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Abstract: This article proposes a theory of neuronal processes underlying cognition, focusing on
the mechanisms of understanding in the human brain. Understanding is a product of mental
modeling. The paper argues that mental modeling is a form of information production inside
the neuronal system extending the reach of human cognition “beyond the information given”
(Bruner, J.S., Beyond the Information Given, 1973). Mental modeling enables forms of learning and
prediction (learning with understanding and prediction via explanation) that are unique to humans,
allowing robust performance under unfamiliar conditions having no precedents in the past history.
The proposed theory centers on the notions of self-organization and emergent properties of collective
behavior in the neuronal substrate. The theory motivates new approaches in the design of intelligent
artifacts (machine understanding) that are complementary to those underlying the technology of
machine learning.
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1. Preview

The article presents a theory of understanding that boils down to the following. The brain
is a regulatory system orchestrating sensory-motor responses to varying external conditions.
Thermodynamics steers self-organization in the brain towards producing quasi-stable neuronal
groupings (called packets) that can be re-combined rather than composed anew each time the
conditions change. Packet combinations serve as models of the environment that can be exercised
under the guidance of external feedback, or without such guidance (simulation, thinking). Self-directed
construction and manipulation of mental models underlie understanding. Absorbing information via
feedback constitutes negentropy extraction. Mental modeling in the absence of such feedback equates
to producing information and generating negentropy. The modeling capability is a recent evolutionary
discovery that yielded high regulatory efficiency, and at the same time, created a uniquely human need
for understanding the world, which is related to, but distinct from, the need to organize interaction
with the world in a manner conducive to survival. These suggestions will be unpacked in several
iterations, starting with the remainder of this preview.

This paper argues that a definitive feature of information dynamics in the human brain is
a particular form of information production [1] that underlies the understanding capacity and is
unique to the human species. Information is produced when regularities intrinsic to the processing
system are superposed on regularities in the incoming signal (e.g., correlations in the stimuli stream).
Perception is a form of information production shared by animals and humans. In perception, e.g.,
vision, correlated excitations of receptor cells in the retina are organized into images (mental objects)
that are projected outside and experienced as physical objects located in the space beyond the receptor
surface. Understanding involves construction of mental models that go beyond perception, in two
ways. First, models represent not only objects but their changes over time (behavior) and the ways
the changes are mutually coordinated (inter-object relations). Second, perception operates on sensory
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signals, while modeling (“thinking”) is decoupled from the sensory inflows. Constructing models and
operating on them in the absence of motor-sensory feedback constitutes a uniquely human form of
information production (see Section 5.2.4 for clarifications).

Projecting the products of mental modeling into the outside world underlies the experience of
having apprehended salient relations in the environment, which enables explanation, anticipation of
changes, and planning actions likely to influence such changes in the desired direction. Understanding
complements learning; learning re-uses responses found to be successful under circumstances similar
to the present conditions. In contrast, mental modeling takes advantage of the past experiences
without repeating them, by allowing re-combination in the construction of novel responses. In short,
understanding enables construction of robust (near-optimal) responses to disruptive changes, and
anticipatory preparation to possible changes before their onset.

How exactly are the models constructed and exercised? These questions have not received
much attention, and answers to them are unknown. This paper makes the following suggestions:
mental models are constituted by neuronal structures acting as “synergistic wholes”, where changes
in one component constrain changes in the other components. “Synergistic wholes” radically
reduce the number of degrees of freedom in their components (spontaneous and attentive activities
engage distinct neuronal systems, discussed in some detail in the concluding sections section). As a
result, exercising a model, e.g., varying parameters in a particular component, produces variations
throughout the structure within narrow ranges allowed by inter-component coordination. Formation of
“synergistic wholes” is spontaneous, while parameter variations are amenable to attentive examination
(Section 5.2.2 expands on that notion). Suppression of degrees of freedom and complexity collapse in
mental models enable attentive reasoning by maintaining attentive processes within narrow bounds
of parameter variations afforded by the model. Since attentive processes demand energy, the mental
modeling capacity yields radical reductions in the demand. As a result, humans can handle complex
coordination problems (e.g., managing battles, playing chess, designing complex artifacts, etc.) with
small energy budgets. Formation of modeling hierarchies underlies the experience of growing
understanding and gradual development of a coherent worldview, revealing unifying principles
behind expanding multitudes of diverse phenomena.

In the remainder of the paper, these suggestions will be elaborated following three lines of enquiry:

(1) Self-organization in the neuronal substrate;
(2) Information production; and
(3) Optimization of the organism–environment interaction.

Energy is a universal interaction currency. Accordingly, all three lines converge in the notion of
thermodynamic efficiency. Mental modeling is a form of information production, which yields the
dual benefits of minimizing energy expenditure inside the system, while maximizing energy inflows
from the outside (hence, optimization). Information efficiency is a corollary of thermodynamic
efficiency—minimal amount of sampling obtains maximally valuable information. Importantly,
associating mental modeling with self-organization entails differentiation between extrinsic and
intrinsic sources of value. Extrinsic values are determined by energy extraction opportunities that the
information signifies, while intrinsic values (worth, significance) are determined by self-organization
opportunities that the information enables. Intrinsic values motivate information seeking and
production, experienced as unification of models and interlocking of modeling hierarchies. In this
way, decoupling from sensory inputs gives rise to uniquely human pursuits, separating intellectual
significance of information from the material benefits it can bring about.

The proposed theory relies on two notions: neuronal packets and virtual associative networks.
Neuronal packets are Hebbian assemblies stabilized by boundary energy barriers. Formation of bounded,
quasi-stable neuronal packets underlies perception, that is, gives rise to bounded, quasi-stable feature
aggregations (images, mental objects) projected into the outside space. Packets form in associative
networks capturing correlations in the sensory stream; strong correlations trigger phase transition in
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tightly associated neuronal subnets causing their segregation and folding into packets. Packets establish
an energy landscape over the associative network, regulating attentional access to packet internals (high
boundary barriers deny access or cause attention capture inside packets). Virtual network comprises
a hierarchy of functional networks establishing coordinations (relations) between individual packets,
between packet groupings, between groups of groups, etc. In this way, information assimilated in the
form of associative links of varying strength (synaptic weights) gives rise to a self-produced functional
hierarchy, transforming sensory flux into unifying world models of growing generality. As succinctly
stated by Eddington, “the mind filters out matter from meaningless jumble of qualities, as the prism
filters out the colors of the rainbow from the chaotic pulsation of white light” [2].

These ideas have motivated the following conjecture: Understanding boils down to apprehending
coordination in the behavior of mental objects. Accordingly, the onset of the understanding and
language capacities approximately 80,000 years ago (Cognitive Revolution [3]) could be the result of
evolutionary advancement when the apparatus of sensory-motor coordination richly developed in the
protohuman, optimized for manipulating external objects under the control of motor-sensory feedback,
was co-opted for the manipulation of mental objects in the absence of such feedback. Similarly,
the signaling system was co-opted to support the handling of mental objects. These conjectures will be
addressed in the outline of the theory.

Operationalizing these ideas motivated a computational architecture (dubbed “gnostron”)
simulating some of the processes presumed to underlie human understanding. The gnostron approach
is orthogonal to that implemented in perceptron, and picks up where the perceptron leaves off.
Perceptron establishes a mosaic of synaptic weights and gnostron operates on that mosaic while
leaving the weights intact. The concluding discussion will compare the two approaches.

To complete the preview, some limitations of the proposed theory need to be pointed out.
In particular, the theory uses the notion of “mental models” in a restricted way and in a manner
that does not always agree with the meaning attributed to this notion in the literature. According
to Wikipedia, “a mental model is a kind of internal symbol or representation of external reality,
hypothesized to play a major role in cognition, reasoning, and decision making . . . In psychology,
the term mental models is sometimes used to refer to mental representations or mental simulation
generally . . . scientific debate continues about whether human reasoning is based on mental models,
versus formal rules of inference, or domain-specific rules of inference or probabilities”. As stated above,
the present theory uses the term to denote structures comprised of neuronal packets and suggests
that human understanding is rooted in operations based on such structures. It can be ascertained that
those same operations are involved in problem solving, reasoning, inference, decision making, etc.,
but the paper does not enter the debate and recognizes that this theory in its present form might fail
to account adequately for all aspects and nuances of these and other cognitive processes. Identifying
such shortcomings in the present version of the theory is a necessary step for future work, which will
lead to revisions and new synthesis.

Besides mental modeling, the theory addresses other cognitive processes, such as attention and
motivation. The article defines these processes within the framework of the theory and as the theory
is outlined, postponing clarifications until the discussion section. The important task of comparing
definitions and opinions in this paper with the plethora of definitions and opinions in the literature is
assigned to future research. Some key notions are repeated throughout the text, on the assumption
that readers will tolerate some redundancy for the sake of clarity.

The article is organized into five parts, including the introduction and concluding discussion. The
introductory part seeks to place the theory of understanding within a broad framework, combining
philosophy (the mind-matter dichotomy), information theory, thermodynamics (self-organization in
open, far-from-equilibrium systems), and optimal control. The introduction concludes by formulating
“principles of understanding”. Part 3 outlines the proposed theory, and summarizes theoretical results
and experimental findings to date that appear to corroborate it. Part 4 applies the theory to address
topics overlapping with that of understanding, such as consciousness, mental modeling in norms,
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and pathology, among other. The theory affords treatment of these complex topics that is exceedingly
simple and coheres with insights expressed in some other theories. The lines of treatment are only
tentatively stated, in the hope of motivating other researchers to pursue them further. The concluding
part 5 summarizes the proposal and makes suggestions for further research.

2. Introduction

This part consults philosophy, seeking actionable ideas about the nature of intelligence and the
role of understanding. The findings are condensed into “principles of understanding”, setting the
stage for a theory of understanding outlined in the next part.

2.1. The Physical and the Mental

In the following definition, introduced by Karl Popper, understanding operates in “the world
of the products of our human minds” [4], or World 3 built on top of World 1 (conditions in the
environment) and World 2 (representations of external conditions in the brain) [4,5]. The following
section takes a closer look at the three Worlds, seeking to define the role of operations in World 3 in
overcoming challenges encountered in World 1.

Arguably, the intuition of three Worlds [4,5] was already implicit in Aristotle’s Law of Identity, as
follows. The law states that each thing (object) A is identical to itself,

(∀A) (A = A),

which can be interpreted as addressing identity preservation in:

(a) Material (physical) objects Ap = Ap;
(b) Mental objects Am = Am;
(c) Relationships between the material and the mental objects, responsible for making the former

accessible to the latter (i.e., intelligible) Ap � Am .

The remainder of the section examines these interpretations in order to derive intelligibility
requirements as conditions under which physical objects get represented in the mental domain
Ap → Am in a manner allowing operations in the mental domain to guide actions in the physical
domain Am → Ap .

2.1.1. Physical Objects

Physics endows objects with three definitive attributes—they are distinct, persevere in their
self-identity, and can interact with other objects, as follows. Firstly, two objects can be identical but
distinct; for example, two copies of the same book fresh from the printer. Secondly, objects can behave;
that is, change their properties and sustain a certain amount of such changes without losing their
self-identity (e.g., a copy of a book that is worn out and marked all over can remain self-identical.
Self-identity is not violated when a book is moved or placed inside a container, but can be lost when the
book is torn apart, etc.). Thirdly, objects can have relations with other objects, imposing different forms
of behavior coordination (e.g., placing a book in a briefcase enforces a particular form of behavior
coordination between them).

A reassessment of the notion of “material objects” in modern physics led to the realization that
objects can be of two types, admitting different forms of properties and relationships, as follows.
A common sense view (Newtonian physics) endows objects with distinct spatial boundaries and
positions in space so that the volume occupied by an object cannot admit other objects. Also,
transferring objects between volumes is possible only via continuous movement. This view does not
hold onto the micro scale: micro objects neither have distinct spatial boundaries and positions in space,
nor move continuously. Coordination between macro objects requires either a direct contact or some
intermediaries that convey force or information. By contrast, on the micro scale, coordination can
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occur across any distance and without intermediaries (i.e., entanglement). Finally, properties of micro
objects cannot be decoupled from those of the measuring device. To generalize, it can be said that
material objects have attributes conforming to Newtonian or quantum-theoretic approximations.

2.1.2. Mental Objects

Mental objects are the “contents being attended to in consciousness” (The Harper Collins
Dictionary of Philosophy, 1992). To satisfy the Ap � Am requirement, mental objects must,
as a minimum, represent the definitive attributes of their physical counterparts. They must be
amenable to reliable attentive discrimination, must have a degree of stability, and must combine
stability with flexibility to allow representing changes in the objects without compromising their
self-identity. Representing interactions between physical objects requires reversibility of mental
operations, that is, the ability to juxtapose mental entities A1

m, A2
m, . . . , An

m, and shift attention between
them without distorting the entities [6,7].

2.1.3. Requirements for Intelligibility

The Law of Identity appears to assert that:

1. The physical world is intelligible because it has a degree of order and consistency;
2. Processes in the brain serve to apprehend that order and apply the results in regulating behavior;
3. Efficient regulation is predicated on the availability of reversible operations performed on distinct

(segregated), (quasi)stable, and flexible informational structures (mental objects).

2.2. Evolution of Regulatory Mechanisms

Life emerges in networks of interacting units (e.g., complex molecules), when subnetworks fold
into structures bounded by Markov blankets (separating surfaces, or “membranes” [8]) that preserve
connectivity between the subnet and its surrounds, while, at the same time, according to the subnet,
a degree of statistical independence [9–11]). Life is sustained via flows of energy and matter through
the “blanket”, including an influx of high-grade energy and expulsion of degraded energy (heat)
and waste. Accordingly, emergence of life must be concomitant with formation of flow regulating
mechanisms, which can subsequently evolve towards increasing regulatory efficiency. Roughly, three
evolutionary stages can be identified, as follows:

(A) Primitive organisms. Regulation is confined to the boundary surface (e.g., opening or closing
surface channels to allow or block access to the organism’s internals).

(B) Animals. Regulation expands to the immediate surrounds and manifests in a range of behaviors
extending from simple reactions (e.g., sea slugs extending or withdrawing their gills) to complex
predatory or foraging behaviors in higher animals. In all cases, acting on conditions external to
the surface involves establishing direct contact with the surface (reaching, grabbing, clawing,
biting, etc.).

(C) Humans. Regulation expands to outside conditions separated from the organism’s boundary
surface by indefinitely large intervals. As formulated by Bertrand Russell: “ . . . the essential
practical function of “consciousness” and “thought” is that they enable us to act with reference to
what is distant in time and space, although it is not at present stimulating our senses” [12].

Since separation in space and time prevent acting on the objects directly, regulation must
incorporate mechanisms allowing coordinated engagement of multiple intermediary objects (e.g.,
tools). It will be argued that: (a) anticipatory construction of such coordinations, decoupled from the
current sensory inputs and overt actions, is the essence of understanding and the subject of “thinking”;
(b) language and explanation capabilities are components of understanding, enabling construction
of indefinitely expandable coordination hierarchies; and (c) construction of coordinations (mental
modeling) is a form of information production.
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Anticipatory construction allows organisms to prepare for the forthcoming events before their
onset. In that sense, the function of intelligence includes curbing surprise. Accordingly, a general
principle of brain operation can be expressed in terms of surprise minimization (more technically,
Minimization of Variational Free Energy (MVFE), determined by the amplitude of discrepancies
between the anticipated events and those eventually encountered [11]). Understanding reduces or
preempts surprise, and thus conforms to this general principle (part 3 suggests some extensions of the
MVFE principle motivated by the theory of understanding).

Self-directed construction of mental models is a form of self-organization. Accordingly, formulating
a theory of understanding requires elucidating biophysical mechanisms of self-organization in the
neuronal substrate. These mechanisms are presently unknown, although their general characteristics
can be ascertained, leading to principles of understanding. Some principles are suggested in the next
section, prefaced by a brief excursion into biophysics.

2.3. Principles of Understanding

Reversibility of mental operations [6,7] demands low entropy and imposes other constraints
on the thermodynamic mechanisms operating in the human brain (simply stated, there can be
no thinking if one cannot return to the contents of earlier thoughts, because the contents or the
pathways leading to them have eroded and are no longer available). More precisely, mental operations
underlying understanding in adults were shown to acquire the properties of algebraic groups, which
includes capacity for re-visiting mental objects and combining objects into functional associative
groupings [6,7,12]. Consistent with these findings and suggestions in Section 2.1, it can be surmised that
the neuronal substrate of understanding must allow formation of quasi-stable neuronal aggregations
that are capable of withstanding entropic erosion and are amenable to grouping into composite
structures (i.e., mental models), entailing progressive entropy reduction and a growing degree of
organization in the neuronal system. This section lists some of the results in the literature, shedding
light on the mechanisms of self-organization and entropy reduction.

(1) Self-organization feeds on energy. More precisely, “the flow of energy through a system acts to
organize that system” [13]. Entropy H of an open system φ connected to an energy source and
energy sink is determined by entropy of the system Hφ and cumulative entropy of the source and
the sink Hss, H = Hφ +Hss. According to the second law, dHφ + dHss � 0. Energy flow from the
source to the sink leads to increasing entropy in the source-sink subsystem, dHss > 0. The only
demand on entropy change in φ placed by the second law is that −dHφ � dHss. Accordingly,
entropy decreases in φ are permitted, under the condition that system φ is open and serves as
a conduit for energy flow [13].

(2) Self-organization takes place in open systems driven away from equilibrium (“dissipative
systems”) [14,15], and proceeds through phase transitions accompanied by entropy reduction and
symmetry changes [16,17]. The rate of entropy generation declines as systems relax toward steady
states [18]. Changes of symmetry manifest, for example, in the formation of Benard cells when
molecular mechanisms of heat transfer are replaced with convective heat transfer. In general,
symmetry breakings accompany transitions from disorganized movements of individual (micro)
units to collective movement of ensembles comprised of multiple units (as, for example, during
transitions from laminar to turbulent flow in liquids [19,20]).

(3) Information absorption entails entropy reduction and extraction of free energy [21–24]. The
notion dates back to the realization that measurements yielding information dI about a physical
system cause entropy increase inside that system [21]. Reciprocally, absorbing information dI
reduces entropy dH in the receiver, accompanied by extraction of free energy dF and conversion
of heat into work dW. Roughly, the argument is as follows [24].

Assume that system φ1(λ), λ ∈ L is connected to a thermal bath at temperature T and is positioned
to receive information from system φ2(ξ), ξ ∈ Ξ. The initial state of φ1(λ) is defined by distribution
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p(λ) and entropy H, p(λ) = exp((F(λ) − E(λ))/T), where F(λ) and E(λ) denote free and total energy,
correspondingly. Initially, system φ1(λ) is uncertain about the state of φ2(ξ) (any value of λ, λ ∈ L
is possible), while absorbing information dI from φ2(ξ) would set λ to some λ0, and thus eliminate
the uncertainty (by indicating that φ2(ξ) is in some state ξ = ξ0). Let information dI allow only
partial uncertainty reduction and the corresponding entropy decrease dH. To assess the scope of
these changes, partition L into N domains separated by “barriers,” as in Figure 1, and assume that
dI confines φ1(λ) to domain λk in L, with F, E, and H assuming posterior values F(λk), E(λk), and
H(λk), respectively (temperature is kept constant during the process, by maintaining connection to
the thermal bath). Restoring the initial distribution would require pushing the “barriers” apart until
λk = L. The movement is resisted by the environment and requires forces sufficient for overcoming
the resistance.
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Figure 1. Absorbing information dI narrows the range of states available to system φ1 (λ) to domain λk
(adopted from [24]).

Energy for carrying out the requisite amount of work dW is drawn from the thermal bath,
obtaining free energy increment dF = F(λk) − F. In this way, absorbing information enables conversion
of thermal energy into the amount of work bounded by the product of entropy and information intake,
dW ≤ H × dI (dW = H × dI if conversion proceeds slowly, t→ ∞ and dW < H × dI if otherwise).
These conclusions allow re-formulation of the second law

dH + dI ≥ 0 (1)

Equation (1) indicates reduction of entropy in the receiving system following absorption of
information, and conversion of thermal energy into work (or, indirectly, information into work) [24,25].

Analysis of relationships between information, free energy, work, and thermodynamic entropy
has substantially advanced in the last decade (e.g., [26–28]). However, analysis in [24] was carried
beyond the examination of these relationships, proposing that worth (significance) is attributed to
information as a function of entropy decrement produced by information absorption; the larger the
decrement, the higher the significance. Attributing significance to information expands Shannon’s
information-theoretic framework [29] in a direction particularly relevant to the present proposal.
Specifically, the relationship suggests that the human brain does not absorb whatever information
comes its way but actively seeks information conducive to its progressive self-organization (these
notions will be re-visited in the later sections).

In summary, suggestions in the preceding sections and theoretical results referenced in this section
can be summarized in several hypotheses concerning operation of understanding (the principles of
understanding), as follows:

(1) Understanding is a product of self-organization in the neuronal substrate, involving self-directed
construction and manipulation of mental models.

(2) Models are composed of quasi-stable neuronal groupings (packets).
(3) Mental modeling involves work and is predicated on supplying free energy in the amounts

sufficient for performing that work. The human brain regulates extraction of free energy from the
environment and diverts a part of it towards the work of mental modeling.

(4) Modeling produces information. Absorbing information from the environment equates to
negentropy extraction, and reducing entropy as a result of internal information production
equates to negentropy generation.
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(5) The process is self-catalytic, in the sense that modeling stimulates information seeking on the
outside (significant information) that facilitates increasing order on the inside, via formation of
new models, and expanding and unifying the already formed models.

(6) Mental models function as synergistic complexes, focusing energy delivery and obtaining large
amounts of work at low energy costs (high-cost attentive changes in any component produce
mutually coordinated, low-cost changes throughout the model).

(7) Modeling yields a quantum leap in regulatory efficiency by improving energy extraction from
the outside (better predictions and robust response construction in unforeseen circumstances)
and reducing unproductive energy expenditures inside the system.

The next part outlines a theory substantiating these hypotheses.

3. Theory of Understanding: How the Intelligible World Arises from Sensory Flux

The theory has been presented elsewhere [30–33], while the following sections summarize some
of the key ideas, in three iterations. First, principles 1–5 are addressed, focusing on the formation
of neuronal groups and their role in understanding. Next, experimental findings are reviewed in
neuroscience and psychology concerning the dynamics of neuronal groups and the operation of
understanding. Finally, principles 6 and 7 are addressed, focusing on the benefits of understanding.

3.1. Neuronal Packets and Their Role in Understanding

Understanding one’s environment involves constructing models capturing objects, their behavior,
and the forms of behavior coordination (inter-object relations). The theory of understanding pivots on
the idea of “neuronal packets.”

3.1.1. Neuronal Packets: The Building Blocks of Understanding

Neuronal packets are Hebbian assemblies [34,35], or subnets that form in associative networks
and are segregated from the surrounding network by boundary energy barriers. It was hypothesized
that energy barriers emerge as a result of phase transition in tightly associated subnets. Energy
barriers make the packets distinct and quasi-stable; that is, stable enough to sustain changes in the
surrounds without erosion and flexible enough to allow internal changes responsive to the external
ones. Barriers determine the extent of internal changes that packets can afford without losing their
integrity. Figuratively, neuronal packets are blocks of which the edifice of the intelligible world is
constructed [30,31]. Figure 2 illustrates stages in the formation of packets.
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Arguably, the requirements of segregation, stability, and flexibility were implicit in the 
foundational idea of neuronal assembly [34]. Absent from such barriers, assemblies could exist only 
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of sensory flux (or “meaningless jumble of qualities” [2]). By contrast, bounded, quasi-stable packets 
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3.1.2. Perception and Recognition 

Figure 2. (a) Repetitive co-occurrence of stimuli zi and zk causes repetitive co-firing of neurons xn

and xq and amplification of synaptic connections between them. As a result, the neuronal system
receives information dI registered (absorbed) in the form of xn–xq synaptic link. (b) Hebbian assembly
emerges, as an aggregation of neurons that are tightly associated with each other due to their exposure
to strongly correlated stimuli [34]. (c) Phase transition turns assembly into a quasi-stable packet Xα

separated by boundary energy barrier from the surrounds. (d) Removing neurons from the packet
requires expenditure of energy ∆E sufficient for overcoming the barrier.



Entropy 2019, 21, 308 9 of 38

Arguably, the requirements of segregation, stability, and flexibility were implicit in the
foundational idea of neuronal assembly [34]. Absent from such barriers, assemblies could exist only
as transient aggregations experienced as sporadic sensory clusters flickering against the background
of sensory flux (or “meaningless jumble of qualities” [2]). By contrast, bounded, quasi-stable packets
give rise to the experience of bounded, quasi-stable objects populating the environment.

3.1.2. Perception and Recognition

Perception of objects (bounded, quasi-stable feature aggregations) results from projecting neuronal
packets into the outside space. Images are entities in the mental space that mediate interaction between
entities in the neuronal space (neuronal packets) and their counterparts in the physical space (physical
objects). Figure 3 illustrates these notions.
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Figure 3. Emergence of packet Xα gives rise to the experience of object Oα projected into physical space
outside the sensory surface (e.g., visual images are not experienced as irritations of the retina). Binding
between object Oα and packet Xα is predicated on “bonding” in Xα (i.e., cohesion and relative stability
of neuronal packets underlying the experience of external objects).

Packets form as a result of phase transition in associative networks causing emergence of
functional surfaces separating packet internals from the surrounding network. Tendency towards free
energy reduction in the surface creates bonding that holds the neurons together in quasi-stable
aggregations (packets are not unlike raindrops, where molecules are held together by surface
tension [32]). Waves of phase transition propagating in the associative network partition neuronal
space and populate physical space with objects amenable to recognition, as illustrated in Figure 4.
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Figure 4. Packets partition neuronal space into “domains” separated by energy barriers (seen in
Figure 1). Before the arrival of stimulus zi, the system was uncertain about the state of the environment;
stimulus zi “primes” one of the packets, i.e., confines choices to a particular “domain” (packet), and
thus predicts the likely stimuli composition (e.g., stimulus ZK). Firing xq confirms (or disconfirms)
the prediction. A series of confirmations amounts to recognizing the object (see Figure 3), while failed
prediction motivate shifts to other packets.



Entropy 2019, 21, 308 10 of 38

Packets represent objects in both Newtonian and quantum-theoretic approximations (representing
spatially unbounded physical fields still requires a bounded mental structure (mental object) that
is distinct and separable from other such objects, for example, maintaining distinction between the
notions of an electric field and magnetic field).

3.1.3. Apprehending Behavior

Packets afford a range of variations in their response patterns without losing stability, giving rise
to the experience of changes in the corresponding objects. Figure 5 explains the notion.
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Figure 5. (a) Changing response patterns in packet Xα underlies the experience of object Oα undergoing
a series of state changes Q1
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α → Q3

α . The object preserves its self-identity due to the preserved Oα

–Xα binding (Q1
α, Q2

α, Q3
α are experienced as different states of object Oα ). (b) If population response

vector is computed on the group of neurons in packet Xα, changes in Oα can be represented as rotation
of the population vector. Different rotation trajectories define the behavior repertoire available to
the object.

As indicated in Figure 5b, switching rotation trajectories of packet vectors underlies the
experience of having apprehended different behavior patterns available to object Oα ( Q1

α → Q2
α → Q3

α ,
Q1

α → Q2
α → Q2

α → Q1
α , etc.). Note that packets respond asynchronously. Synchronous firing equates

to being able to recognize objects despite changes (Q1
α is the same as Q2

α, etc.), while being unable
to pinpoint those changes and apprehend their succession (object’s behavior). Recognition via
synchronous firing gives a coarse-grain view of the environment and is energetically wasteful.

To summarize, behavior of an object is the totality of changes the object affords. Packets respond
asynchronously, representing changes in the object by different activation-inhibition patterns of the
constituent neurons. As depicted in Figure 5, three neurons in a packet respond to three features of
an object (conditions (dark or light) on one of the facets of a cube). Neuron is ON (excited) if the
corresponding facet is light and OFF (inhibited) if otherwise. These thee neurons define packet vector
rotation depending on the combination of conditions. Accordingly, a particular behavior (e.g., only the
front facet is dark→ only the top facet is dark→ all three facets are dark→ . . . ) defines a particular
trajectory of the packet vector movement.

3.1.4. Rudimentary Understanding

The next advancement in the evolution of intelligence involves emergence of a limited capability
to apprehend behavior and manipulate mental objects in a coordinated fashion, to produce behavior
changes leading towards the desired outcome. Figure 6 illustrates this advancement.

Self-initiated coordinated rotation of several packet vectors manifests in purposeful manipulation
of physical objects. In animals, the capability is limited to primitive manipulations of familiar objects
located in habitual surrounds (think of a chimpanzee fitting together sticks or piling up boxes to reach
a hanging fruit). Such manipulations are triggered by the current sensory inflow (the reward and the
objects are within the field of view) and guided by the sensory-motor feedback in the course of object
manipulation. To the extent the process involves self-directed (purposeful) coordination of behaviors,
it manifests in rudimentary understanding.
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Note the critical limitations of such rudimentary understanding:

(1) Objects are in the immediate proximity of the animal (within the sensory-motor feedback loop);
(2) Objects have familiar properties and are proximal in space and time, that is, have been

co-occurring in the animal’s past history (accordingly, the corresponding packets occupy proximal
positions in a small neighborhood in the packet network);

(3) Manipulations are within the envelope of instinctive (genetically determined) responses (e.g.,
reaching, pulling, dragging, grabbing, etc.).

The “small neighborhood” limitation is particularly significant: on the account of the present
theory, transition from protohuman to Sapience was the result of overcoming the limitation.

3.1.5. Cognitive Revolution: Emergence of Human Understanding

Capital letters in the title indicate that the term refers to the emergence of Sapiens about
80,000 years ago [3]. The hypothesis is that the transition from protohuman to Sapiens consisted
in the acquisition of mechanisms allowing:

(1) Coordinating packet vectors across unlimited spans in the packet network; and
(2) Conducting such coordinations without motor-sensory feedback (i.e., while withdrawing from

sensory inflows and suppressing overt motor activities).

Stated differently, the transition to Sapiens consisted of the acquisition of understanding capacity,
which boils down to self-directed construction and manipulation of mental models comprising packets
from distant neighborhoods in the packet network. Figure 7 illustrates this notion.
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Figure 7. The definitive feature of human intelligence is the ability to construct mental models, by
establishing coordination between packets residing in different neighborhoods separated by indefinitely
large spans in the associative networks. In this way, relationships can be established between objects
and events separated by indefinitely large expanses in time and space (e.g., Newton’s theory allowed
people to establish relationships between terrestrial and celestial objects and events).



Entropy 2019, 21, 308 12 of 38

Combining coordinated packets into groupings amenable to subsequent inter-group coordination
produces a growing hierarchy of relational structures expanding the reaches of understanding.
Establishing relationships among packets involves complex neurons responding to different activity
patterns in the packets (more on that in Section 5.2.5). Note the broad range of cognitive capacities
enabled by the mechanism in Figure 7:

(1) If packet Xα corresponds to a currently perceived object A, establishing coordination (Xα Rj
Xβ) allows one to attribute causes of A’s behavior to some object B, which is not amenable
to perception;

(2) Coordination (Xα Rj Xβ) suggests the use of object B and deployment of coordination Rj in
order to produce some desired changes in the behavior of object A;

(3) Coordination (Xα Rj Xβ) allows prediction of changes in B following changes in A;

(4) Exercising coordination (Xα Rj Xβ) amounts to simulating interaction between A and B;

(5) A coordinated pair becomes a functional unit (Xα Rj Xβ)→ Yk that can be coordinated with other
units (Yk Rq Yp)→ Zt, and so on;

(6) Establishing coordinations equates to production of information, yielding reduction of entropy,
and a growing degree of order in the system. Accordingly, information can be sought that
facilitates entropy reduction, via self-directed construction, expansion, and integration of models;

(7) Establishing coordination (Xα Rj Xβ) is experienced as attaining understanding, or grasping the
meaning of behavior variations in A and B;

(8) Understanding enables explanation.

A simple example will illustrate these notions. Consider a system of two packets comprising
one neuron each and representing “switch” and “light bulb” in a room (switch can be UP and
DOWN and bulb can be ON and OFF), and let these packets form in the brain of a person unfamiliar
with modern technology. When visiting the room, the person witnesses changes in the state of
the bulb. Being perceptive, she also notices changes in the state of the switch but initially fails to
make a connection. Understanding emerges when a model is formed comprising both packets and
establishing coordination in the behavior of the objects (UP–ON, DOWN–OFF). With that, prediction
and explanation become available (e.g., predicting what will happen with the bulb if the switch is
turned up or down, explaining what caused the bulb to be on or off). Mental simulation underlies
prediction and explanation; attention needs to be shifted between the packets and packet vectors need
to be rotated so that coordination in the rotation patterns can be established.

Assume now that the person eventually runs into a situation when turning up the switch fails
to turn on the bulb (and continuing flipping the switch did not help). The model would disintegrate
into uncoordinated packets, unless a third object (for example, “fuse”) was introduced, with the
corresponding neuron forming a separate packet or being absorbed into the packet holding the
“switch” neuron. In the latter case, switch and fuse merge in the person’s mind into a composite
object (“controller”) whose states are determined by the states of the constituent neurons (UP–ON,
DOWN–OFF, UP–OFF, DOWN–ON) and coordinate with the states of the bulb. If familiarization with
the modern technology continues, the model for controlling illumination will be combined with other
models (e.g., controlling temperature, etc.) subsumed in a model of “room control”, which would be
a component in “house control”, and so on, forming a hierarchy amenable to indefinite expansion.
At some future point, the person might be able to associate failed illumination with a fallen tree and
broken wires observed at some point in the past in a location distant from the house, as in Figure 7.
Moreover, Figure 7 implies eventual development of the ability to form models combining concepts
acquired at different points in time and belonging to different knowledge domains (neighborhoods)
(e.g., the idea of “neuronal packet” amalgamates concepts from neuroscience, thermodynamics, vector
algebra, and optimal control theory).

The term “understanding” denotes “the capacity to apprehend general relations of particulars”
(Webster’s Ninth New Collegiate Dictionary). Figure 7 and the above example indicates that
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understanding advances by grouping variables (the “particulars”) into quasi-stable packets and
forming hierarchies of relational structures. Algebra defines relations as mappings between sets (i.e.,
sets of neurons in packets). Figure 7 expands that notion, defining relations as mappings between
sequences of variable combinations (excitation-inhibition patterns) defined in the sets and expressed
in the formalism of coordination in the rotation of packet vectors. The contention is that any relation
(A controls B, A threatens B, A loves B, etc.) can be expressed in that formalism.

Note the key differences between learning (registering co-variations) and understanding via
constructing models:

(1) Understanding entails entropy reduction, i.e., the resolution of uncertainty or expected surprise.
Establishing relations (e.g., switch controls bulb) amounts to forming dependencies between
packets, which is accompanied by producing information and reducing entropy,

H
(
XαRjXβ

)
< H

(
Xα, Xβ

)
here H (Xα, Xβ) denotes entropy before the dependency (relation, coordination) was established.

(2) Understanding entails generalization, i.e., an increase in the marginal likelihood of internal
models following a reduction in model complexity. Grasping a relation in a particular process
enables transferring it to a variety of other processes different from the original one (e.g., having
comprehended that switch controls bulb, the person can figure out how to handle desk lamps,
floor lamps, fans, or other devices operated by switches, etc.). As formulated by Piaget:

“ . . . the subject must, in order to understand the process, be able to construct in thought
an indefinite series . . . .and to treat the series he has actually observed as just one sector
of that unlimited range of possibilities”. [6] (p. 222)

(3) “Understanding brings out reason in things” [6] (p. 222), and thus enables explanations (“the
bulb turned on because this switch controls it and it was turned up”).

(4) Most importantly, understanding makes it possible to overcome the inertia of prior learning,
and thus enables coping with disruptive changes and unprecedented conditions. Technically,
intrinsic to modeling is the possibility of constructing, in thought, various packet groupings until
a composition emerges fitting the situation at hand, and thus allowing explanation and prediction.

To summarize, the following suggestions have been made (admittedly, the suggestions are
tentative, requiring further development and substantiation):

(1) Intelligence derives from biophysical mechanisms allowing self-directed construction of mental
models, establishing coordinated activities in neuronal packets residing in different domains
in the packet network. Cognitive functions enabled by the mechanism range from figuring out
methods for handling physical objects in order to achieve some desired objectives, to formulating
scientific theories defining coordination between abstract variables.

(2) Modeling entails entropy reduction. As a result, the process motivates extracting and producing
information that is conducive to further entropy reduction, and thus has intrinsic worth to the
system. Accounting for internal information production modifies Equation (1).

H + dI + dIφ ≥ 0 (2)

here dIφ is the internal information increment. Entropy reduction inside the system—dH is
compensated by entropy increases in the surrounds, keeping the overall process in line with the
second law.

(3) Along with maximizing intrinsic significance, modeling serves to maximize extrinsic value
(utility) by supporting “mental simulation”, thus reducing prediction errors (minimizing
variational free energy [11]). To underscore: In feedback-controlled coordinations, information
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has no intrinsic worth independent of the external conditions it signifies. Decoupling from
feedback gives rise to intrinsic worth commensurate with the degree of entropy reduction the
information obtains. The pursuit of intrinsic worth involves re-organizing and unifying mental
models and seeking information that is subjectively significant, that is, conducive to further
entropy reduction. Intrinsic worth motivates cognitive effort in search of understanding.

(4) The overall functional organization of the regulatory system is hierarchical, as shown below.Entropy 2019, 21, x FOR PEER REVIEW 14 of 38 
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Synaptic wiring at the bottom gives rise to informational hierarchy, where each upper level is
produced by operations on the lower one. The hierarchy extends upward indefinitely (models
comprising models comprising models...).

(5) The world is intelligible because its representation is constructed by the same mechanism that is
employed in the attempts to understand it. Intelligibility does not equate to ready understanding,
it only implies that understanding can be reached eventually with effort.

3.2. Supportive Experimental Findings

3.2.1. Neuronal Packets—Are They “Real”?

Returning to Figure 7, imagine energy barriers surrounding packets Xα, Xβ . . . and creating an
energy landscape across the network. Energy barriers constitute Markov blankets affording a degree
of statistical independence and stability to neuronal groupings inside packets [33]. Establishing
coordination (Xα Rj Xβ) requires navigation of the landscape and crossing of the barriers, which
incurs energy costs. Rotating packet vectors without crossing the barrier packets presents low energy
demands, whereas accessing a packet can be more costly (depending on the height of the barrier),
and adjusting packets (re-distributing neurons, as in Figure 2d) is expensive. The system strives to
minimize expenditure and maximize returns.

These ideas allow verifiable predictions. For example, it can be expected that packets get sculpted
for stability and re-combination: the system strives to obtain a minimal number of packets that can be
re-combined to cover broad ranges of condition variations, with the relative packet sizes reflecting
variation amplitudes.

More precisely, the classical theory by Donald Hebb ascertains that overlapping activity in
assemblies A and B create “interfacilitation” between A and B (that is, if activity in some subset C1 in A
alternates with activity in subset C2 in B, A and B can become associated) [34]. Notwithstanding this
possibility, the energy efficiency criteria entails a hypothesis that the overlap component C (C1 + C2)
can be separated into a packet that is coordinated alternatively with the adjusted packets, C � (A −
C1) OR C � (B − C2) (� denotes coordination) [30,32]. Figure 8 explains this important notion.

With sufficiently sensitive techniques for monitoring neuronal activities, these tendencies in the
formation of packets can be detected. Such techniques appeared in the last decade. This section
references experimental findings that appear to be consistent with the tendencies predicted in Figure 8,
and also provide other evidentiary support for the idea of neuronal packets.

In recent studies [36–39], state-of-the-art monitoring and analysis techniques applied to a simple
animal (medicinal leeches) revealed that an animal’s behavior is regulated by what was termed
“shifting neuronal coalitions.” Leeches engage in swimming or crawling, which involves “crawling”
assembly A (108 neurons), “swimming assembly” B (6 neurons), and overlapping assembly C (84
neurons). The ganglion circuit for crawling comprising A and C is reconfigured into one for swimming
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when C is switched to, and coordinates with, B. Strikingly (but consistent with considerations in [30]),
a single neuron in C was found to be responsible for determining which “coalition” to form. Crawling
is more demanding than swimming (a broader range of condition variations), requiring a larger packet
(108 neurons dedicated to crawling and 6 neurons dedicated to swimming). These findings conform
closely to the schema depicted in Figure 8b, which is also corroborated by data obtained in the study
of rodents [40], as follows.
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Figure 8. (a) Recurring co-activation in groups C1 and C2 in assemblies A and B, C1 ⊆ A, C2 ⊆ B can
“interfacilitate” association between A and B [34]. (b) It was suggested that overlapping activation
results in the extraction of the overlap component C and formation of a triad, where the overlap
component can coordinate alternatively with the other two members of the triad [30,32].

Mice were exposed to different startling conditions: free-fall inside an elevator (“fall”), a sudden
gush of air (“gush”), and earthquake like shaking (“shake”). Large-scale ensemble recordings revealed
formation of neuronal “cliques” in the hippocampus that were of the “specialized” and “overlap”
types (e.g., “general startle” is an overlap clique responding to any of the three conditions, the “gush or
shake’” clique responds to any of the two conditions, “gush” clique responds to one, etc.). Such cliques
can be combined economically depending on the subjective significance attached to the situation,
e.g., a weak response in the “general startle” clique can be ignored, while a stronger one can suggest
attending to the matter). Cliques are “self-organizing, arising out of internal structures and connectivity
of neural networks upon behavioral experiences” [40].

Critical support for the notion of packet vector rotation notion is provided by seminal studies by
Apostolos Georgopoulos and colleagues, identifying neuronal assemblies as the substrate of motor
control [41–44]. Neurons in the motor cortex are directionally selective, the sums of neuron response
vectors within assemblies establish assembly vectors that were found to track overt movements
exercised by the animal. Movement control (initiating and directing movement) was determined
to involve rotation of assembly vectors. It was hypothesized that the vector rotation mechanism is
exploited in other forms of cognitive activity [45].

The present theory ascertains that the mechanism of packet vectors is ubiquitous, playing the
central role in perceptual and higher-order cognitive processes [30,33]. Recent findings concerning
face recognition appear to support this generalization [46]. The fMRI recordings were obtained from
high-level sensory neurons in the middle lateral and anterior medial area in macaque brain during face
recognition. It was determined that faces are encoded in 50-dimensional (50-D) population vectors,
where each neuron’s firing rate was found to be proportional to the projection of a particular incoming
face feature onto a single axis in the feature space. As a result, every individual face is encoded as
a 50-D vector [46].

Finally, energy barriers can be considered “real” because they manifest in one of the most common
and ubiquitous experiences. A vivid account of the experience was given by William James [47],
as illustrated in Figure 9.

To summarize, the notion of neuronal packets expands the foundational idea of neuronal
assembly [34,35] in a manner consistent with the current theories of neuronal processes underlying
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cognition [10,11]. The notion is supported by experimental findings and explains naturally some of
the most common subjective experiences accompanying cognitive activities.
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Figure 9. Experiencing energy barriers during recall efforts (adopted from [47]). “Call the forgotten
thing Z, the first facts with which we felt it was related to a, b, and c, and the details finally operative
in calling it up 1, m, and n. The activity in Z will at first be a mere tension; but as the activities in a, b,
and c little by little irradiate into l, m, and n . . . their combined irradiations upon Z succeed in helping
the tension there to overcome the resistance, and in rousing Z to full activity. Through hovering of
the attention in the neighborhood of the desired object, the accumulation of associates becomes so
great that the combined tensions of their neural processes break through the bar, and the nervous wave
pours into the tract, which has so long been awaiting its advent” [47].

3.2.2. Mental Modeling: From Fitting Sticks to Landing on the Moon

This section is central to the article: it purports to explain how the ability to coordinate rotation of
packet vectors propelled Sapience, figuratively, from fitting sticks and sharpening stones to landing
on the moon and creating intelligent artifacts, all in a period of less than 100,000 years (a blink on the
evolutionary time scale).

Observe that packet vectors establish “bridges”, through which the mental domain is connected
to the physical and biophysical domains, as follows. A chimpanzee intending to reach an object
causes rotation of the corresponding population vectors in the motor cortex [41,44]. The animal
controls the position of the vector but is neither aware of, nor has any control over, the behavior of
neurons in the population. The biophysical properties of neuronal substrates are such that rotation of
packet vectors obtains coordinated neuronal activities (excitation/inhibition patterns) inside packets
consistent with the movement of the vector. Moreover, since multiple muscle groups might be engaged
in implementing the intent, coordination is established across multiple packets in the motor cortex, with
no or minimal awareness of, and attentive control by, the animal. To reiterate, neurons serve as basic
elements in the regulatory system due to their ability to form collectives acting as synergistic wholes,
i.e., engage in collective behavior responsive to a macro parameter (position of packet vector) amenable
to attentive variation. In that sense, packet vectors connect the mental domain (imagining, volitional
control) to the biophysical (inhibition/excitation patterns) and the physical (external objects) domains.

Think now of a chimpanzee fitting together sticks A and B in order to reach a hanging fruit.
The operation suppresses degrees of freedom in A and B and obtains composite C, treated as
a functional unit. Accordingly, a mental model is formed, where packets Xα and Xβ are combined into
composite Yχ. A similar model will be formed by a human engaging in the same task. The crucial
difference lies in the way the models are deployed—the animal deploys the model by carrying out
the physical manipulation, under the guidance of sensory-motor feedback; by contrast, the human
can exercise the model “in the mind”, without the feedback. Think of connected sticks and imagine
side A being lifted up. An image “comes up”, where the position of side B is coordinated with
that of side A. That is, the human model acquires the property of a synergistic whole amenable
to mental manipulation, while animal models have no such property. Stated differently, a human
comprehends relations (A connects to B) and understands the task, while the animal carries it out
without understanding. The significance of this distinction has long been appreciated in cognitive
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psychology [6], as follows. Young children were presented with a pile of playing cards and asked
to construct a “house.” The solution went through multiple attempts involving different forms of
selecting and manipulating the cards (e.g., selecting cards based on pictures, holding one card in each
hand and setting them up vertically, etc.), until coming to a realization that cards must lean against
each other and that coordination (A leans against B) imposes reciprocal constraints on the behavior
of both components (i.e., if A leans against B, it is not only held by B but also immobilizes B). The
attainment of understanding was accompanied by crucial changes in the child’s mental processes: the
feedback-directed activity (e.g., handling of the cards) is internalized, allowing subsequent mental
activities to be decoupled from the feedback. With that, the “step-by-step material coordinations” are
replaced with “co-instantaneous mental coordinations.” More precisely,

“There is, in fact, a very appreciable difference between the two types of co-ordination,
the first having a material and causal character because it involves a co-ordination of
movements, and the second being implicative. The co-ordinations of actions . . . must
proceed by systematic steps, thus ensuring continual accommodation to the present and the
conservation of the past, but impeding inferences as to the future, distant spaces, and possible
developments. By contrast, mental co-ordination succeeds in combining all the multifarious
data and successive data into an overall, simultaneous picture, which vastly multiplies the
powers of spacio-temporal extension, and of deducing possible developments”. [6] (p. 219)

Implicative, feedback-decoupled coordinations allow construction and manipulation of mental
models comprising indefinitely large multitudes of packets, while, crucially, employing a small number
of attentive, step-by-step variations in the model. For example, one can think of connecting stick
A to stick B, B to C . . . to Y, and realize that lifting up A will cause position change in Y, without
having traced position changes in B, C, ..., X. Obtaining the result (change in Y) in lieu of step-by-step
operations implicates a model acting as a synergistic whole; the position of any packet vector constrains
positions of all the other packet vectors in the model. To fully appreciate the benefits of such synergy,
consider challenges posed by complex coordination tasks, such as playing chess. In particular, it was
observed that master players perceive positions

“In large complexes, each of which hangs together as a . . . functional or dynamic unit. Such
a complex, an interrelated knot of pieces . . . is to be considered as a unit of perception and
significance”. [48]

Accordingly, master-level performance (i.e., guided by the understanding the game)

“consists essentially of taking stock of the spatial, functional, and dynamic relations among
the perceived parts, so that they can be combined into one whole”. [48]

A model combining “complexes” into a unified “whole” obtains “co-instantaneous co-ordination”,
eliminating superfluous degrees of freedom in the movement of individual pieces (losing moves don’t
come to mind of a master, no more than illegal moves come to the mind of a novice [48]). Stated
differently, thinking of moving a particular piece constrains movement of the other pieces, leaving
only a few promising moves for further reasoning. Reasoning is a step-by-step process demanding
concentrated attention, while the process that constrains reasoning operates automatically (one realizes
consequences of moving a chess piece in the same way one realizes consequences of moving a stick
connected to other sticks, or moving a card in a “house of cards”, etc.). Stated differently, understanding
brings a few moves to the focus of awareness, while placing a multitude of other ones temporarily
outside the bounds of awareness. Synergistic models collapse combinatorial complexity inherent
in the game, and make reasoning of future moves possible in the context of the entire position and
the long-term consequences (e.g., looking ahead 15 moves [49]). Reducing complexity equates to
reducing energy demands; modeling works because the need for energy-demanding reasoning is
radically reduced by low-cost coordination processes, limiting the amount of reasoning. These ideas
are summarized in the following hypothesis:
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Understanding capacity is rooted in the ability of neuronal packets to engage in collective behavior
(changes in any packet constrain changes in all the other ones in the model), controlled by parameters
amenable to attentive variation. Reducing the number of degrees of freedom in the model eliminates
redundant steps in assessing the impact of variations and cuts down energy costs. More technically,
following analysis in Stratonovich [20], absorbing information in packet Xb about the rotation of
the packet vector in Xa enables thermal energy to be drawn from the surrounds, and work to be
conducted on re-positioning the packet vector in Xb, consistent with the movement in Xa. Establishing
inter-packet coordination amounts to production of information and reduction of thermodynamic
entropy (negentropy generation) in the volume of the model.

Decoupling from the sensory-motor feedback liberates the cognitive system from the directives
of the current information inflows, and crucially, from the directives of prior learning. The ability
to construct coordinations appropriate for the current intent and conditions is not restricted by the
precedents: the system can overcome the inertia of prior learning and form novel constructs, albeit with
effort). Novel constructs in performing a task are the product of understanding the task. In that sense,
human cognitive activities involved in designing a gadget for reaching a piece of fruit and designing
a rocket for reaching the moon are different in scope, but not in substance. Language processing is an
integral component of these activities, as discussed in the next section.

3.2.3. Language

Constructing a model comprising packets Xα andXβ involves suppressing redundant degrees
of freedom in Xα and Xβ (coordination) and forming a composite unit (Xα Xβ) → Yχ amenable to
re-combination with other units. This construction process appears to be in close correspondence
with a recursive procedure, which according to a recent theory [50], underlies the emergence and
operation of language. The procedure (dubbed Merge) operates on symbolic objects (labels, words)
and combines pairs of such objects into units amenable to combination with other units (LαLβ)→ Lχ.

“We can picture Merge’s output as a kind of triangle—the two arguments of Merge form the
two legs of the triangle’s “base,” and the label sits on “top” of the triangle”. [50] (p. 114])

Regarding the present theory, “symbolic objects” [50] (labels) are attached to packets, coordination
forms (relations), and coordinated constructs. An important insight supports this contention

“Language evolved as an instrument of internal thought, with externalization as a secondary
process”. [50] (p. 74)

What internal purposes are served by labels? Coordination alternates between accessing the
internals of Xα (see Figure 9) and exiting Xα and shifting attention to Xβ (i.e., alternating between
packet vectors and vector components). Arranging multiple packets Xα, Xβ, . . . Xζ into a coordinated
model might require repetitive access, associating high energy cost with the process. Labels are
presumed to be implemented as fixed neuronal groupings associated with packets and having minimal
sensory contents, sufficient only for making the labels distinct. Different labels designate different
contents, which makes fluently shifting attention between packets possible, and in a purposeful
manner, while avoiding the expense of entering packets and examining their contents.

With that view, the emergence of language was the result of decoupling cognitive processes from
the sensory-motor feedback, prompted not so much by the need to name external objects but by the
need to shift attention fluently between packets representing objects, while combining such packets
into mental models. For example, the thinking involved in contemplating lunch and selecting an
apple and toast from a menu is carried out on two levels: Merge is applied to labels “apple” and
“toast”, and contents of the corresponding packets are accessed and experienced. Symbolic constructs
(“apple, toast”) allow fluent attention shifting, preventing attention capture in one of the packets
(an ardent apple connoisseur captivated by imagining an apple (sweet, tender, juicy, etc.) can have
a hard time diverting attention to review other items in the menu). In short, language processing in
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both comprehending speech and inner thinking involves alternating between merging symbols and
manipulating the packets the symbols designate. In both cases, symbols facilitate model construction
by cutting down energy costs. Recent findings [51] appear to support this opinion.

Levels of neuronal activity were recorded in language-related areas comprising superior temporal
and inferior frontal sites during word-by-word sentence presentation. Activity increased with each
successive word in a sentence, but decreased abruptly whenever words could be merged into a phrase.
It was hypothesized that such abrupt decreases accompany formation of a new neuronal population
vector, orthogonal to those of the merge constituents [51]. On the present view, activity increases
indicate seeking coordinations (“fitting” the packets together, not unlike fitting sticks together),
followed by abrupt decreases when coordinations (relations) are established. These suggestions
appear to agree with the “symbol grounding” theory of meaning—apprehending meaning in a phrase
involves indexing words to objects or perceptual analogs, defining affordances from the objects and
analogs, and meshing the affordances under the guidance of the syntax [52].

Since language processing involves construction of models, language comprehension is
predicated on the availability of the requisite coordinations. Accordingly, limited availability entails
a comprehension deficit. For example, infants reach out for a toy placed under cover X1, but when,
in their full view, the toy is removed and placed under a different cover X2, they keep reaching under
X1 [53]. An adult with a similar deficit cannot fully comprehend phrases like “I put an apple in a basket
and then moved it to another basket”, even if the ability to form grammatical sentences is intact and
all the words are understood.

It can be hypothesized that the transition from protohuman to Sapience was prompted by
a confluence of two developments: (a) synergistic mechanisms of sensory-motor coordination
optimized for the manipulation of external objects [54–59] were co-opted and re-purposed for the
manipulation of mental objects, and (b) signaling mechanisms were re-purposed for internal labeling
(perhaps, transition from signaling-to-others to “signaling-to-oneself” was preceded by the ability to
suppress or delay signaling, e.g., to avoid attracting a predator’s attention).

To summarize, language facilitates construction of models by enabling manipulation of packets
without accessing their contents. Comprehending language involves a process that alternates between
syntactic objects and the corresponding packets. In essence, language continues the trend of decoupling
mental processes from sensory inflows: decoupling from the motor-sensory feedback is followed
by decoupling from the packets’ sensory contents. The benefit lies in the enhanced ability to
juxtapose packets from different neighborhoods (see Figure 7), “which vastly multiplies the powers of
spacio-temporal extension, and of deducing possible developments” [6] (p. 219).

4. Aspects of Human Cognition

Part 3 focused on information dynamics underlying understanding. This part discusses other
aspects of human cognition overlapping with that of understanding.

4.1. Landscape Navigation in Norm and Pathology

Access to memories can be lost as a result of erosion in the synaptic network, or hampered by
abnormal conditions in the landscape. Working conditions require easy access (see Figure 8) and easy
exit. Stated differently, the barriers must be high enough to allow sustained attention concentration
within packets and low enough to prevent attention capture. The height of energy barriers F is
determined by the amount of free energy in the phase surface (Markov blanket [10]) separating packet
internals from the surrounds, F = U − TH, here U is intra-packet energy and H is packet entropy, and
T is temperature. Setting aside methods for calculating the values U and H, this section considers
regulation of energy barriers by varying temperature, under the assumption that temperature correlates
with arousal and activation (local temperature during brain activation is determined by the balance
between heat evacuation in the blood flow and metabolic heat generation [60]. Activation and arousal
are distinct, but probably interrelated, aspects of brain energetics).
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At the first approximation, the “temperature–barrier height” relationship is straightforward:
the higher the temperature, the lower the barriers. Accordingly, it can be suggested that the
Yerkes-Dodson law of cognitive performance [61] captures the dependency between the level of
arousal and cognitive performance within a “medium” temperature range. At the boundaries of
the range, high arousal hampers concentration, while low arousal (stress, depression) hampers
attention-shifting necessary for accounting for, and integrating different aspects of, the task. Figure 10
suggests that temperature deregulation entails Alzheimer’s type (high temperature) or autistic type
(low temperature) performance pathology. In the former case, packets dissolve, turning objects into
shapeless “blobs”, and eventually transforming the world into undifferentiated flux. In the latter case,
the network is fragmented into isolated “islands”, with no traffic between them.
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Figure 10. Temperature-regulated access to packets explains near-optimal performance within the
Yerkes–Dodson range and degraded performance at the temperature extremes (A1—autism spectrum
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Figure 10 defines changes in cognitive performance in norm and pathology as a continuum over
a single variable. The simplifying proposal in Figure 10 is not inconsistent with the data, as follows.

In general, people with autism spectrum disorders present abnormalities in the connectivity of
brain systems. Studies of cortical activation and cerebral metabolic landscapes in autism consistently
indicate low correlation between cortical areas, including functionally impaired interactions between
frontal and parietal, neostriatum, and thalamic areas involved in directed attention [62–64]. Autistic
performance is often accompanied by depression [65], in continuation of a similar condition in the
low-temperature tail within the Yerkes-Dodson range. The notions of fragmented packet network and
attention confinement in isolated fragments are consistent with the savant syndrome, where “islands
of genius” stand in sharp contrast to the overall cognitive handicap [66].

Cognitive degradation in Alzheimer’s disease is considered to be caused by deposition of plagues
consisting of amyloid peptides (imbalance between peptide production and clearance is presumed to
trigger a cascade of degenerative developments leading to synaptic injury, and eventually, demise [67]).
It can be speculated that deposits constrict blood flow, thus hampering heat removal. Conceivably,
other elements in the cascade produce degenerative changes that summarily entail dissolution of
packets, while the synapses are still intact. In that scenario, the onset of performance degradation can
take place before the system gets overwhelmed by synaptic erosion and loss (i.e., per Figure 9, one can
no longer recollect Z or recognize Z because Z has merged into the surrounds, although the synapses
have not been disrupted. For the same reason, new packets cannot be formed, i.e., sensory elements
will not integrate into “objects”).

Some symptoms of vascular aphasia (produced by lesions) can also be produced by de-regulation
in the energy landscape (logorrhea, or nonstop speech, adynamia, or absence of attempts to speak,
perseveration, inability to name objects, inability to carry out simple instructions if they require shifting
attention between objects, etc.). More generally, disintegration of neuronal networks in different
pathological processes appears to be an emergent theoretical framework providing a unifying account
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of heterogeneous brain disorders [68]. The notions of pathological distortions and de-regulation in the
energy landscape appear to be consistent with that framework.

4.2. Cognitive Effort, Value Attribution, and Consciousness

Moving through energy landscape and manipulating packets expend energy, and thus require
effort. The experience of exerting and focusing such effort is co-extensive with the experience of
consciousness. Arguably, Descartes’ “cogito ergo sum” expresses a similar idea: In view of Descartes’
insistence on building philosophy on the foundation of the most basic facts impervious to doubt [69],
the “cogito ergo sum” thesis seems to be pointing at the effort of thinking as the most direct and
unquestionably certain experience that is co-extensive with the experience of Self. To underscore,
it is not the content of thinking but the effort that Self keeps investing in the thought process that
constitutes the only direct and fundamental experience of which Self can have no doubts about, because
by initiating the effort, and while continuing it, Self becomes and continues to be aware of Self as the
source of the effort.

More precisely, it was demonstrated that conscious awareness of own intentions (e.g., intending
to move) is preceded by subconscious activities in frontal, parietal, and other brain areas [70]. These
findings inspired suggestions that consciousness is an epiphenomenon, that is, a post-factum process
that creates an illusion of self-control without playing any role in the actual mechanisms responsible
for behavior organization. The present theory offers a different view, as follows. As stipulated in Part
1, thinking involves priming packets followed by suppressing degrees of freedom and coordinating
activities across packet compositions. The initial stage of packet priming can remain below the
threshold of conscious awareness, while efforts required for constraining intra-packet variations
(“fitting” the packets together in a synergistic whole) elevate these activities above the threshold. That
is, cognitive effort is co-extensive with conscious execution of mental operations. In particular, rotating
packet vectors can be conceptualized as regulatory activity requiring effort η(τ) commensurate with
the time constraints and changes in the vector’s angular position ϕ(t):

ηt =
d2 ϕ(t)

dt2 +
dϕ(t)

dt
(3)

More generally, effort η is a function of changes in the rotation trajectory (e.g., figuring out how
an object habitually used for purpose 1 (trajectory 1) can be used in some novel way in the service of
purpose 2 (trajectory 2)). Depending on the distance between the trajectories (resistance to change
measured in appropriate units) and subjective limitations, sufficient effort might not become available
within the required time period, or ever (the idea never comes to mind).

During sleep, the regulatory function is disengaged, η = 0, entailing the characteristic experience
of facing hallucination-like conditions that one can neither change nor escape from (more on that in
the next section). In pathology (e.g., schizophrenia), degradation of the regulatory function manifests
in the experience of “thought insertion”—patients report having thoughts controlled by someone else.
Such patients can usually maintain distinction between the thoughts they own and control (η > 0), and
those they attribute to an alien source beyond their control [71].

Mobilizing and sustaining cognitive effort is predicated on motivation, and thus involves selecting
and concentrating on highly significant targets, keeping the magnitude of the effort commensurate with
the significance level attributed to the target. Accordingly, prioritization is an integral component of
consciousness. Decision making is a balancing process weighing the expected amount of effort against
the expected gain [72,73]. The overall tendency towards maximizing gain while minimizing efforts does
not exclude periods of sustained concentration and elevated efforts, consistent with the requirements of
long-term performance optimization (a net gain maximization over long time periods). In perception
(i.e., vision), target prioritization influences velocity and duration of saccadic movements (more
significant targets attract faster saccades) [74]. Prioritization influences predominantly long-latency
saccades (short-latency saccades are determined mainly by salience) [75]. In thinking, cognitive tasks
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are accorded different relative significance determining the magnitude and duration of the cognitive
effort. In pathology (e.g., obsessive-compulsive disorder), abnormally prioritized (over-valued) ideas
are associated with a high degree of affect and can preoccupy the patient’s mental life [76].

The critical role of significance attribution in the organization of cognitive effort is reflected in
the richness and complexity of the underlying neuronal substrate. The “valuation system” in the
brain comprises the dorsomedial prefrontal cortex, dorsal and posterior striatum, thalamus, and
other regions [77]. Reward anticipation, assessment of reward magnitude, and reward consumption
appear to engage different (albeit overlapping) subsystems [78,79]. Transformation from objective
to subjective significance (subjective utility) is carried out by the dorsal anterior midcingulate cortex
(daMCC). Connections between daMCC and other brain regions might provide channels through
which contextual information is integrated into utility and significance attribution [80].

4.3. Assimilation and Accommodation

Terms “assimilation” and “accommodation” were introduced by Piaget [7], denoting, roughly,
entering new information (assimilating, or absorbing information) into memory structures and
adjusting (accommodating) the previously formed structures to the new entries. The present
theory identifies assimilation with the modification of synaptic weights, and splits accommodation
into spontaneous changes and those resulting from deliberate thinking. Spontaneous changes
involve modification of neuronal packets (shrinking, expansion, dissolution, shuffling neurons
between packets) that are presumed to occur during sleep, and, in the awake state, as a result of
processes in the “default mode network” [81]. Segregation of neurons by the packet mechanism
is balanced by the sleep and default network mechanisms serving to “smooth out” the results of
segregation, by “shaking the packets together.” More precisely, increases of temperature across packet
networks temporarily bring down energy barriers and enable re-distribution of neurons under global
optimization criteria (ultimately minimizing the number of packets while maximizing the number of
successful combinations). In the process, smaller and weaker packets can dissolve, with the released
neurons getting absorbed into stronger packets, or alternatively, the larger packets can break up [30].
In that way, “shaking together” is a counterpart of segregation, integral to the optimization and
regulation mechanisms (according to Koestler, the term cognition derives from the Latin cogitare,
meaning shaking together [82]. Crucially, “shaking together” requires both decoupling from sensory
inputs and disengagement from attentive regulation. The following findings appear to be in line with
these suggestions.

A network (“default mode network”) has been discovered that comprises areas in the medial and
lateral parietal, medial prefrontal, and medial and lateral temporal cortices, and sharply decreases its
activity in the course of attention-demanding tasks and increases activity during repose. It was shown
that such networks exist not only in the human brain but also in those of primates, cats, and rodents,
indicating their fundamental role in brain functioning [81]. On the present proposal, the same role, or
a closely related one, is carried out by the mechanisms activated during sleep.

In particular, REM sleep is accompanied by elevated activation in limbic and paralimbic brain
regions involved in arousal regulation [83]. Release of arousal-regulating acetylcholine is increased
during REM sleep and decreased in the NREM phase [84]. A recently discovered peptide orexin
(Orx) is actively discharged during waking and discontinues during sleep. Firing of Orx-discharging
neurons is coordinated with the activity of other neurons, so that discharging Orx entails increase of
muscle tone during waking and muscle atonia during sleep [85]. Disengaged attentive control and
increased temperature “shake up” the system. Arousal and temperature are intertwined—observations
of heat-seeking behavior in rats subjected to sleep deprivation [86] seem to provide a degree of support
to this notion.

Some proposals associate memory consolidation during sleep with synaptic changes. The proposal
seems to be contradicted by the fact that most dreams fade without trace upon wakening. On the other
hand, correlation between elevated pre-learning cortisol levels and memory consolidation during
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sleep indicates seem to point at shaking together as the mechanism of improvement (no synaptic
modifications), consistent with the notion that “tagging” of important stimuli by cortisol allows
“optimal consolidation of salient information in a selective manner” [87].

It has been suggested that REM sleep constitutes a “protoconscious state” supplying virtual
models of the world [88]. REM sleep involves random changes across packets that result from
temperature modulation and cause the characteristic experience of hallucinatory images morphing
into each other in a kaleidoscopic fashion. Dream interpretation techniques advanced in psychoanalysis
(on the notion that “suppressed memories” of traumatic events influence dream contents) appear
to be not inconsistent with this proposal, except that “fenced off” could be a more descriptive term
than “suppressed”, indicating blockages in accessing memory contents that are lifted during sleep.
The often cited occasions of obtaining problem solutions in dreams are exceedingly sparse (like winning
a lottery), and usually follow periods of intense concentration on the problem (in the manner depicted
in Figure 9). By the same token, coherent dreams are probably much less frequent than reports about
them, due to inadvertent embellishment and added coherence when trying to fit the retained material
into a narrative. By contrast, the feeling of having a “clear mind” after a good sleep is quite common.
In short, sleep facilitates construction of actionable mental models in the awake state but does not
supply them.

4.4. Architecture for Coordination

It appears that inter-packet coordination can involve cortico-cortical connections, and
more significantly, cortico-thalamo-cortical pathways running through the higher-order thalamus,
comprising intralaminar and medial nuclei. Recent findings indicate that thalamic neurons are
responsible for modulating the degree of synchrony between different groups of cortical neurons
according to behavioral demands [89–91]. More precisely, the anterior group of intralaminar thalamic
nuclei receives subcortical input from the cerebellum, brainstem, and spinal cord, and projects
to the frontal and parietal cortex. The central lateral and paracentral nuclei project to the lateral
cortical areas, whereas the central medial nucleus projects to the medial and basal cortical areas.
Pulvinar is reciprocally connected with much of the cerebral cortex: simultaneous recordings from the
pulvinar and cortex have shown synchronized activity in these areas during attention tasks. Lesions
of the pulvinar have been shown to reduce cortical excitability and produce deficits in attention and
sensory-guided actions [92]. Control of movement has been shown to involve the motor thalamus and
movement-related central thalamus connected to the cerebellum [93]. Modifying learned behavior
under novel conditions (counteracting pre-action bias) was found to involve the centro-median
thalamic nucleus [94]. Thalamic structures participate in language mechanisms [95]. In short, the
higher-order thalamus appears to orchestrate coordination between cortical ensembles [96].

Accordingly, the overall architecture for packet manipulation (rotating packet vectors) and
inter-packet coordination in the human brain might involve the higher-order motor and centro-median
thalamus, cerebellum [97], basal ganglia [98], and hippocampus [99].

4.5. From Self-Organization to Self-Realization

Neuronal wiring is genetically determined. Wiring blueprints specifying neuronal types and
connections get implemented during embryonic and postnatal development through a series of
precisely orchestrated developmental events regulated by specific molecular mechanisms [100]. In turn,
inter-cell connectivity and individuality of the interacting cells determine brain dynamics and collective
modes of neuronal activity.

It has been hypothesized that the brain (neural system) operates in the proximity of saddle
points [101] organized into chains in a high-dimensional neuronal-phase space. More precisely, brain
activity unfolds within Stable Heteroclinic Channels (SCH), comprising saddle points, bundles of
trajectories condensed in the vicinity of the saddle chain, and unstable separatrics [102]. Extending
these ideas, it can be suggested that genetics populates neuronal phase space with virtual attractors
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expected to be visited during their life time. The virtual attractor chain unfolds in the course of
maturation, with transitions between the attractors being propelled by changes in the functional
connectivity, i.e., the mosaic of synaptic weights modified by organism-environment interactions.
Approaching saddle points causes contraction of phase volume (e.g., in a dynamic system of the type
.
x = X(x), div X(x) ≤ δ < 0, phase volume V0 during time τ contracts to V = V0 exp (δ τ)). The system
seeks environmental inputs (conditions) facilitating its movement along the unfolding attractor chain
(hence, the self-realization). This conjecture has two implications:

(1) Genetics determines a person’s intellectual pursuits in the course of the life time and the ability
to realize such pursuits within some range of condition variations;

(2) Absence of the requisite conditions can arrest self-realization and cause frustration.

Accordingly, it can be hypothesized that minimizing frustration is one of the organizing criteria
in human cognition, concomitant with the surprise minimization principle [11]. The degree of
frustration can be related to the extent and duration of deviations from the genetically favored
developmental trajectories.

5. Summary and Discussion

This part is broken into three sections. Section 5.1 discusses ideas central to the theory. Section 5.2
clarifies and extends some of the notions in the article, focusing on their interpretations within the
framework of the theory (for convenience, this section re-states some of the points scattered throughout
the text). Section 5.3 presents a thumbnail digest, emphasizing distinctions between this proposal and
other ideas in the literature. Suggestions for further research conclude the paper.

5.1. Discussion: How Neurons Make Us Smart

Challenges facing cognitive systems in a fluid environment can be defined as follows. The present
condition in the environment is A, changing it to A1 promises reward W; which coordinations can
I deploy to achieve A → A1 with an acceptable level of effort and within the available time (i.e.,
before the opportunity A is gone)? In the parlance of neuronal processes, the problem maps onto
the following: “Neurons Xi, . . . , Xn have fired, indicating presence of stimuli Cp, . . ., Cq offering
potential energy reward W; therefore, which neurons should be fired next in order to get the reward
with sufficient certainty and at the lowest energy cost?”. Operation of the cognitive system is reduced
to dynamic optimization of neuronal resources. The remainder of this section applies the mapping to
elaborate some of the key ideas in this paper.

Assume that optimal allocations have been computed for a large set of stimuli. For argument’s
sake, assume that all the possible allocations have been calculated meticulously, step-by-step, and the
best reward-maximizing, expense-minimizing allocation has been selected, allocating to each stimuli
a group of neurons. Record these groups and do the following: heat the neuronal pool and witness
formation of neuronal packets, for example Bernard cells. When comparing packets to the computed
groups, you will find that they are nearly-identical. The point is that thermodynamically-driven
self-organization produces neuronal packets yielding near-optimal allocations. At the psychological
level, the process manifests in the transformation of stimuli streams into sets of distinct objects
preserving their self-identity within some ranges of condition variation. The central claim is that
near-optimal distribution of neurons between packets is neither computed by hidden agents, nor
results from message passing obtaining a negotiated consensus in the neuronal pool. Self-organization
is the key property of the neuronal substrate, making it a suitable medium for behavior regulation.
Humans are smart, not because their brains run efficient step-by-step procedures, but precisely because
neurons engage in collective behavior alleviating the need for such procedures. The emergence of
Sapience was a result of a confluence of developments in the nervous system, enabling advanced
forms of collective behavior yielding understanding. The capacity is inherent in the species and is
mastered by individuals in the course of maturation.
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Thermodynamics works for leeches the same way it works for humans. Leeches possess a model
of the world comprised of two object types: crawlable object and swimmable object. The crawlable
object behaves in many different ways, all accounted for by different activity patterns in the “crawl”
packet (the same goes for the “swim” packet). Swimming and crawling are different activities but
have something in common (an overlap). Thermodynamics enforces economy in the form of “shifting
coalitions,” by combining the “overlap” packet alternatively with the “swim” or “crawl” packets [38].
Leeches deploy their models in no other way but by crawling and swimming, in a move-by-move
fashion. Crawling from point 1 to point 2 and then swimming from point 2 to point 3 is accompanied
by packet vectors oscillating around the 1-2 and 2-3 axes (e.g., responding to changes in the crawl
surface or conditions in the swim volume). Transforming a leech into a “thinking leech” would require
an ability to form models of 1-2-3 movement that can be exercised without performing the movement,
and crucially, will orient packet vectors along the 1-2 and 2-3 axes without the need for reproducing
the movement-by-movement oscillations. A “thinking leech” will turn into an “understanding leech”
when a model can be formed such that thinking “I would rather crawl to point 4 and swim from
there” will automatically orient the swim vector along the 4-3 axis. A crawling leech is unaware of the
forthcoming swimming while the understanding leech is, and is also aware that changes in crawling
will have consequences for the forthcoming swimming.

In a similar fashion, synergistic models of chess positions allow one to conjure up strategic ideas
without thinking through all the moves, with the ideas (if coherent) radically reducing the number of
moves that remain to be thought through. The result is that chess machines had to reach the speed
of searching about 108 moves per second in order to compete with humans capable of considering at
most a few moves per minute (Deep Thought (1989) searched about 106 positions per second, Deep
Blue (1996) searched 1011 positions per move [103]). The comparison suggests a new interpretation of
the “Achilles can’t keep up with a tortoise” paradox—the computing Achilles takes detours running
multiple times to the moon and back for every step taken by the understanding tortoise (2000 steps
per mile, 240K miles to the moon). No wonder Achilles is energy hungry.

These suggestions contradict the mainstream cognitive science, where intelligence is equated to
possession of algorithms and the role of understanding is downplayed. In particular, a treatise
on human problem solving that is foundational in the discipline [103] allowed the issue of
understanding to enter the argument once (on page 822), and only to question the role of understanding
in performance:

“Observe that a high level of mechanization can be achieved in executing the algorithm,
without any evidence of understanding, and a high level of understanding can be achieved
at a stage where the algorithm still has to be followed from an externally stored recipe”. [104]

The argument is not without problems [32], but proved to be compelling enough to cause
associating intelligence with acquiring algorithms (learning), while marginalizing the role of
understanding. As suggested earlier, understanding exploits the machinery of sensory-motor
coordination but decouples the cognitive process from sensory inputs, thus liberating it from the
dictates of prior learning. As a result, the responsibility for performance efficiency is shifted
from accumulating and searching through precedents to constructing coherent explanations, as in
abductive inference:

“Abduction . . . is an inferential step . . . including preference for any one hypothesis over
others which would equally explain the facts, so long as this preference is not based upon
any previous knowledge bearing upon the truth of the hypothesis, nor on any testing of any
of the hypotheses, after having admitted them on probation”. [105]

Explanations enable reliable predictions. For example, one can observe movement of object A,
accumulate statistics, and make predictions about future movements. Alternatively, apprehending
that (A is inside B) will explain peculiarities in the movement of A and predict that whatever the future
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trajectories, they will not cross the perimeter of B. More generally, understanding involves recursive
application of set operation (e.g., alternating between packet vector and vector components) having
no algorithmic expression. For example, thinking “my class of A, B, . . . , Z” can conjure up either
a set of images, or a featureless unit, as in “I am transferring my class to another room.” Without
having condensed the multitude into a unit, thinking of the transfer would require either its execution,
step-by-step and person-by-person (A, and B, . . . , and Z), or the envisioning of such an execution.
If operations on sets were restricted to operations on members, ideas concerning sets as wholes could
be neither formed nor comprehended. Hence, no human thinking.

Attributing intelligence to the properties of biological neurons does not rule out the possibility of
designing intelligent artifacts. On the contrary, apprehending the underlying principles can inform
the design of computational methods that approximate biological mechanisms and construction of
devices that emulate them. In a similar fashion, apprehending the principles of aerodynamics allowed
design of flying machines that do not flap wings or land on trees. Figure 11 summarizes the proposed
theory, conceptualizing cognitive processes as allocations of neuronal resources.
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Figure 11. (a) The Central Nervous System (CNS) is a regulatory organ comprising neuronal
resources of three kinds: sensory resources (SR), motor resources (MR), and regulatory resources (RR),
orchestrating deployment of the other two types (sensory-motor coordination). Overt sensory-motor
activities change the state of the energy source, seeking to maximize energy inflow ∆E1→ max. (b) The
human CNS includes an extra regulatory loop (α loop), allowing manipulation of regulatory resources
and engagement of sensory-motor resources in a manner decoupled from the overt sensory-motor
activities. The extra loop is energy demanding but steeply increases regulatory efficiency by maximizing
intakes and minimizing losses, ∆E2 → min. The understanding capacity derives from the operation of
the loop.

Conceptualizing cognition as dynamic optimization of neuronal resources translates naturally
into a computational framework (dubbed “gnostron”), where neuronal resources are allocated
probabilistically to streams of reward-carrying stimuli [30,106,107]. The key elements of the
present theory (formation of associative networks, formation of packets, packet manipulation
and co-ordination, etc.) map directly onto the optimization procedure, with a straightforward
interpretation—they represent collective behavior in the neuronal system and serve as heuristics
reducing complexity of the procedures with minimal sacrifices of accuracy.

The gnostron framework is orthogonal to that of perceptron (neural network) (dynamically
selected neurons versus a fixed set of neurons, feedback-driven operations versus feedback-decoupled
operation,). Increasing internal order in the gnostron system equates to negentropy generation.
Boundary energy barriers in packets implement Markov blankets [10]. Optimization of neuronal
resources yields surprise minimization, reconciling the principle of variational free energy
minimization [11] with the thermodynamically-motivated requirement to minimize energy expenditure
and divert free energy to the work of mental modeling [31,33].
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The theory offers some predictions concerning the properties of biological neurons and
characteristics of neuronal space. In particular, the theory anticipates the existence of hyper-complex
neurons (probably in the higher-order thalamus) that respond to different activity patterns in
neuronal packets, and importantly, different rates of activity variation [108]. Such hyper-complex and
complex neurons can form tensor structures yielding activity patterns invariant under coordinate
transformations. The thalamus and cerebellum [109] can operate in a coordinated fashion in the vector
space defined by packet vectors.

It can be expected that the next generation of AI systems will differ from the present one,
just as the first airplane by the Wright brothers differs from Boeing 757. The advancement is
predicated on elucidating biophysical mechanisms responsible for turning neuronal collectives into
synergistic wholes amenable to mental manipulation. The future systems will not be programmed
but rather endowed with “genetic” propensities compelling them to develop of understanding
of their environment sufficient for fulfilling the operator-defined goals. Insights concerning the
design of such systems might come from the analysis of biophysical processes in individual
cells [110–112], relations between information and energy [113], information dynamics in physiological
structures [114,115], or other areas, contributing into the development of an expanded theoretical
framework unifying information-theoretic [10,11], physics-motivated [116,117], and biophysical
accounts of cognition [118]. Progress towards such unification will enable transition from machine
learning to machine understanding.

5.2. Clarifications and Definitions

5.2.1. The Brain Operates as a Resource Allocation System with Self-Adaptive Capabilities

This theory conceptualizes the brain operation as a probabilistic resource allocation system with
self-adaptive capabilities; neurons are resources dynamically allocated to streams of stimuli [119].
Allocations (accessing, mobilizing, and firing neurons) consume energy, successful allocations are
rewarded by energy deposits emitted by stimuli, and self-organization in the system seeks to maintain
net energy inflows above the survival threshold [31]. Central to this concept is the notion of
self-adaptation, as envisioned by Roger Sperry: “a brain process must be able to detect and to react
to the pattern properties of its own excitation” [120].

Self-adaptation in the brain entails optimization of neuronal resources under a dual criteria:
maximizing energy inflows from the outside, while minimizing energy expenditures in the
inside. Attention, motivation, and other functions are defined within this optimization framework.
Self-reflective thinking, self-awareness, and self-consciousness are attributes of self-adaptation.

5.2.2. Attention

On the account of this theory, attention is a brain process that not only reacts to “the pattern
properties” in the brain but actively orchestrates them (mobilizes and selectively excites or inhibits
neurons). The theory differentiates attention mechanisms operating on external stimuli and those
operating on the internal patterns. This view appears to be supported by a number of findings and
recent theoretical suggestions, as follows. It is now thought that attention is not a unitary process but
involves two distinct neuronal systems. The ventral network implements exogenous (stimulus-driven)
attention, while the dorsal parieto-frontal network [121] and anterior insula network implement
endogenous (self-directed, volitional, goal-directed) control. The systems converge in the lateral
prefrontal area [122]. Coherent behavior is a product of coherent neuronal firings in diverse areas
orchestrated by the attention mechanism implemented in corticiothalamic loops [96]. Associating the
function of attention with orchestration of firing and inhibition in neuronal networks (see Figure 7) is
consistent with the above findings and proposal in a previous study [123]:
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“An attentional mechanism helps sets of the relevant neurons to fire in a coherent
semi-oscillatory way . . . so that a temporary global unity is imposed on neurons in many
different parts of the brain”. [123]

Attention alternating between packets in the formation of mental models obtains such global unity.

5.2.3. Motivation

The concept of motivation subsumes the totality of goal-related processes. Neuronal substrates of
motivation include extended amygdala, the ventral striatopallidum, and other subsystems in the basal
forebrain [124]. Recently, neurons were identified in the striatum that are sensitive to the motivational
context in which the activity is being carried out [125]. Seeking significant information and pursuing
understanding constitute goals that conceivably can engage the same neuronal substrate as other
goal-related processes.

5.2.4. Understanding in Humans and Animals

Large amounts of data has been accumulated in the animal studies demonstrating remarkable
cognitive capabilities in other species (e.g., numerical capabilities in honeybees [126]) and suggesting
that the functions of human intelligence could have evolved from neural substrates common to many
species [127]. Recognizing that a significant overlap exists in the principles governing neuronal
mechanisms across a spectrum of species [128], this article is focused on cognitive functions that
are subsumed in human understanding, and arguably, lie outside the overlap area (e.g., abduction,
explanation). The depth of the available functional hierarchy could be one of major differences between
humans and animals (suggested by a reviewer). At the present time, the demarcation line between
human intelligence and that of other species has not been clearly defined, and is likely to be revised as
new data becomes available.

5.2.5. Neuronal Substrate of Relations

This theory assumes that the emergence of mental modeling in humans involved co-opting
mechanisms of sensory-motor coordination optimized for the manipulation of external objects and
re-purposing them for the manipulation of internal, or mental objects. On that assumption, establishing
relations between objects involves complex and hyper-complex regulatory neurons responding to
kinematic variables; that is, not only to packet composition but also to different forms of coordination
in the movement of packet vectors (hypercomplex neurons respond to coordination between packets
comprising complex neurons). Structures comprising complex and hypercomplex regulatory neurons
can implement relations of any complexity [108]. A number of findings appear to suggest the feasibility
of the notion, as follows. A recent study identified and modeled neurons sensitive to the instantaneous
position, velocity, and acceleration of the stimuli, as well as to short strips of stimulus trajectory [129].
Earlier studies identified directionally-selective neurons responding to movement of the stimulus in
the preferred direction [130]. Neurons in the motor cortex have been identified as responsible for
the coordinated action of large muscle groups (“muscle synergies”), enabling organized movements
of limbs to particular points in space [131,132]. Such complex neurons can be grouped, producing
a “vocabulary of neural primitives.” Simulations have demonstrated the feasibility of orchestrating
coordinated motor activities by deploying various combinations of such primitives [133]. In general,
limits of sensitivity and functional diversity of complex neurons are yet to be determined. For example,
a neuron was discovered in the human hippocampus selectively responding to different images of the
same person, even if wearing a disguise. Moreover, the same neuron responded to the name of that
person expressed in different modalities (written and spoken) [134].
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5.2.6. Relations as Objects

A particular form of abstract thought (identified by Charles Pierce and called hypostatic
abstraction [135]) transforms relations into objects. For example, “relation A loves B” implies a certain
form of coordination in the behavior of A and B. Hypostatic abstraction postulates a universal source
of such coordination, treating it as an object separate from A and B (say, a goddess of love) and
capable of granting or withholding love (moreover, activities attributed to the source can be further
abstracted and treated as objects, i.e., Cupid’s arrows). Both ordinary and scientific thinking involve
objectification of properties and relations (e.g., the idea of phlogiston).

5.2.7. Thinking

Thinking involves grouping, grasping, and simulating—packets are grouped into models,
relations between packets are grasped, and manipulating packet contents (rotating packet vectors)
constitutes simulation. Insight (in-sight) involves “looking inside” packets, i.e., completing a transition,
which requires effort, from being vaguely aware of the packet internals to experiencing and
manipulating these internals (please re-visit Figure 9). Grasp is a form of insight resulting in
apprehending coordination between patterns of changes in the packet internals. Insight is a routine
component of thinking. Reasoning (symbol manipulation) is auxiliary to mental modeling and is
enabled by it. An example will illustrate these suggestions.

Consider a variation of Wechsler’s intelligence test. A subject is presented with a picture showing
fragments of a vase lying on the floor next to a vase stand and a cat sitting nearby, and asked to
explain the scene in as many ways as might come to mind. Assume three answers: (A) the cat
jumped and kicked down the vase, (B) a child was playing with a ball in that room sometimes ago,
and (C) a poltergeist did it. With the present theory, these answers were enabled by operations on
a mental model comprising three packets (vase, cat, vase stand), as follows. Answer (A) involved
grasping a relation (cat pushed vase) and imagining the cat jumping and the vase falling from the stand
(insight, simulation). Answer (B) involved abduction (outside packets (child, ball) were pulled into
the model having no sensory counterparts in the picture; the subject neither had prior knowledge
bearing on the hypothesis nor possessed any means for validating it). Answer (C) invoked hypostatic
abstraction (transforming relation push into object mischievous pusher). Note two critical features of
mental modeling: (1) Models reduce the number of degrees of freedom in the packets (assume that
packet cat affords five instantiations: sitting cat, walking cat, running cat, sleeping cat, and jumping
cat. Of those, only the last option was available. It is safe to assume that images of a sitting or
sleeping cat floating through the air were not rejected upon examination but simply did not come to
mind). (2) Abduction involved re-grouping (cat was exonerated and relation (cat pushed vase) was
de-established. Instead, relations (child kicks ball, and ball pushes vase) were formed).

5.2.8. Dynamics of Thinking

Thinking is predicated on stability of memory structures and reversibility of cognitive
operations [7], demanding minimization of entropy in the system. At the same time, exploration of
the system’s phase space and identification of instabilities require injections of entropy [16]. This
proposal suggests that temperature variations provide the requisite injections, causing the system to
pulsate between far-from-equilibrium and equilibrium states (which might correlate roughly with the
experience of alternations between effortful attention focusing and diffuse attention, and spontaneous
associative shifts). Consistent with the present theory, recent approaches in the analysis of brain
processes associate transient dynamics with information production [136]. Conceivably, neuronal
avalanches [137] underpin alternations between the states, helping to satisfy the competing demands
of information transmission and network stability.
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5.2.9. Learning with and without Understanding

The distinction is best explicated using the notions of fluid and crystallized intelligence [138].
Roughly, the latter term denotes ability to learn and to act based on the results of learning. By contrast,
the former term denotes the ability to deviate from the directives of prior learning and to act adequately
under unfamiliar conditions. With the present theory, fluid intelligence is predicated on understanding
and builds on top of crystallized intelligence. More technically, learning involves synaptic modifications
represented in a mosaic of link weights in the associative network. Packets form in the associative
networks but their formation, grouping into models, and operations on models leave the weight
mosaic intact. Understanding capacity was a product of evolutionary development building on the
learning capacity, and served to overcome its limitations (e.g., cats are often observed attacking small
moving objects (large associative weights) and hardly ever observed attacking large stationary objects
(small weights). As a result, rigid reliance on a crystallized weight mosaic would have precluded the
“cat pushed vase” idea, leaving the objects uncoordinated in the subject’s mind and rendering the scene
unexplainable).

5.2.10. Meaning and value

Meaning of information is determined by the mental model where the information is fitted in. For
example, in the “broken vase” test, a hint informing the subject that “a child was playing with a ball
nearby” would make sense if the subject was able to grasp the relation and would remain meaningless
if otherwise. Value is a function of worth attributed to the objects and the outcomes of modeling
(accordingly, meaningless information has no value).

5.2.11. Neuroenergetics

Most brain energy is used on synapses [139,140] This theory itemizes the account by introducing
costs incurred in the navigation of the energy landscape in which the synaptic network is embedded.
It has been demonstrated that pre- and postsynaptic terminals in the neurons are optimized to allow
maximum information transmission between synapses at minimal energy costs [141]. This theory
contends that: (a) the brain’s functional architecture is optimized to allow maximum information
production at minimal energy costs, (b) optimization involves mechanisms controlling the interplay
between the costs of engagement (exciting/inhibiting neurons) and the costs of navigation, and (c) the
understanding capacity is a product of such optimization.

5.2.12. Gnostron

Gnostron framework combines elements of reinforcement and unsupervised learning in the
formation of packet networks, and admits the use of other techniques in network processing (e.g.,
Bayesian updating, probabilistic inter-packet routing [142], other). Gnostron process can be viewed as
a form of mapping different from that used in perceptron: perceptron (neural nets) seeks to establish
mapping between vectors while gnostron seeks to establish coordination between patterns of vector
movement. Establishing coordination involves combining packets into models, which underlies
understanding and attainment of meaning. In short, perceptron learns to recognize conditions
while gnostron learns to understand them. Technically, gnostron is an adaptive controller obtaining
progressively improving efficiency via operations on self-organizing vector spaces [143]. On the
present theory, gnostron implements the key function attributed to the human brain: transforming
energy into the work of information production

5.3. Further Research—A Fork in the Road

This proposal seeks to form a conceptual bridge between two foundational ideas in neuroscience:
the idea of neuronal assembly [34,35] and the idea of Markov blanket and variational free energy
minimization [10,11]. In a sense, these ideas reside in a two-dimensional space defined by
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neuropsychological and information-theoretic axes. The bridging idea (neuronal packets) positioned
energy (thermodynamics) as the third dimension. The intuition was that energy processes are not
alien and external to the cognitive machinery (e.g., a horse is alien and external to the cart it pulls) but
are interwoven into it at every level [30,31]. Suggestions resonating with this idea are now beginning
to enter the mainstream from many directions (e.g., energy-aware computing [144]), in a radical
departure from the conventional AI and cognitive science framework. Developments along these new
lines quickly arrive at a “fork in the road”, posed by some of the most entangled and challenging
issues in science—the role of the second law in biophysics and physical underpinnings of information
processing. The two paths in the fork are determined by the way the operation of the second law in
the development of life and cognition is conceptualized. Both paths assume that the second law drives
optimization in the cognitive system but the choices of the optimization criteria could not be more
different: (A) Cognitive machinery is optimized to maximize entropy production, or (B) cognitive
machinery is optimized to maximize information production.

(A) The notion that evolution selects for maximum entropy production derives from the
assumption that “order produces entropy faster than disorder” [145,146]. With this notion, proliferation
of forms and progression from simple to more richly-structured forms are manifestations of “zigzags”
between low entropy pockets (complex forms), executed by nature in its rush downhill, towards
universal homogeneity and dissolution of all forms (by implication, growing order entails accelerated
descent). The following comments question not the assumption but its usefulness in the study of
cognition. A caricature analogy of the assumption would be equating the role of digestion to production
of waste. With that, a measure of digestive efficiency would be the ratio of the amount consumed to the
amount expelled, overlooking extraction of nutrients and their role in keeping the organism alive. One
can accept that evolution (say, from protohuman to Sapience) was accompanied by increased entropy
production in the brain counteracted by accelerated entropy removal. Even if proven correct, the result
would not shed much light on the mechanisms of cognition. The Internet can be viewed as a means
of information processing or as a drain on resources. As in the Necker cube, both perspectives are
possible but one of them opens a view on search engines, while the other one obstructs it. The formula
“from dust to dust” is undoubtedly correct but short circuits enquiries into what might be happening
during transit. In short, the entropy maximization principle can hardly inform analysis of cognition or
design of intelligent artifacts.

(B) Cognition involves information production predicated on entropy reduction in the neuronal
system. As formulated by Konrad Lorentz:

“Without offending against the principle of entropy in the physical sense . . . all organic
creation achieves something that runs exactly counter to the purely probabilistic process in
the inorganic realm. The organic world is constantly involved in a process of conversion
from the more probable to the generally more improbable by continuously giving rise to
higher, more complex sates of harmony from lower, simpler grades of organization”. [147]

Both (A) and (B) agree on the vector of evolution (from the simple to the complex) but disagree
on the assessment of where the vector points: (a) the organic world rushes itself downhill towards
self-destruction, or (b) the organic world pushes itself uphill towards self-comprehension, culminating
in the development of the understanding capacity.

The latter viewpoint suggests the following lines of enquiry:
(1) Cognitive thermodynamics. Statistical thermodynamics (thermal physics) addresses energy

processes in simple systems (e.g., ideal gas, inorganic compounds) [148]. Biological thermodynamics
addresses energy transformation in the living matter [149,150]. Cognitive thermodynamics focuses
on the energy processes in the nervous system that underpin cognitive functions, seeking to
integrate various theoretical constructs (metastability and phase transition in the brain [151,152],
cortical coordination dynamics [153], neuronal group selection [154], dynamical systems [155,156],
self-organization in the brain, [157], embodied cognition [158], other) within a unifying framework
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defined by the Markov blanket and free energy minimization principles. The following conjectures are
within the scope of this enquiry. Mental modeling creates mechanisms amplifying thermodynamic
efficiency of neuronal processes in the volume of the model, including:

• Converting excessive heat into work;
• Biasing ATP hydrolysis towards accelerating release of Gibbs free energy and inhibiting release of

metabolic heat;
• Reducing Landauer’s cost of information processing (by regulating access in the landscape).

(2) Neuropsychology of understanding. Reducing cognition to possession of disembodied
algorithms entailed excising understanding capacity from the purview of cognitive theory.

“Unified theories of cognition are single sets of mechanisms that cover all of
cognition—problem solving, decision making, routine action, memory, learning, skill,
perception, motor activity, language, motivation, emotion, imagining, dreaming,
daydreaming, etc. Cognition must be taken broadly, to include perception and motor
activity”. [159]

(please recollect that understanding was presumed to play a marginal role in problems solving, if
any [104], as seen Section 5.1.) Neuropsychological theory of understanding has a dual objective of:
(a) analyzing performance benefits conferred by the understanding capacity, and (b) elucidating the
underlying neuronal mechanisms, aiming at representing them within a unified functional architecture
(architecture for understanding) (e.g., contingent on further analysis, the architecture might account for
recent findings indicating that processing of plausible and implausible data engages different pathways
in the brain [160]). The theory needs to be broad enough to allow comprehensive analysis of the role
played by understanding in different manifestations of intelligence (“multiple intelligences” [161]).

(3) Machine understanding. Machine intelligence builds on the results of the above
enquiries, implementing a transition from machine learning (knowledge-based systems) to machine
understanding (understanding-based systems). Understanding-based systems combine energy
efficiency with the ability to construct adequate responses under unforeseen and disruptive conditions,
and to explain decisions motivating the responses. Construction derives response elements and their
organization (procedures, algorithms) from internal models; explanation capabilities are organic to the
system, accounting for operations on models that are inherently intelligible (e.g., grasping relations)
and intrinsic to the decision process. Such systems can act autonomously or collaboratively, predicating
their overt actions on the results of self-assessment seeking to verify that understanding of the task
and circumstances is sufficient for executing the task.

5.4. Digest

Life emerges in molecular networks, when subnets fold into quasi-stable aggregations bounded by
surfaces (Markov blankets), conferring a degree of statistical independence to the internals. Sustaining
life requires regulating flows of matter and energy through the boundary surface. Folding in networks
appears to be the mechanism used in both creating life and regulating life; subnets in neural networks
fold into quasi-stable aggregations (neuronal packets) bounded by energy barriers. Matching such
packets against changing conditions (stimuli stream) at the organism’s boundary surface creates packet
networks reflecting order (regularities) in the stream. The process is stimuli-driven, thus amounting to
absorbing information and extracting negentropy from the stream. The tendency to improve matching
scores (minimize surprise) gives rise to processes operating on packet networks and combining
packets into new structures (models). Operations on models are decoupled from the stimuli stream
and self-directed, thus amounting to information production and negentropy generation. Modeling
prepares the system to future conditions, thus radically improving matching scores and giving rise
to the experience of attaining understanding. Modeling processes are governed by an interplay of
two criteria: improving the scores and reducing overhead (energy costs incurred during modeling).
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The interplay makes the system self-aware and motivates continuing construction, modification,
and integration of models, in a spiral of information production and growing understanding. The
takeaway notion concerns distinctions between learning and understanding, as follows. Learning
allows extrapolation, i.e., draws a line connecting the past and the present and extends it into the future.
Mental modeling allows the extended line to be split into a bundle (what-ifs). Understanding employs
a form of modeling that submits for attentive examination a few lines in the bundle plausible under
the multitude of factors impinging on the outcomes of interest. Understanding does not foretell the
future but accounts for the past, explains the present, and offers the lowest ceiling on future surprises.
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