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Abstract: We present new general relationships among the material properties of an isotropic material
kept in homogeneous stress conditions with hydrostatic pressure and plane shear. The derivation is
not limited to the proximity of the zero shear-stress and -strain condition, which allows us to identify
the relationship between adiabatic and isothermal shear compliances (inverse of the moduli of rigidity)
along with new links, among others, between isobaric and isochoric shear thermal expansion coefficients
and heat capacities at constant stress and constant shear strain. Such relationships are important for a
variety of applications, including the determination of constitutive equations, the characterization of
nanomaterials, and the identification of properties related to earthquakes precursors and complex media
(e.g., soil) behavior. The results may be useful to investigate the behavior of materials during phase
transitions involving shear or in non-homogeneous conditions within a local thermodynamic equilibrium
framework.

Keywords: material properties; thermodynamics; thermodynamic transformations; extended Gibbs free
energy; plane shear; dilatancy

1. Introduction

Since Gibbs’ fundamental contribution in 1876 [1], the thermodynamic theory of solids under different
stress conditions has remained an active field of inquiry, with a recent intensification spurred by interest
in amorphous states and glass transition, high pressure physics, and the development of artificial
materials [2–7]. In contrast, continuum mechanics and thermoelasticity have focused more on finite
deformations and field theories, traditionally shifting away from homogeneous thermodynamics [8,9]
and the related Gibbs equation [10], in spite of the fact that these concepts are often clearer, at least for
infinitesimal transformations and in uniform conditions [9].

One of the great utilities of equilibrium thermodynamics lies in its theoretical structure, which
provides fundamental links among material properties (such as heat capacities, compressibilities, and
thermal expansion) through the Hessian matrix of the (generalized) Gibbs free energy, while ensuring
feasible reversible transformations (the so-called stability conditions [11]). The relationships between
material properties in hydrostatic conditions have been well known since Clapeyron [11–13], and much
research has been carried out, in such conditions, on linking these properties to the equations of state and
the fundamental equation, especially at high pressures of interest to geophysics and astrophysics [2,14–16].
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For solids in non-hydrostatic conditions, the number of independent material properties quickly
grows. The relevant ones, including latent heats, have been defined and discussed since Kelvin and
Gibbs [17]. The complete relationships among them and a full discussion of their meaning have been
missing, however, due also in part to the complex stress patterns of crystals and anisotropic solids [1,17–19].
Only very recently, Burns [7] has provided a list of these relationships obtained using the Jacobian algebra
of thermodynamic transformations.

Here, we focus on the case of plane shear, which is intermediate between the hydrostatic and the
fully-anisotropic one, and derive new relations between the material properties in general shear-stress
and -strain conditions. While it represents a highly idealized state compared to the heterogeneous and
anisotropic stress configurations typical of real-life conditions, this homogeneous stress condition remains
an important benchmark for the averaged properties of polycrystals and amorphous materials. The case
of homogeneous and isotropic, but non-hydrostatic stress is dealt with in classic texts [2,17,19]. Their
thermodynamic analysis, however, is essentially limited to the case of small deformations around the state
of zero shear stress and deformation. This is a very important, but special case, where there is equality
of the isothermal and isentropic shear compliance (or their inverse, i.e., the moduli of rigidity µT and
µs), as pointed out by Brillouin [12] and mentioned also in other work [2,4,19]. With the exception of
Burns [7,20], this condition, however, is treated as one of general validity.

Burns has also drawn attention to the general relationships among material properties in crystals [7]
and in conditions of plane shear [20], finding new explicit relationships and discussing special cases.
Our contribution here represents an extension to his second work [20]. In particular, we relax the condition
of zero hydrostatic pressure, and most importantly, we do not limit the discussion to transformations
around the zero shear and strain point and include a coefficient of dilatancy [21] expressing the coupling
between pressure and shear stress. We combine the definitions of the material properties with the
corresponding forms of the Gibbs equation in the various thermodynamic representations (e.g., entropy,
volume, and shear strain) using mixed intensive and extensive variables. Equating the resulting total
differentials provides a novel methodology to derive systematically new relations among material
properties. This avoids an ad hoc use of Maxwell relations and related Jacobian algebra, whose success
often relies on the investigators’ intuition, and is easily transferable to other thermodynamic systems.
We provide a complete discussion of quasi-static transformations and the full spectrum of relationships
among material properties, which show, inter alia, how the equality between the isothermal and isentropic
rigidity moduli requires constant shear stress. An application to the thermodynamic properties of clay is
used to illustrate the new relationships.

2. The Gibbs Equation and Generalized Free Energy

Consider an isotropic material in conditions of homogeneous stress, given by a hydrostatic pressure,
p, and a plane shear stress, τ, which derive from decomposing the stress tensor σ [19] as:

σ =

p 0 0
0 p 0
0 0 p

+

0 τ 0
τ 0 0
0 0 0

 . (1)

The isotropic material in the stress state (1) represents a thermodynamic system, whose internal
energy U is a state function related to the other state variables defining the thermodynamic state through
the fundamental equation:

U = U(S, V, N, γ), (2)
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where S, V, and N are the entropy, the volume, and the number of moles, respectively, and γ is the shear
angle (as a reference, γ = 0 in hydrostatic conditions). For reversible transformations, the total differential
of (2) is exact and reads:

dU = TdS − pdV + µdN + τVdγ, (3)

where the temperature, T, pressure, p, chemical potential, µ, and shear stress, τ, are partial derivatives of
the internal energy,

T =
∂U
∂S

∣∣∣∣
V,N,γ

, p = − ∂U
∂V

∣∣∣∣
S,N,γ

, µ =
∂U
∂N

∣∣∣∣
S,V,γ

and τ =
1
V

∂U
∂γ

∣∣∣∣
S,V,N

. (4)

Equation (3) is the Gibbs equation, governing the conservation of energy during infinitesimal
reversible transformations around a generic equilibrium state [19,22]. Specifically, the change in internal
energy, dU, can be due to the term TdS, representing the heat exchanged, or to the work terms pdV, µdN,
and τVdγ that are due to expansion/compression, change in the number of moles and the change in the
shear angle, respectively. Note that the direction of the shear angle follows the sign of the shear stress,
so that the work term τVdγ is symmetric with respect to the zero shear-stress state.

It is more convenient here to express (3) for constant mass, i.e., dN = 0, and per unit volume by
dividing it by V,

du = Tds − pdε + τdγ. (5)

where du = dU/V, ds = dS/V, dε = dV/V is the incremental volumetric strain, where ε = ln(V/V0) is
the logarithmic volumetric strain [23,24] with V0 a reference volume.

The material properties are derived from the corresponding extended Gibbs free energy per unit
volume, which is a function of T, p, and τ and reads:

g(T, p, τ) = u − Ts + pε − τγ. (6)

Using (5), its differential becomes:

dg = −sdT + εdp − γdτ, (7)

where:

s = − ∂g
∂T

∣∣∣∣
p,τ

, ε =
∂g
∂p

∣∣∣∣
T,τ

, and γ = − ∂g
∂τ

∣∣∣∣
T,p

. (8)

From the extended Gibbs free energy, g, the material properties are found as the entries of its Hessian
matrix, namely they are given by the second derivatives of g. From the diagonal components of the
Hessian matrix, we have the heat capacity at constant pressure and shear stress:

cp,τ = −T
∂2g
∂T2

∣∣∣∣
p,τ

= T
∂s
∂T

∣∣∣∣
p,τ

, (9)

the isothermal, isoshear compressibility:

kT,τ =
∂2g
∂p2

∣∣∣∣
T,τ

= − ∂ε

∂p

∣∣∣∣
T,τ

, (10)
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and the isothermal, isobaric shear compliance:

ST,p = − ∂2g
∂τ2

∣∣∣∣
T,p

=
∂γ

∂τ

∣∣∣∣
T,p

. (11)

The properties describing the coupling between thermal, pressure, and shear transformations are
defined by the cross derivatives of the Gibbs free energy and are the off-diagonal components of the
Hessian: the coefficient of thermal expansion at constant pressure and shear stress,

ατ =
∂2g

∂p∂T

∣∣∣∣
τ

=
∂ε

∂T

∣∣∣∣
p,τ

= − ∂s
∂p

∣∣∣∣
T,τ

, (12)

the coefficient of thermal shear deformation at constant pressure and shear stress, which is also a coefficient
of entropy change due to shear stress at constant temperature and pressure,

βp = − ∂2g
∂τ∂T

∣∣∣∣
p
=

∂γ

∂T

∣∣∣∣
p,τ

=
∂s
∂τ

∣∣∣∣
T,p

, (13)

and the coefficient of isothermal shear deformation due to pressure change at constant shear stress, which is
also the coefficient of dilatancy, namely the expansion due to change in shear stress at constant temperature
and pressure,

ηT =
∂2g

∂τ∂p

∣∣∣∣
T
= − ∂γ

∂p

∣∣∣∣
T,τ

=
∂ε

∂τ

∣∣∣∣
T,p

. (14)

Being considered as an earthquake precursor [25–28], this latter coefficient has a paramount practical
importance, since its discovery by Reynolds [21], in a variety of granular materials, solid suspensions,
soils, and rocks, as well as in a 2D Schneebeli analogue material (a bunch of pencil-like rods) [29,30].
By considering both the coefficient of dilatancy, ηT , and the coefficient of thermal shear deformation,
βp, we extend the traditional thermodynamic theory of material properties, in which they are usually
overlooked (e.g., [19,31]), and thus widen the spectrum of possible theoretical analyses and experimental
applications.

The Hessian matrix of the Gibbs free energy thus provides the six independent material properties
necessary to describe the thermodynamic behavior (see Table 1). A total of 18 material properties (six
independent and 12 dependent) exists depending on the thermodynamic constraints imposed (e.g.,
isothermal, adiabatic, isobaric, and so on). With subscripts identifying the variables held constant,
we have four heat capacities (cv,γ, cv,τ , cp,γ, and cp,τ), four compressibilities (kT,γ, kT,τ , ks,γ, and ks,τ), four
compliances (ST,v, ST,p, Ss,v, and Ss,p), two coefficients of thermal expansion (ατ and αγ), two coefficients
of thermal shear deformation (βε and βp), and two coefficients of shear deformation due to pressure or
dilatancy (ηT and ηs).

Table 1. Material properties as derived from the Gibbs free energy. The first row contains the extensive
variable to differentiate, while the first column contains the operators.

s ε γ

∂
∂T

cp,τ
T ατ βp

∂
∂p −ατ −kT,τ −ηT
∂

∂τ βp ηT ST,p
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3. Relations among the Material Properties

These material properties, described above, define the curvature of the state functions, such as u, s, or
ε, in the space of their independent variables. For infinitesimal reversible transformations, they can be
employed to infer the change (or total differential) of any state variable, as shown below. It is convenient
to focus on the representations provided by the independent variables in (2). These are the well-known
entropy representation [11] (Section 3.1) and the less common volume and shear angle representations
(Sections 3.2 and 3.3, respectively).

3.1. Entropy Representation

The equilibrium state of the material, expressed in energy representation in Equation (2), can
analogously be described in entropy representation [11] as:

s = s(u, ε, γ). (15)

Through a change of variables, the entropy s can then be written as a function of the independent
variables T, p, and τ, s = s(T, p, τ), such that the variation ds during an infinitesimal transformation reads:

ds =
∂s
∂T

∣∣∣∣
p,τ

dT +
∂s
∂p

∣∣∣∣
T,τ

dp +
∂s
∂τ

∣∣∣∣
T,p

dτ. (16)

Substituting the partial derivatives with the material properties in Table 1, one obtains:

ds =
cp,τ

T
dT − ατdp + βpdτ. (17)

Using different combinations of thermodynamic variables as independent quantities and introducing
the corresponding material properties, the total differential can be written in the following forms,

ds =
cp,γ

T
dT − αγdp +

βp

ST,p
dγ =

cp,γ

T
dT − αγdp +

λγ,p

T
dγ, (18)

ds =
cv,τ

T
dT +

ατ

kT,τ
dε + βεdτ =

cv,τ

T
dT +

λε,τ

T
dε + βεdτ, (19)

ds =
cv,γ

T
dT +

αγ

kT,γ
dε +

βε

ST,ε
dγ =

cv,γ

T
dT +

λε,γ

T
dε +

λγ,ε

T
dγ, (20)

where we introduced the latent heats of volumetric expansion, λε,τ = ατ T
KT,τ

, λε,γ =
αγT
KT,γ

, and of shear

deformation, λγ,p =
βpT
ST,p

and λγ,ε = βεT
ST,ε

[17,32]. These represent the fraction of heat received that goes
into increasing the volume and the shear angle, respectively.

By equating the above expressions for the total differential of the entropy, one readily obtains
interesting relationships among thermal properties, i.e., heat capacities, coefficients of thermal expansion
and thermal shear deformation, and pressure and shear properties, i.e., compliances and coefficients of
dilatancy. In a similar fashion, Fung [17] derived relations between the heat capacities and the latent heats,
but did not explicitly investigate relations between material properties at various conditions of pressure
(or volume) and shear stress (or shear angle).
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3.1.1. ds(T, p, τ) = ds(T, p, γ)

From:
cp,τ

T
dT − ατdp + βpdτ =

cp,γ

T
dT − αγdp +

βp

ST,p
dγ, (21)

dividing by dγ at constant τ, and substituting in the material properties, one obtains:

cp,τ − cp,γ

βpT
+

(ατ − αγ)

ηT
=

βp

ST,p
. (22)

The same result is obtained if one divides by dτ at constant γ.
Since p appears on both sides of ds(T, p, τ) = ds(T, p, γ), we could consider a further condition,

dp = 0, that is a isobaric transformation. In such a case, (22) reduces to:

cp,τ = cp,γ +
β2

pT
ST,p

, (23)

and thus:
ατ = αγ, (24)

namely at constant p, the coefficient of thermal expansion does not depend on whether τ or γ is
held constant.

If T is held constant, rather than p, one obtains:

ατ = αγ +
βpηT

ST,p
, (25)

and thus:
cp,τ = cp,γ. (26)

3.1.2. ds(T, p, γ) = ds(T, ε, τ)

From this equality, again dividing by dγ at constant τ, one has:

cv,τ

βεT
− cp,γ

βpT
+

ατ − αγ

ηT
=

βp

ST,p
. (27)

Proceeding as for Equation (22), along an isotherm, dT = 0, one obtains again:

ατ = αγ +
βpηT

ST,p
. (28)

and hence:
cp,γ

cv,τ
=

βp

βε
. (29)

3.1.3. ds(T, ε, τ) = ds(T, ε, γ)

Following the same procedure, we have:

cv,τ − cv,γ

βεT
+

1
ηT

(
ατ − αγ

kT,τ

kT,γ

)
=

βε

ST,ε
. (30)
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For dT = 0,

ατ = αγ
kT,τ

kT,γ
+

βεηT
ST,ε

, (31)

and as a consequence, cv,τ = cv,γ. For dε = 0,

cv,τ = cv,γ +
β2

εT
ST,ε

, (32)

and thus:
ατ

αγ
=

kT,τ

kT,γ
. (33)

3.1.4. ds(T, ε, γ) = ds(T, p, τ)

Finally, we have:
cp,τ − cv,γ

βεT
+

1
ηT

(
ατ − αγ

kT,τ

kT,γ

)
=

βε

ST,γ
, (34)

which along an isotherm, dT = 0, reduces to:

ατ = αγ
kT,τ

kT,γ
+

βεηT
ST,γ

, (35)

and thus, cp,τ = cv,γ.

3.2. Volume Representation

The equilibrium state can also be described in the volume representation. Proceeding as for the
entropy representation, depending on the choice of independent variables, the total differential of the
volumetric expansion ε can be expressed in terms of various material properties as follows:

dε = ατdT − kT,τdp + ηTdτ, (36)

dε =
ατT
cp,τ

ds − ks,τdp + ηsdτ, (37)

dε = αγdT − kT,γdp +
ηT

ST,p
dγ, (38)

dε =
αγT
cp,γ

ds − ks,γdp +
ηs

Ss,p
dγ. (39)

Similar to the previous section, from the above differentials, relationships between pressure properties,
e.g., compressibility, and thermal, and shear properties can be derived.

3.2.1. dε(T, p, τ) = dε(s, p, τ)

Division by ds at constant T yields:

kT,τ − ks,τ

ατ
+

ηT − ηs

βp
=

ατT
cp,τ

. (40)
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Along an isoshear-stress, dτ = 0, the well-known relationship between isothermal and adiabatic
compressibility is recovered [11],

kT,τ = ks,τ +
α2

τT
cp,τ

, (41)

where we emphasize that Equation (41) is generally obtained for hydrostatic conditions, while here, it is
extended to a generic condition of non-zero plane shear stress, as long as the shear stress remains constant.
From (40) and dτ = 0, one also gets:

ηT = ηs. (42)

Along an isobar, dp = 0,

ηT = ηs +
ατ βpT

cp,τ
, (43)

and thus:
kT,τ = ks,τ . (44)

3.2.2. dε(s, p, τ) = dε(T, p, γ)

Analogously to Section 3.2.1, we obtain:

kT,γ

αγ
− ks,τ

ατ
+

ηT − ηs

βp
=

ατT
cp,τ

, (45)

and, for dp = 0,

ηT = ηs +
ατ βpT

cp,τ
, (46)

and:
kT,γ

ks,τ
=

αγ

ατ
. (47)

3.2.3. dε(T, p, γ) = dε(s, p, γ)

From this equality, we obtain:

kT,γ − ks,γ

αγ
+

1
βp

(
ηT − ηs

ST,p

Ss,p

)
=

αγT
cp,γ

. (48)

For dp = 0, this simplifies to:

ηT = ηs
ST,p

Ss,p
+

αγβpT
cp,γ

, (49)

and:
kT,γ = ks,γ. (50)

For dγ = 0, (48) reduces to:

kT,γ = ks,γ +
α2

γT
cp,γ

, (51)

and:
ηT
ηs

=
ST,p

Ss,p
. (52)
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Similar to (41), Equation (51) is here shown to be valid also for a generic state of constant plane shear
strain.

3.2.4. dε(T, p, τ) = dε(T, p, γ)

This condition leads to:

kT,τ

ατ
− ks,γ

αγ
+

1
βp

(
ηT − ηs

ST,p

Ss,p

)
=

αγT
cp,γ

, (53)

which along an isobar, dp = 0, reduces to:

ηT = ηs
ST,p

Ss,p
+

αγβpT
cp,γ

, (54)

and therefore:
kT,τ

ks,γ
=

ατ

αγ
. (55)

3.3. Shear-Angle Representation

In the shear-angle representation, the total differential of γ can be expressed as a function of a choice
of independent variables in terms of various material property coefficients as:

dγ = βpdT − ηTdp + ST,pdτ, (56)

dγ =
βpT
cp,τ

ds − ηsdp + Ss,pdτ, (57)

dγ = βεdT +
ηT

kT,τ
dε + ST,εdτ, (58)

dγ =
βεT
cv,τ

ds +
ηs

ks,τ
dε + Ss,εdτ. (59)

Expressions relating shear properties to thermal and pressure properties are obtained by comparing
the above expressions.

3.3.1. dγ(T, p, τ) = dγ(s, p, τ)

From this equation, diving by ds at constant T, we obtain:

ST,p − Ss,p

βp
+

ηT − ηs

ατ
=

βpT
cp,τ

. (60)

At constant τ, the relation yields again:

ηT = ηs +
ατ βpT

cp,τ
, (61)

and hence, the equivalence of isothermal and adiabatic, isobaric shear compliances,

ST,p = Ss,p. (62)
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While previous work has considered the relationship (62) to hold in any conditions [2,4,19], the above
derivation shows that it is valid only in isoshear-stress transformations. At constant p, (60) reduces to:

ST,p = Ss,p +
β2

pT
cp,τ

, (63)

and thus:
ηT = ηs. (64)

3.3.2. dγ(s, p, τ) = dγ(T, ε, τ)

Similarly, one has:
ST,ε

βε
− Ss,p

βp
+

ηT − ηs

ατ
=

βpT
cp,τ

. (65)

For constant τ, this simplifies to:

ηT = ηs +
ατ βpT

cp,τ
, (66)

and thus:
Ss,p

ST,ε
=

βp

βε
. (67)

3.3.3. dγ(T, ε, τ) = dγ(s, ε, τ)

Furthermore, in this case, we have:

ST,ε − Ss,ε

βε
+

1
ατ

(
ηT − ηs

kT,τ

ks,τ

)
=

βεT
cv,τ

. (68)

At constant ε, it simplifies to [20]:

ST,ε = Ss,ε +
β2

εT
cv,τ

, (69)

which was obtained in implicit conditions of constant volume. From Equation (68) and dε = 0, one
also has:

ηT
ηs

=
kT,τ

ks,τ
. (70)

At constant τ,

ηT = ηs
kT,τ

ks,τ
+

ατ βεT
cv,τ

, (71)

hence the equivalence of isothermal and adiabatic, isochoric compliances,

ST,ε = Ss,ε. (72)

As for (62), we emphasize again that Equation (72) is obtained strictly for isoshear-stress
transformations.
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3.3.4. dγ(T, p, τ) = dγ(s, ε, τ)

As before, from this equality, one also has:

ST,p

βp
− Ss,ε

βε
+

1
ατ

(
ηT − ηs

kT,τ

ks,τ

)
=

βεT
cv,τ

, (73)

which simplifies along an isoshear, dτ = 0, as:

ηT = ηs
kT,τ

ks,τ
+

ατ βεT
cv,τ

, (74)

and thus:
ST,p

Ss,ε
=

βp

βε
. (75)

The general relations above, (60), (65), (68), and (73), extend the one presented by Burns [20] between
isothermal and adiabatic shear compliances at constant ε. In fact, they also include the isothermal and
adiabatic coefficients of dilatancy, ηT and ηs, and are derived for either isobaric or isochoric transformations.

4. Application

As an example of the above relations, we compute the difference between cv,τ and cv,γ for a Boom
clay heated at constant ε. Details on the experiments and the data are available in a previous publication
of one of the authors [33]. The results of the experiment are reported in Figure 1, where Panel (a) shows
the evolution of temperature (in Kelvin) with respect to the shear angle deformation γ, whereas Panel
(b) relates the shear stress τ to the corresponding shear angle γ. Interpolating the points in Figure 1a and
computing the derivative dγ/dT, at constant ε, we derive the coefficient of thermal shear deformation at
constant ε, βε (Figure 1c). Analogously, from the change in τ with respect to γ (T = 294 K and constant ε),
we obtain the shear compliance ST,ε = dγ/dτ; see Figure 1d.

Assuming that the compliance ST,ε depends on T only through its dependence on γ, all the terms in
Equation (32) are dependent on γ,

cv,τ − cv,γ =
βε(γ)2T(γ)

ST,ε(γ)
. (76)

From Equation (76) and the relationship between T and γ, illustrated in Figure 1a, we then can
compute the difference cv,τ − cv,γ as a function of γ. As can be seen in Figure 2, given a constant shear
stress (τ = 2 MPa), the two heat capacities approach the same value as the material deforms (shear angle
increases) according to the direction of the stress τ.
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Figure 1. Results of experiments on a Boom clay conducted at constant volume (i.e., constant ε). Data
available from [33]. (a) Temperature path with respect to the shear angle during the heating experiment at
constant ε and τ. Interpolating function: 370 − 150.17e−0.38γ. (b) Shear stress-angle relationship at constant
ε and T (294 K). (c) Thermal shear deformation at constant ε as a function of γ, computed as dγ/dT. (d)
Isothermal shear compliance at constant ε computed as ST,ε = dγ/dτ.Version March 9, 2019 submitted to Entropy 11 of 13
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Figure 2. Difference between iso-τ and iso-γ heat capacity at constant volume, cv,τ − cv,γ, computed
from equation (76).

panel (a) shows the evolution of temperature (in Kelvin) with respect to the shear strain deformation145

γ, whereas panel (b) relates the shear stress τ to the corresponding shear strain γ. Interpolating the146

points in Figure 1(a) and computing the derivative dγ/dT, at constant ε, we derive the coefficient of147

thermal shear deformation at constant ε, βε (Figure 2(c)). Analogously, from the change in τ with148

respect to γ (T = 294 K and constant ε) we obtain the shear compliance ST,ε = dγ/dτ, see Figure 2(d).149

Assuming that the compliance ST,ε depends on T only through its dependence on γ, all the terms
in equation (32) are dependent on γ,

cv,τ − cv,γ =
βε(γ)2T(γ)

ST,ε(γ)
. (76)

From equation (76) and the relationship between T and γ, illustrated in Figure 1(a), we then can150

compute the difference cv,τ − cv,γ as a function of γ. As can be seen in Figure 2, given a constant shear151

stress (τ = 2MPa), the two heat capacities approach the same value as the material deforms (increase152
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dilatancy coefficient, η, which expresses the pressure-shear stress coupling [21]. This gives rise to new160
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to the derivation of the constitutive equations of materials from experimental data, the analysis of162
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Figure 2. Difference between iso-τ and iso-γ heat capacity at constant volume, cv,τ − cv,γ, computed from
Equation (76).

5. Conclusions

We have provided 12 general relationships among the 18 properties of materials (six of which are
independent) that exist in conditions of plane shear. The other shear angles remain constant, so that during
a thermodynamic transformation, the shear stresses in those directions do not do any work. We discuss
infinitesimal, reversible transformations around a generic state, described by the fundamental equation
u = u(s, ε, γ) or g = g(T, p, τ) and extend previous work [20] by introducing the Reynolds dilatancy
coefficient, η, which expresses the pressure-shear stress coupling [21]. This gives rise to new general
relations between thermal, pressure, and shear material properties. Their importance is related to the
derivation of the constitutive equations of materials from experimental data, the analysis of nano-materials
behavior, and the characterization of earthquake precursors [27,28].
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For ηT = 0 and ηs = 0, we recover the relationship between isothermal and adiabatic shear
compliances and the coefficient of thermal shear deformation [20] (see (69)) and show that this relation is
generally valid at both constant pressure or constant logarithmic volumetric strain; see Equations (63) and
(69). New relationships between isobaric and isochoric shear thermal deformation and the compliances
were derived, e.g., Equations (65) and (73). Our results also extend the well-known relation between the
isothermal and adiabatic compressibility to a generic state of plane shear; see (41) and (51).

Imposing τ = 0 and γ = 0 in the derived general relations, one returns to the thermodynamics in
hydrostatic conditions. The material properties in fact reduce to the two heat capacities (constant volume
or pressure), a unique coefficient of thermal expansion, two compressibilities (isothermal and adiabatic),
and a shear compliance. Their relations however remain formally the same also outside of the pure
hydrostatic conditions, e.g., (41), although their numerical values depend on the specific constant values
of τ or γ at which the material is maintained. The neighborhood of this stress state is the elastic regime, in
which kT,τ and Sp,τ are postulated constant.

Future work will deal with embedding the obtained relationships within a continuum-mechanics
representation with local equilibrium assumptions and extending them to general non-homogeneous
configurations. We also hope to find useful connections to the problem of phase transitions in the presence
of shear and towards a thermodynamic representation of the glass transition.
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