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Abstract: Detecting gait events from video data accurately would be a challenging problem. However,
most detection methods for gait events are currently based on wearable sensors, which need high
cooperation from users and power consumption restriction. This study presents a novel algorithm
for achieving accurate detection of toe-off events using a single 2D vision camera without the
cooperation of participants. First, a set of novel feature, namely consecutive silhouettes difference
maps (CSD-maps), is proposed to represent gait pattern. A CSD-map can encode several consecutive
pedestrian silhouettes extracted from video frames into a map. And different number of consecutive
pedestrian silhouettes will result in different types of CSD-maps, which can provide significant
features for toe-off events detection. Convolutional neural network is then employed to reduce
feature dimensions and classify toe-off events. Experiments on a public database demonstrate that
the proposed method achieves good detection accuracy.

Keywords: toe-off detection; gait event; silhouettes difference; convolutional neural network

1. Introduction

Gait is the periodic motion pattern of human walking or running. Different people owns different
gait patterns, due to the reason that gait pattern is uniquely decided by the personal factors, such as
personal habits, injury, and disease. Base on this character, researchers in pattern recognition area
employ gait pattern to recognition the identity of walkers, namely gait recognition. And gait pattern
is also used for disease diagnosing by the researchers in the field of medicine, namely gait analysis.
No matter gait recognition or gait analysis, gait events detection is the basic problem of the both
applications. Automatic detection of gait events is desirable for artificial intelligence applications,
such as gait recognition and medicine abnormal gait analysis [1].

A gait cycle is the minimum periodic movement of human walking. Usually, a gait cycle is defined
as a period from a heel strikes on the ground to the same heel strikes on the ground again the next
time. According to the swing character of legs, a gait cycle can be divided into two phases, which are
stance phase and swing phase. And there are also important six gait events within each gait cycle
(shown as Figure 1), which are right heel strike, left toe-off, mid stance, left heel strike, right toe-off
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and mid swing. Accurate detection of the six gait events would raises the accuracy of gait recognition
and analysis. In this paper, we focus on automatic detection of toe-off events using vision methods.
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Figure 1. Graphic demonstration of the gait events within a gait cycle.

Currently, gait events detection methods can be mainly classified into two types: wearable
sensors-based and vision-based methods [2]. The wearable sensors-based methods can accurately
detect gait events by collecting motion data from the joints and segments of human lower limb with
wearable devices. This type of method is widely used in the medicine area for evaluating abnormal
gait due to its high accuracy performance. However, wearable sensors-based methods rely on high
cooperation of participants. The participants have to first wear particular devices and then walk
around the given area.

Conversely, vision-based methods detect gait event directly from video data captured by a single
or several cameras without the aid of any other special sensors. Various cameras including structured
light camera [3], stereo camera [4] and 2D vision camera [5] have been applied within these methods.
Compared with the wearable sensors, cameras would be cheaper and easier to use. Detecting gait
events from 2D video data is a challenging problem due to variations of illumination, perspective,
and clothing. Previously, researchers attached markers to the joints of the human limb as participants
walked on a clearly marked walkway. This setup requires the cooperation from participants.

In this paper, a new method of toe-off events detection based on a single 2D vision camera
system is proposed. Consecutive pedestrian silhouettes extracted from video frames are combined
to generate consecutive silhouettes difference maps (CSD-maps). Different number of consecutive
silhouettes would result in different CSD-maps, namely n-CSD-maps, while n represents the number
of consecutive silhouettes. Convolutional neural network is finally employed to learn the toe-off events
detection features from CSD-maps. The main contribution of this paper is designing of a set of novel
features, namely, consecutive silhouettes difference maps, for toe-off event detection. This method
can be used to accurately detect gait event from video data captured from a single 2D vision camera
under different viewing angles. If gait events can be accurately detected from 2D video data without
participants cooperation, it would be greatly benefit to gait recognition and gait analysis.

The remainder of this study is organized as follows. In Section 2, the advancements of gait events
detection methods are reviewed. In Section 3, the proposed method is discussed in detail. Section 4
reports the experimental results on publicly available databases. Finally, Section 5 concludes this study.

2. Related Work

In this section, we review the recent progress of gait event detection, which can be coarsely
classified into two categories: wearable sensors-based methods and vision-based methods.
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2.1. Wearable Sensors-Based Methods

Wearable sensors-based methods employ various wearable sensors placed on joints or segments
of human limbs (such as feet, knees, thighs or waist) to collect their motion data. Accelerometers and
gyroscopes are desirable sensors for gait event detection, which have drawn much attention from
researchers. Rueterbories et al. [6] placed accelerometers on the foot to detect gait events. Aung et al. [7]
placed tri-axial accelerometers on the foot, ankle, shank or waist to detect heel strike and toe off events.
Formento et al. [8] placed a gyroscope on the shank to determine initial contact and foot-off events.
Mannini et al. [9] used a uniaxial gyroscope to measure the angular velocity of foot instep in a sagittal
plane. Anoop et al. [10] utilized force myography signals from thighs to determine the heel strike
(HS) and toe-off (TO) events. Jiang et al. [11] proposed a gait phase detection method based on force
myography technique.

The inertial measurement unit (IMU), which is composed of gyroscope and accelerometer, is also a
powerful sensor for capturing human limb motion data. Bejarano et al. [12] employed two inertial and
magnetic sensors placed on the shanks to detect gait events. Olsen et al. [13] accurately and precisely
detected gait events using the features from trunk- and distal limb-mounted IMUs. And latter,
Trojaniello et al. [14] mounted a single IMU at the waist level to detect gait events. Ledoux [15]
presented a method for walking gait event detection using a single inertial measurement unit (IMU)
mounted on the shank.

These sensors can accurately capture motion signals of the points where sensors are placed.
Thus, these methods can accurately detect gait events and have been widely used for gait analysis
in the medicine area. The disadvantages of these type of methods mainly lie in power consumption
restriction, high cost and user cooperation restriction.

A smartphone would contain a 3-dimensional accelerometer, a 3-dimensional gyroscope, and a
digital compass. Thus, smartphones are new convenient sensors for gait analysis. Pepa et al. [16]
utilized smartphones to detection gait events (such as heel strike) by securing them to an individual’s
lower back or sternum. Manor et al. [17] proposed a method to detect the heel strike and toe off events
by placing a smartphone in the user’s pants pocket. Ellis et al. [18] presented a smartphone-based
mobile application to quantify gait variability for Parkinson’s disease diagnosing. Smartphones are
also powerful sensors for gait recognition. Fernandez-Lopez et al. [19] compared the performance
of four state-of-art algorithms on a smartphone before 2016. Muaaz et al. [20] evaluated the security
strength of a smartphone-based gait recognition system against zero-effort and live minimal-effort
impersonation attacks under realistic scenarios. Gadaleta et al. [21] proposed a user authentication
framework from smartphone-acquired motion signals. The goal of this work is to recognize a target
user from their way of walking, using the accelerometer and gyroscope (inertial) signals provided by a
commercial smartphone worn in the front pocket of the user’s trousers.

2.2. Vision-Based Methods

Vision-based methods can be also divided into two sub-categories: marker-based and no
marker-based methods.

Marker-based methods calculate human limb motion parameters by tracking the markers attached
to the joints of human limb. Ugbolue et al. [22] employed an augmented-video-based-portable-system
(AVPS) to achieve gait analysis. In this study, bull’s eye markers and retroreflective markers are
attached to human lower limb. In [23], Yang et al. proposed an alternative, inexpensive, and portable
gait kinematics analysis system using a single 2D vision camera. Markers are also attached on the
hip, knee, and ankle joints for motion data capture. And three years later, the authors enhanced
the initial single-camera system by designing a novel autonomous gait event detection method [5].
These methods achieve good accuracy of gait event detection. However, a calibration step is needed,
where the participant has to walk on a clearly marked walkway, thus indicating user cooperation
is required.
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No marker-based methods can achieve gait event detection without user cooperation. With respect
to this type of method very few research studies have worked on gait event detection techniques.
The directly related work is Auvinet’s work [3], in which a depth camera (Kinect) is employed to
achieve gait analysis on a treadmill for routine outpatient clinics. In [3], a heel-strike event detection
algorithm is presented by searching for extreme values of the distance between knee joints along the
walking longitudinal axis. Although it achieves accurate detection results, Kinect used in [3] is also a
special camera compared with a widely used web camera. In this study, we attempt to detect toe-off
events using a web camera. As far as we know, this paper would be the first effort to detect gait events
utilizing video data without the cooperation of participants.

Some research works about gait cycle detection algorithm have been presented in gait recognition
methods. These methods can detect whole gait cycle or gait phase from video data without the help of
markers. In [24], a gait periodicity detection method is presented based on dual-ellipse fitting (DEF).
The periodicity is defined as the internal between the first extreme point and the third extreme point
of DEF signals. Kale et al. [25] employed the norm of the width vector to show a periodic variation.
Sarkar et al. [26] estimated gait cycle by counting the number of foreground pixels in the silhouette
in each frame overtime. Mori et al. [27] detected the gait period by maximizing the normalized
autocorrelation of the gait silhouette sequence for the temporal axis. These methods mentioned above
can achieve gait cycle detection, but cannot obtain accurate gait event detection results.

3. Toe-Off Events Detection Based on CSD-Maps

In this section, we present the technique detail of the toe-off events detection method.
The framework of the proposed method is graphically presented in Figure 2. Several consecutive
silhouettes of a pedestrian are first combined to generate a consecutive silhouettes difference map.
Convolutional neural networks are then employed to learn the features for toe-off events classification.

Consecutive 

silhouettes

CSD-maps 

Extraction Convolutional

Features learning

CSD-maps

Toe-off events 

predication

2-CSD-map

3-CSD-map

Figure 2. The framework of the proposed method.

3.1. Consecutive Silhouettes Difference Maps

There are rich temporal and spatial information contained in video data. Mining and fusing
temporal and spatial information is currently an interest in computer vision. Inspired by the principle
of the exclusive OR operation, we employ a frame difference method to encode the temporal and
spatial information contained in several consecutive frames into a map. The difference map generated
from n consecutive silhouettes is named as a n-CSD-map. We first take a 2-CSD-map as an example to
explain how consecutive silhouette frames are encoded into a map.
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3.1.1. 2-CSD-Maps

The main idea of 2-CSD-maps is graphically presented in Figure 3. The 2-CSD-map of the ith

frame is generated from two consecutive silhouette frames. Let Γ2
i present the 2-CSD-map of the ith

frame, Ii−1 and Ii present the binary silhouette images of the (i− 1)th and ith frame. For any pixel P2
j,k

in Γ2
i , it’s pixel value can be formulated as following:

Γ2
i (j, k) =


1 if (P2

j,k /∈ Ωi−1) ∩ (Pj,k ∈ Ωi)

2 if (P2
j,k ∈ Ωi−1) ∩ (Pj,k /∈ Ωi)

3 if (P2
j,k ∈ Ωi−1) ∩ (Pj,k ∈ Ωi)

(1)

while, Ωi−1 represents the pixel set of the silhouette area in Ii−1, and Ωi represents the pixel set of the
silhouette in Ii. In order to achieve a good visual effect, the pixel values in Figure 3c are normalized
to [0,1].

Figure 3. The basic idea of the 2-CSD-map. The pixel values in (c) are are normalized to [0,1] for good
visual effect.

In practice, a pedestrian silhouette is presented as a binary image. Thus, a 2-CSD-map of two
consecutive silhouettes can be computed using following three steps to achieve fast extraction of
2-CSD-maps.

First, copy gray value of pixels from Ii−1 to Γ2
i . A temporary matrix I is then computed as:

I = Ii − Ii−1 (2)

Secondly, modify the pixel value of Γ2
i according to the value of matrix I:

Γ2
i (j, k) =

{
1 if I(j, k) > 0
2 if I(j, k) < 0

(3)
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Finally, the pixel value of Γ2
i is modified as follows:

Γ2
i (j, k) =

{
3 if Γ2

i (j, k) == 255
Γ2

i (j, k) else
(4)

Some samples of 2-CSD-maps are graphically presented in Figure 4. We can see that 2-CSD-maps
are distinctive features for toe-off events detection compared with original silhouette images.

Figure 4. Samples of 2-CSD-maps compared with original silhouettes. The images presented in the first
row are original silhouettes of two different persons, and the corresponding 2-CSD-maps are presented
in the second row. The images with red edging are the toe-off frames. The pixel values in 2-CSD-maps
are normalized to [0,1] for good visual effect.

3.1.2. n-CSD-Maps

Suppose that there are n consecutive silhouettes images I1, I2, ..., and In. The n-CSD-maps Γn
i can

be formulated as following:

Γn
i (j, k) =



1 if (Pn
j,k ∈ Ω1) ∩ (Pj,k /∈ Ω2) ∩ (Pj,k /∈ Ω3) ∩ ...∩ (Pj,k /∈ Ωn)

2 if (Pn
j,k /∈ Ω1) ∩ (Pj,k ∈ Ω2) ∩ (Pj,k /∈ Ω3) ∩ ...∩ (Pj,k /∈ Ωn)

3 if (Pn
j,k /∈ Ω1) ∩ (Pj,k /∈ Ω2) ∩ (Pj,k ∈ Ω3) ∩ ...∩ (Pj,k /∈ Ωn)

....
2n − 1 if (Pn

j,k ∈ Ω1) ∩ (Pj,k ∈ Ω2) ∩ (Pj,k ∈ Ω3) ∩ ...∩ (Pj,k ∈ Ωn)

(5)

while, Γn
i (j, k) stands for the pixel value of the pixel Pn

j,k in the generated n-CSD-map. Ω1, Ω2, . . . ,
and Ωn represent the pixel set of the silhouette areas in frame I1, I2, . . . , and In respectively.

Given n consecutive silhouette images, the n-CSD-maps extraction algorithm can be described
as Algorithm 1. With this algorithm, the CSD-map generated from the given consecutive silhouette
images is also presented as an image with the same size as silhouette images, shown as Figure 3c. Thus,
a further normalization step is necessary. In this paper, CSD-map images are initially normalized to a
certain size (such as 90 × 140) using Algorithm 2.

Figure 5 shows some consecutive normalized CSD-maps. we can see that the CSD-maps under
toe-off state are obviously different with other CSD-maps.
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Algorithm 1 Algorithm for generating n-CSD-maps

Require:
Consecutive silhouette images: I[w, h, n].
Parameter w and h represent the width and height of the silhouette images respectively. Parameter
n represents the number of consecutive silhouette images.

Ensure:
The CSD-map: Γ

1: for i = 1 to w do

2: for j = 1 to h do

3: t = I(i, j, :);
4: value = 0;
5: for k = 1 to n do

6: value = value + 2(k−1) ∗ t(k);
7: end for
8: Γ(i, j) = value;
9: end for

10: end for
11: return Γ;

2-CSD-Maps

3-CSD-Maps

4-CSD-Maps

5-CSD-Maps

6-CSD-Maps

Figure 5. Samples of normalized CSD-maps. From the first row to the fifth row, the normalized
2-CSD-maps, 3-CSD-maps, 4-CSD-maps, 5-CSD-maps and 6-CSD-maps are respectively presented.
The images with red edging are the toe-off frames. The pixel values in all CSD-maps are normalized to
[0,1] for good visual effect.
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Algorithm 2 Algorithm for normalizing a CSD-map

Require:
The original CSD-map image: OM
The width of the normalized CSD-map:w
The height of the normalized CSD-map:h

Ensure:
The normalized CSD-map: NM

1: [x, y] = f ind(OM > 0);
2: segm = OM(min(x) : max(x), min(y) : max(y));
3: NM = imresize(segm, [h, w]);
4: return NM;

3.2. Convolutional Neural Network

Convolutional neural networks have a feed-forward network architecture with multiple
interconnected layers which may be of any of the following types: convolution, normalization,
pooling and fully connected layers. CNNs have recently achieved many successes in visual recognition
tasks, including image classification [28], object detection [29], and scene parsing [30]. CNNs are
chosen as a detector for this study because they outperform other traditional methods in many image
classification challenges, such as ImageNet [28] and many other image-based recognition problems,
e.g., face recognition and digital recognition [31]. Comparing with traditional methods which rely
on feature engineering, CNNs are able to learn feature representation through the back propagation
algorithm without the need for much intervention and also achieve much higher accuracy.

The aim of this study is not to propose another CNN but use a classic CNN to address the problem
of toe-off events detection. In this paper, we employ the CNN architecture presented in Figure 6. It is
modified from DeepID [32]. The network includes three convolutional layers and three fully connected
layers. The three convolutional layers have 64, 128 and 256 kernels and their sizes are respectively
5 × 5, 3 × 3 × 64 and 3 × 3 × 128. The first fully connected layer has 1024 neurons and the second
fully connected layer has 512 neurons. In the last fully connected layer, there are two neurons, one for
toe-off frame output and the other for non-toe-off frame output. The max-pooling with a size of 2 and
a stride of 2 follows the three convolutional layers.
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Figure 6. The architecture of the CNN employed in this study.

4. Experiments and Results Analysis

4.1. Database

Experiments are conducted on CASIA gait database (Dataset B) [33] to evaluate the accuracy
of the performance of the proposed method. The data contained in this database are collected from
124 subjects (93 males and 31 females) in an indoor environment under 11 different viewing angles.
The data from a subject is simultaneously captured by 11 USB cameras (with a resolution of 320 × 240,
and a frame rate of 25 fps) around the left hand side of the subject when he/she was walking, and the
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angle between two nearest view directions is 18◦. When a subject walked in the scene, he/she was
asked to walk naturally along a straight line 6 times first, and 11 × 6 = 66 normal walking video
sequences were captured for each subject. After normal walk, the subjects were asked to put on their
coats or carried a bag, and then walked twice along the straight line. In each viewing angle, there are
totally 10 videos collected from every subject under three different clothing conditions, namely normal
condition, coat condition and bag condition. The CASIA Gait Database is provided free of charge at
web site http://www.cbsr.ia.ac.cn.

In this study, we considered the data captured under the viewing angles of 36◦, 54◦, 72◦, 90◦,
108◦, 126◦ and 144◦ (approximately 500,000 frames in total) for training and testing. The data captured
under the frontal viewing angles of 0◦, 18◦, 172◦, 180◦, are not used in the experiments primarily
because there is very little difference between two consecutive silhouettes. The CSD-maps generated
from the video data captured in the viewing of sagittal plane do not contain much information for gait
events detection. This means that the method proposed by this paper cannot deal with the video data
captured in the viewing of sagittal plane. Even so, the proposed method can deal with the video data
captured from most viewing angles. This makes the proposed method useful in practice.

4.2. Toe-Off Frame Definition and Data Preparation

The ground truth of all the silhouette frames should be manually labeled for modal training and
testing. Thus, the toe-off frames should be first and clearly defined.

Human gait is a continuous and periodic movement. In medical field, the toe-off event is defined
as the moment that the stance limb leaves the ground, shown as in Figure 1. While, the video data
is the sampling record of human gait with a certain frame rate θ. Usually, the frame rate θ would be
30 fps. And the gait cycle of a person is averagely about 1 s time consuming. This means that one
gait movement cycle of a person would be recoded as about 30 consecutive frames with an interval
of 33 ms. The problem is that the moment the stance limb leaving the ground may not be included
in the 30 consecutive sampling frames. In this paper, the first frame after the stance limb leaves the
ground is defined as a toe-off frame. For example, as shown in Figure 7, if the moment that the stance
limb leaves the ground falls within the period of tn < t < tn+1, then the frame (n + 1) is defined as the
toe-off frame.

Figure 7. Toe-off event definition of video frames.

According to the definition, there would exist error in the labeled groundtruth. Let θ be the frame
rate of the video data. The during time between two continuous frames would be 1

θ , which means
tn+1 − tn = 1

θ . If the toe-off event happens during the period of (tn, tn+1) but nearer to tn shown as
Figure 7a, then at frame n + 1, the foot would have swung in the air for about 1

θ seconds. However,
if the toe-off event happens during the period of (tn, tn+1) but nearer to tn+1 shown as Figure 7b.
At frame n + 1, the foot would have just left the ground. The frames n + 1 in both Figure 7a,b are
regarded as toe-off frames. Obviously, the toe-off frames in Figure 7a,b may be different with each
other. But this error doesn’t change the validity of the proposed method.

http://www.cbsr.ia.ac.cn
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4.3. Experimental Configuration

The experiments are conducted by using Caffe [34], which is a deep learning framework created
by Yangqing Jia during his PhD at UC Berkeley. The experiments are conducted as following.

• Configuration of n-CSD-maps. Several pre-tests have been conducted under the viewing angles
of 72◦, 90◦ and 108◦ for choosing the size of normalized CSD-maps. As shown in Figure 8,
the pre-test results show that different sizes of normalized CSD-maps practically cause almost no
change to the detection accuracy. The main reason is that CSD-maps are generated from binary
pedestrian silhouettes. The decline of the size of normalized CSD-maps would not result in much
change to the detection accuracy of this method. Thus, in the following experiments, the size of
normalized CSD-maps is set as 48*32. As to the parameter n of n-CSD-maps, it is set as 2, 3, 4, 5,
and 6. This means that 2-CSD-maps, 3-CSD-maps, 4-CSD-maps, 5-CSD-maps and 6-CSD-maps
are used in the experiments. The reason is that the increase of parameter n brings little increase of
detection accuracy, while costs more time for features extraction, shown as Table 1 and Figure 9.

• Configuration of Training set and test set. The samples from subject #001 to subject #90 of each
viewing angle are selected for model training. The rest of samples (from subject #091 to subject
#124) is used for testing.

• Configuration of CNN Solver. The initialized learning rate is 0.001, the momentum is 0.9 and
the weight decay is 0.0005. The maximum number of iteration in each experiment is 20,000.
The weights in the CNN are initialized with a zeromean Gaussian distribution with standard
deviation of 0.0001. The bias is set to one.

Figure 8. The relationship between detection accuracy of the proposed method and the size of
normalized n-CSD-map.

Table 1. Detection accuracy of the proposed method.

n-CSD-Maps 36 Degree 54 Degree 72 Degree 90 Degree 108 Degree 126 Degree 144 Degree

2-CSD 93.2% 94.34% 94.3% 96.26% 94.68% 94.83% 92.72%
3-CSD 93.45% 94.74% 95.14% 96.52% 95.54% 95.52% 93.08%
4-CSD 93.52% 95.18% 95.24% 96.58% 95.64% 95.58% 93.16%
5-CSD 93.55% 95.38% 95.36% 96.62% 95.74% 95.62% 93.22%
6-CSD 93.63% 95.4% 95.44% 96.78% 95.78% 95.65% 93.44%
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Figure 9. The relationship between detection accuracy of the proposed method and n-CSD-map. (a) The
detection accuracy as a function of n-CSD-map. (b) The bars of the detection accuracy VS. n-CSD-map.

4.4. Experimental Results and Discussion

In this paper, a new evaluation indicator, namely n-frame-error cumulative detection accuracy,
is designed to evaluate the performance of the proposed method besides detection accuracy and
ROC curve. The n-frame-error cumulative detection accuracy is similar with cumulative match
characteristics (CMC) curves [35]. Let’s d represents the difference between the sequence number of
predicted toe-off frame and the ground truth, shown as Figure 10. n-frame-error cumulative detection
accuracy indicates the detection accuracy with the condition of d ≤ n.

Figure 10. Graphical demonstration of the n-frame-error cumulative detection accuracy. The frame
difference between the sequence number of predicted toe-off frame and the ground truth is noted as
d. The image with red edging is the predicted toe-off frame. The image with yellow edging is the
ground truth.
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Table 1 shows the detection accuracy of the proposed method. We can see that the proposed
method achieves good detection accuracy. The proposed method reaches the accuracy around 93%
under the viewing angles of 36◦, and achieves the peak value of 93.63% by using 6-CSD-maps.
Under the viewing angle of 54◦, the proposed method reaches the accuracy around 94% and achieves
the peak value of 95.4% by using 6-CSD-maps. Under the viewing angle of 72◦, the proposed method
reaches the accuracy around 95% and achieves the peak value of 95.44% by using 6-CSD-maps.
Under the viewing angle of 90◦, the proposed method reaches the accuracy around 96% and achieves
the peak value of 96.78% by using 6-CSD-maps. Under the viewing angle of 108◦, the proposed
method reaches the accuracy around 95% and achieves the peak value of 95.78% by using 6-CSD-maps.
Under the viewing angle of 126◦, the proposed method also reaches the accuracy around 95% and
achieves the peak value of 95.65% by using 6-CSD-maps. Under the viewing angle of 144◦, the proposed
method reaches the accuracy around 93% and achieves the peak value of 93.44% by using 6-CSD-maps.

The relationship between detection accuracy of the proposed method and n-CSD-map is
graphically presented in Figure 9. Figure 9a demonstrates the detection accuracy of the proposed
method as a function of n-CSD-map, and the corresponding bars are presented in Figure 9b. Generally,
the detection accuracy is slightly improved with the increase of n. The reason is that the bigger the
parameter n is, the more consecutive silhouettes will be encoded into a CSD-map, and the more
information will be contained in the CSD-map. The detection accuracy gets a good promotion when
the parameter n changes from 2 to 3. For example, under viewing angle of 108◦, the accuracy of
the proposed method increase from 94.68% to 95.54% when the parameter n increases from 2 to 3.
However, the accuracy gets a few increase when the parameter n goes to 4, 5 and 6. This demonstrates
that 3-CSD-map is a good choice for toe-off detection, which can achieve good accuracy with little
additional computation cost. Figure 11 shows the ROC curves of the proposed method under different
viewing angles. The ROC curves of the proposed method under the viewing angles of 36◦, 54◦, 72◦,
90◦, 108◦, 126◦ and 144◦ are respectively presented in the figures from Figure 11a–g. As shown in
Figure 11, under all viewing angles, the proposed method gets higher detection performance by using
larger parameter n of n-CSD-map.

The ROC curves of the proposed method using 3-CSD-map under different viewing angles are
presented in Figure 9h. Generally, we can see that the proposed method obtains higher detection
accuracy around coronal plane viewing angles than sagittal plane viewing angles. Especially,
the proposed method achieves the accuracy of 96.78% under the viewing angle 90◦, which is higher
than other viewing angles. This demonstrate that CSD-maps generated from the video data captured in
sagittal plane viewing angles contain less useful information for gait events detection than coronal plane
viewing angles. The reason is that there is fewer different between two consecutive silhouettes of video
frames captured under sagittal plane viewing angles compared with coronal plane viewing angles.

The plots presented in Figure 12a are the n-frame-errors cumulative detection accuracy of the proposed
method against different viewing angles. The 1-frame-error cumulative detection accuracy of the proposed
method reaches the accuracy of 99.3%, 99.86%, 99.9%, 99.9%, 99.9%, 99.8%, and 99.4% for the viewing
angles of 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, and 144◦ respectively. For the 2-frame-error, the cumulative detection
accuracy of the proposed method achieves 100% for the viewing angles of 54◦, 72◦, 90◦, 108◦, and 126◦.
This demonstrates that the maximum time error of the proposed method detecting toe-off events in coronal
plane viewing angles is less than 2

θ , where θ is the frame rate of the video data. Practically, we can promote
the time accuracy of this method by increasing the frame rate of the video.

Figure 12b shows the detection accuracy of the proposed method as a function of viewing angles
compared with [24,25,36]. Due to the reason that [24,25] do not provide toe-off event detection results
directly, we implemented the both algorithms for toe-off event detection according to the main ideas
of [24,25]. Ref. [36] is our previous work based on principal component analysis and support vector
machine. In this experiment, all frames are used for training and testing in 5-fold cross validation.
We can see that our CNN-based method significantly outperforms Ben’s method [24], Kale’s method [25]
and our previous work [36] in the viewing angles of 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, and 144◦.
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Figure 11. The ROC curves of the proposed method. (a) The ROC curves under the viewing angle of
36◦. (b) The ROC curves under the viewing angle of 54◦. (c) The ROC curves under the viewing angle
of 72◦. (d) The ROC curves under the viewing angle of 90◦. (e) The ROC curves under the viewing
angle of 108◦. (f) The ROC curves under the viewing angle of 126◦. (g) The ROC curves under the
viewing angle of 144◦. (h) The ROC curves of the proposed method with 3-CSD-map under different
viewing angles of 36◦, 54◦, 72◦, 90◦, 108◦, 126◦ and 144◦.

Figure 12. The n-frame-error cumulative detection accuracy of the proposed method. (a) the detection
accuracy of the proposed method against different frame-errors. (b) The detection accuracy of the
proposed method compared with [24,25,36].
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In Figure 13, we use a confusion matrix to evaluate cross viewing angle detection accuracy of
this method using 3-CSD-maps. As can be seen in the figure, this method achieves the best accuracy
in the counter-diagonal and around 90% in the other areas, which means that this method can get
good accuracy for cross view toe-off detection. Figure 14 presents the ROC curves of this method
under all viewing angles compared with [24,25,36]. We can see that the proposed method significantly
outperforms the comparation methods.

Figure 13. The confusion matrix of cross viewing angle detection accuracy of this method using
3-CSD-maps.

Figure 14. The ROC curves of this method compared with [24,25,36] under all viewing angles.

5. Conclusions and Future Work

This paper presents a promising vision-based method to detect toe-off events. The main
contribution of this paper is the design of consecutive silhouettes difference maps for toe-off event
detection. Convolutional neural network is employed for feature dimension reduction and toe-off
event classification. Experiments on a public database have demonstrated good performance of our
method in terms of detection accuracy. The main advantages of the proposed method can be described
as following.
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• Comparing with wearable sensors-based methods, this method can detect toe-off event from
2D video data without the cooperation of participants. Usually, in the field of medicine,
wearable sensors-based methods are the first choice for gait analysis, due to their high accuracy.
However, these methods are suffering the disadvantages of high cooperation from users and
power consumption restriction. The method proposed by this paper, which also achieves good
accuracy for toe-off event detection by using a web camera, can overcome the disadvantages of
wearable sensors-based methods for gait analysis.

• Comparing with other vision-based methods, this method provides a better accuracy for toe-off
event detection. Gait cycle detection is a basic step of gait recognition. An accurate toe-off event
detection algorithm can produce an accurate gait cycle detection algorithm. Thus, the method
proposed by this paper would be beneficial to gait recognition.

Although a promising feature representation method is proposed in this paper for toe-off event
detection, more efforts are needed to improve the method of gait events detection from video data in
our future work.

• A much larger database is needed to test the practical performance of toe-off event detection
under different conditions.

• CSD-map provides a good feature representation for detecting toe-off events from video data.
It also would be applicable for other gait events detection, such as heel strike, foot flat, mid-stance,
heel-off, and mid-swing.
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