original signal and y is the processed
signal. The signal processing often accompanies the varying of the statistical manifold, specially the
varying of the Riemannian metric.

One of the most vital factors of the submanifold in terms of estimation issues is its Riemannian
metric, because the distance, representing the similarity, between two parameters is defined by it.
Suppose the intrinsic parameter submanifold of x and y are S and S ′, respectively. The Riemannian
metrics of S and S ′ are GS and GS ′ , respectively. If the PDFs (Probability Density Functions) px(x; θ),
py(y; θ), and pxy(x, y; θ) obey the boundary condition [22], then the Fisher information satisfies the
following equation [22,23],

−E
∂2 ln px,y(x, y; θ)

∂θi∂θj
= −E

∂2 ln px|y(x|y; θ)

∂θi∂θj
−E

∂2 ln py(y; θ)

∂θi∂θj
, (1)

−E
∂2 ln px,y(x, y; θ)

∂θi∂θj
≥ −E∂2 ln py(y; θ)

∂θi∂θj
. (2)

Because y is produced by x via y = g(x), the following equation has been established.

−E
∂2 ln px,y(x, y; θ)

∂θi∂θj
= −E∂2 ln px(x; θ)

∂θi∂θj
(y = g(x)) (3)

Proof. Because pxy(x, y; θ) = 0 for y 6= g(x), then the px,y(x, y; θ) can be expressed as px,y(x, y; θ) =

px(x; θ)δ(y− g(x)), the Fisher information can be simplified:

−E
∂2 ln px,y(x, y; θ)

∂θi∂θj
= −E∂2 ln px(x; θ)

∂θi∂θj
−E∂2 ln δ(y− g(x))

∂θi∂θj
= −E∂2 ln px(x; θ)

∂θi∂θj
. (4)

Then, the following lemma holds.

Lemma 1. The Riemannian metrics GS and GS ′ satisfy, ∀θ:

[GS ′(θ)]ij −E
∂2 ln px|y(x|y; θ)

∂θi∂θj
= [GS (θ)]ij. (5)

Proof. By Equations (1) and (3), and the definitions of GS and GS ′ , the lemma has been established.

Corollary 1. For each θ, GS (θ)−GS ′(θ) is a positive semidefinite matrix, i.e., GS (θ) ≥ GS ′(θ).
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Proof. By Equation (2), Equation (3), and the definitions of GS and GS ′ , the corollary has been
established.

Therefore, according to Lemma 1 and its corollary, the signal processing would result in Fisher
information loss. As Figure 2 shows, the signal processing would turn the intrinsic parameter
submanifold into a tighter one, i.e., discriminating two parameters turns out to be more difficult.
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Figure 2. The signal processing on the intrinsic parameter submanifold.

3.2. Isometric Signal Processing

As the above discussion, the appropriate signal processing should satisfy that the intrinsic
parameter submanifold of processed signal is isometric to the original submanifold, i.e., the difference
between any two parameters is unreduced.

Definition 2 (Isometry). When GS (θ) = GS ′(θ), the two intrinsic parameter submanifolds S and S ′
are isometric.

Actually, the sufficient and necessary condition of the isometry of S and S ′ is as follows.

Theorem 1. If and only if y is the sufficient statistic of x, GS (θ) = GS ′(θ).

Proof. For Lemma 1, the following relations are equivalent,

GS (θ) = GS ′(θ)⇐⇒ E(
∂ ln px|y(x|y; θ)

∂θi
)2 = 0(∀ i)⇐⇒

∂px|y(x|y; θ)

∂θi

a.e.
= 0(∀ i). (6)

That means px|y(x|y; θ) is irrelevant to parameter θ, i.e., y is the sufficient statistic of x.

The theorem suggests to use the test statistic to estimate the desired parameter, in the information
geometry view. Actually, this conclusion also can be ensured in traditional estimation theory.
For the Rao–Blackwell theorem [24], for any estimator θ̂(x), the estimator θ̌(y) = E(θ̂(x)|y) is
the better estimator, i.e., E(θ̌(y) − θ)2 ≤ E(θ̂(x) − θ)2, when y = g(x) is the sufficient statistic.
This theorem indicates that designing the estimator using the sufficient statistic y is more appropriate,
because for each estimator θ̂(x) using the original signal x as input, there exists the estimator
θ̌(y) = E(θ̂(x)|y) using the sufficient statistic y as the input that is better than θ̂(x). Furthermore, for
the Lehmann–Scheffé theorem [25,26], when the sufficient statistic y is complete, if the estimator θ̌(y)
is unbiased, i.e., E(θ̌(y)) = θ, the estimator θ̌(y) is the minimum-variance unbiased estimator.

Corollary 2. If g(x) is a reversible function, GS (θ) = GS ′(θ).
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Proof. If g(x) is a reversible function, the PDF of x and y satisfy:

py(y; θ)
dg(x)

dx
= px(x; θ). (7)

According to the Fisher–Neyman factorization theorem [27], y is the sufficient statistic of x,
so GS (θ) = GS ′(θ).

When the processed signal y = g(x) is the sufficient statistic of x, the signal processing g(x)
is the isometric signal processing. Specifically, the reversible processing is definitely isometric
processing, such as DFT (Discrete Fourier Transformation, because the inverse discrete Fourier
transformation can recover the original signal, i.e., DFT is a reversible process). Moreover, this
conclusion is also encountered in traditional estimation theory as the Rao–Blackwell theorem and
Lehmann–Scheffé theorem.

4. Linear Form of Signal Processing

In real works, the noise is often Gaussian or asymptotically Gaussian, and the common signal
processing is linear, such as DFT, matched filter, coherent integration, etc. This section will discuss the
linear form of signal processing on the Gaussian statistical manifold.

4.1. Model Formulation

The information, as the desired parameter, is usually embedded in the signal, and the signal
is often contaminated by noise, which can be described as x = s(θ) + w, where s(θ) is the
uncontaminated signal waveform, w is the Gaussian noise, and x is the signal. The linear signal
processing can be expressed as a matrix form, y = Hx.

4.2. Fisher Information Loss of Linear Signal Processing

Suppose the linear form of signal processing is formed as y = Hx; x is the m dimension, and y is
the n dimension, then the matrix H is the n×m dimension. If rk(H) < n, there are n− rk(H) rows,
which are the linear combination of the rest of the rk(H) rows. Therefore, the PDF of y only depends
on the rk(H) corresponding elements, and the Fisher information loss is equivalent to the loss of the
submatrix consisting of such rk(H) rows. Therefore, for a convenient statement, rk(H) is assumed to
be n, i.e., matrix H is row full rank.

The Fisher information loss will be discussed under WGN (White Gaussian Noise), at first. Then,
the Fisher information under CGN (Colored Gaussian Noise) will be presented based on the results
under WGN.

4.2.1. White Gaussian Noise

Suppose the noise is WGN and with power σ2, then the signal also obeys normal distribution
x ∼ N (s(θ), σ2I). As the property of the normal distribution, the distribution of y is also the normal
distribution, but with different parameter N (Hs(θ), σ2HHH). Calculate the Fisher information of x
and Hx; the loss of information is:

G4(θ) = GS (θ)−GS ′(θ) =
1
σ2

∂s(θ)
∂θ

H
(I−HH(HHH)−1H)

∂s(θ)
∂θ

. (8)

4.2.2. Colored Gaussian Noise

Suppose the noise is CGN and with covariance matrix C. According to the property of the
Hermite positive definite matrix, the covariance matrix can be expressed as C = DDH , where D is a
reversible matrix.
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According to Theorem 1, perform the reversible transformation x∗ = D−1x; the Fisher information
is invariant, i.e., GS (θ) = GS ′(θ), and the noise in x∗ is WGN. Performing the linear processing HD to
x∗, the result is:

HDx∗ = HDD−1x = y, (9)

and the information loss can be calculated by Equation (8). Therefore, the loss of information is:

G4(θ) =
∂s(θ)

∂θ

H
(C−1 −HH(HCHH)−1H)

∂s(θ)
∂θ

. (10)

4.3. The Construction of the Isometric Linear Form of Signal Processing

In the previous section, the sufficient and necessary condition of isometric signal processing was
that y = g(x) is the sufficient statistic of x. However, the sufficient statistic of x is often difficult to
obtain, and the isometric processing should be constructed in another way. This part will introduce
the construction method of linear isometric signal processing.

As regards the previous discussion, the signal under CGN can be transformed to the signal
under WGN without information loss. Therefore, the signal under WGN is discussed in this part.
As for the condition of CGN, the signal can be white at first, then the next steps are the same as the
WGN condition.

The linear isometric processing can be obtained in the following way. Firstly, solve the equation:

∀θ,
∂s(θ)

∂θ

H
v = 0 (v ∈ Rm). (11)

Suppose the solution space is V = span{v1, v2, · · · , vl} with dimension l and the orthogonal
complement of V is V⊥ with dimension n = m− l. Then, the desired signal processing is formed as:

H = [v′1, v′2, · · · , v′n]
H , (12)

where v′1, v′2, · · · , v′n is the bias of V⊥.

Proposition 1. H = [v′1, v′2, · · · , v′n]H is the isometric processing.

Proof. Let Q = I−HH(HHH)−1H. Because the non-zero eigenvalue of HH(HHH)−1H is equivalent
to that of HHH(HHH)−1 = I, the eigenvalue of HH(HHH)−1H is one (n multiplicity) and zero (m− n
multiplicity). Therefore, the eigenvalue of Q is one (m− n multiplicity) and zero (n multiplicity). Then,
as the matrix Q is the Hermitian symmetric matrix, it can be expressed as:

Q = L diag(1, . . . , 1, 0, . . . , 0)LH . (13)

Consider the fact QHH = 0; the first n columns of HL must equal zero. That means the first n
columns of L are the bias of V, and the rest of the columns are the bias of V⊥, i.e.,

L = [v1, · · · , vm−n, v′′1 , · · · , v′′n ]. (14)

Because v1, · · · , vm−n is the solution of Equation (12),

LH ∂s(θ)
∂θ

= [v1, · · · , vm−n, v′′1 , · · · , v′′n ]
H ∂s(θ)

∂θ
= [0, · · · , 0, v′′H1

∂s(θ)
∂θ

, · · · , v′′Hn
∂s(θ)

∂θ
]T , (15)

then:
∂s(θ)

∂θ

H
L diag(1, . . . , 1, 0, . . . , 0)LH ∂s(θ)

∂θ
= 0, (16)

i.e., the Fisher information loss is zero.
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According to the proposed construction method, the following proposition can be obtained.

Proposition 2. The matrix H is the isometric matrix with the minimal rows, i.e., the processed signal has the
minimal length.

Proof. Let H′ be the isometric matrix with dimension n′ and Q′ = I−H′H(H′H′H)−1H′. Similarly,
the matrix also can be expressed as:

Q′ = L′ diag(1, . . . , 1, 0, . . . , 0)L′H , (17)

where the multiplicity of eigenvalue one is m− n′.
As:

∂s(θ)
∂θ

H
L′ diag(1, . . . , 1, 0, . . . , 0)L′H

∂s(θ)
∂θ

= 0, (18)

the first m− n′rows of L′H ∂s(θ)
∂θ must be zero, which means the first m− n′ columns of L is the linear

independent solution of Equation (12). However, the solution space V = span{v1, v2, · · · , vl} has
dimension m− n, so we can get m− n′ ≤ m− n, i.e., n′ ≥ n.

Therefore, the matrix H is the isometric matrix with the minimal rows.

Remark 2. Because the first m− n columns of L are the linear independent solution of Equation (12), that
means any element v′ from V⊥ satisfies that the first m− n elements of LHv′ equal zero. Therefore, the solution
space of Q′x = 0 is V⊥. Moreover, H′ satisfies Q′H′H = 0, so H′ consists of the bias of V⊥.

In other words, the isometric matrix with dimension n is the equivalent matrix of H, which
indicates that the proposed construction method can generate any isometric matrix with minimal rows.

Sample of the Construction

Consider the radar target detection scene: the radar emits the single frequency signal and
receives the echo to obtain the distance and RCS (Radar-Cross-Section) information of the target.
The observation model can be formulated as:

xk = A exp (j2π f (kt4 −
2r
c
)) + wk k = 1, . . . , N, (19)

where j indicates the unit of the imaginary part, t4 is the sampling interval, f is the frequency of the
emitted signal, c is the velocity of light, wk denotes WGN, r indicates the distance of the target, and A is
the unknown amplitude, which contains the information of RCS. The desired parameter is θ = (A, r).

Firstly, the derivative is:

∂s(θ)
∂θ

H
=

[
exp (j2π f (t4 − 2r

c )) · · · exp (j2π f (Nt4 − 2r
c ))

4jAπ f
c exp (j2π f (t4 − 2r

c )) · · ·
4jAπ f

c exp (j2π f (Nt4 − 2r
c ))

]
. (20)

Solve Equation (12); the orthogonal complement of the solution space is:

span{(exp (j2π f t4), . . . , exp (j2π f Nt4))}. (21)

Therefore, the isometric processing is:

y =
N

∑
k=1

xk exp (j2π f kt4). (22)
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5. Conclusions

This letter focuses on the influence of signal processing on the geometric structure of the statistical
manifold in estimation issues. Based on the intrinsic characteristics of the estimation issues, the intrinsic
parameter submanifold is defined in this letter. Then, the intrinsic parameter submanifold is proven,
which turns into a tighter one after signal processing. Moreover, we show that if and only if the
processed signal is the sufficient statistic, the geometric structure of the intrinsic parameter submanifold
is invariant. In addition, the construction method of the linear isometric signal processing is proposed.
Moreover, the linear processing produced by the proposed method is shown with minimal rows (when
it is represented as a matrix), i.e., the processed signal has the minimal length, and the proposed
method can generate all linear isometry with minimal rows.
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