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Abstract: A special type of social networks is the so-called affiliation network, consisting of two
modes of vertices: actors and events. Up to now, in the undirected case, the closeness of actors in such
networks has been measured by their jointly-attended events. Indirect contacts and attenuated and
directed links are of minor interest in affiliation networks. These flaws make a veritable estimation
of, e.g., possible message transfers amongst actors questionable. In this contribution, first, we
discuss these matters from a graph-theoretical point of view. Second, so as to avoid the identified
weaknesses, we propose an up-and-coming entropy-based approach for modeling such networks
in their generic structure, replacing directed (attenuated) links by conditionals: if-then. In this
framework, the contribution of actors and events to a reliable message transfer from one actor to
another—even via intermediaries—is then calculated applying the principle of maximum entropy.
The usefulness of this new approach is demonstrated by the analysis of an affiliation network called
“corporate directors”.

Keywords: social network analysis; bipartite structures; directed graphs; attenuated links; entropy

1. Introduction

Social Networks (SN) are actors and their mutual relationships. The aim of Social Network
Analysis (SNA) is to record and interpret structures within the social fabric. How do different actors or
groups of actors act within networks? What benefits do they gain from this, and what disadvantages do
they suffer in interacting with other actors? Ever since Moreno [1] published his ground-breaking work,
scientists have been able to support their analyses with graphic representations of these networks.
Actors are displayed as nodes and relationships as either undirected or directed edges (arrows). They
are a visual representation of symmetrical or asymmetrical relationships. Such simple social structures
are generalized in multigraphs or hypergraphs. Whereas multigraphs show several relationships,
hypergraphs focus on so-called hyperconnections; meaning connections that link up more than
two actors.

Social affiliation networks are a specific type of social network. The term affiliation here describes
a known membership or affinity. In other words, social affiliation networks are used to describe
which actors belong to which clubs, associations, or interest groups or whether they meet at specific
events. Probably the best-known, frequently-cited example of this is that of the “Southern Women” [2].
The authors describe which society ladies in a small town in the Southern States of the U.S. attend
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what events, and these observations are subject to a profound sociological investigation of the town’s
society. Such, among others, affiliation networks typically have two modes, making them bipartite.
The actors constitute one type of network node, and the events the other type. Only elements with
different node types can form relationships. Once such a network has been selected, the actors can be
investigated in relation to the type and number of their contacts, and the clubs can be examined in
relation to their attractiveness or suitability for exchanging messages, knowledge, etc. Deviating from
classical notation, from now on, we use the expression platform instead of clubs, associations, or events.
Platforms are the loci of message transfer, be it notice-boards, newsgroups, or social media. Mind the
fact that in reality, message transfers via platforms do not necessarily involve personal contacts. Very
frequently, personal contacts are replaced by media channels, as mentioned above.

Interestingly enough, there are several applications of bipartite graphical structures in other fields
of research, as well, such as collaboration networks joining, e.g., projects and project partners [3,4] or
bibliographic networks joining, e.g., authors and papers or conferences, respectively [5,6].

Borgatti and Everett [7], Borgatti [8] described bipartite structures and their special features: the
affiliation matrix, the sociomatrix that can be deduced from this, and different ways to determine
the “proximity” of actors as an indicator of message transfer between them. They elaborated on how
traditional indexes, such as network centralization or the centralities of actors and platforms, may only
ever be applied after undergoing significant changes and outlined the level of modification required.
Clearly, the centralization of a bipartite network cannot be the same as that of a traditional network,
since connections cannot exist between nodes of the same type. The authors further investigated how
the key feature of a two-mode system impacts the cohesive groups within networks, on structural and
regular equivalence, and on many others.

One aspect that all traditional analyses of affiliation networks have in common is that links are
always viewed as undirected. Their semantics consists of the non-directional connection between
actors and platforms.

Therefore, such structures are only ever evaluated and analyzed in relation to the number of
such links and the parameters resulting from this. “How often does actor i meet actor j at different
clubs or associations?” “How many of the members of club k are also members of club l?” This is
then used to determine the likelihood that, e.g., a message will be forwarded from i to j or to deduce
the social proximity between k and l. Instead of focusing merely on certain transfers of messages or
news, we also accept an attenuated version. The idea of an attenuated transfer was first mentioned by
Katz [9] and referenced and developed further by Bonacich [10] and then by Bonacich and Lloyd [11].
Everett took up this idea and applied it to undirected affiliation networks [12]. The present paper
makes several generalizations:

• It focuses not on undirected, but instead on directed bipartite graphs. This takes into account the
simple fact that, e.g., a message transfer from an actor to a platform does not necessarily occur
with the same level of likelihood as vice versa. None of the quoted authors considered attenuated
and directed affiliation networks.

• Rödder et al. [13,14] studied an initial example of modeling general social networks using the
principle of entropy. We will apply such probabilistic modeling in order to analyze attenuated
directed social affiliation networks effectively. Such analysis then permits rankings of actors and
platforms with respect to their influential power.

The Introduction is followed by Section 2, which outlines traditional affiliation network analysis, to
provide a basis for presenting and defining the new method in subsequent sections. Section 2.1 formally
presents affiliation networks, whereas Section 2.2 sets out direct and indirect contact frequencies
between actors. Section 2.3 then outlines the transfer probabilities for messages that can be deduced
based on the frequency of contact according to selected normalizations. A short example is then
presented, and relating questions are addressed. Section 2.4 continues by generalizing to directed
graphs. Section 3 is dedicated to the novel modeling method: Section 3.1 focuses on syntax and
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semantics and Section 3.2 on how to set up a probabilistic model for a bipartite network. Section 4
shows the potential of an entropy-based model by applying it to a network of 20 actors and 24 platforms.
Finally, Section 5 offers a summary and attempts to present the prospects for further research.

2. Affiliation Networks and Traditional Analyses

2.1. Basic Concepts and Their Sociological Meanings

As outlined in the Introduction, affiliation networks have two types of entities: actors and
platforms. Some actors share specific platforms: they might, for instance, go to the same clubs, use
the same social media channels, etc., while others might not. The sociological literature consistently
assumes that the frequency of joint platforms amongst actors supports their willingness to exchange
knowledge or messages.

A (general) graph consists of a set of nodes V and a set of edges E : G = (V , E). If two nodes
v, w ∈ V are linked by an edge e ∈ E , they are called adjacent. If e is undirected, we write e = (v, w).
If it is directed, then e = 〈v, w〉; the direction in the latter case is from v to w. The sociological context
of such graphs is well known; see Scott [15].

A graph G = (V , E) is bipartite if V = V1∪̇V2,V1 6= ∅,V2 6= ∅, and the following applies for
each connection (v, w), or 〈v, w〉: if v ∈ V1, then w ∈ V2 and vice versa. Nodes from V1 are never
mutually linked, and neither are nodes from V2. The cardinalities of these node sets are n1 = |V1|
and n2 = |V2|. We will start by focusing on undirected bipartite graphs, typically used to describe
affiliation networks. We will use V1 to describe the actors and V2 to describe the platforms. Figure 1
shows a generic affiliation network.

v21 v2k v2n2 ← platforms

v11 v1i v1n1 ← actors

b b b b b b

b b b b b b

Figure 1. Generic undirected affiliation network.

The first index of the nodes shows the entity type, and the second numbers them sequentially.

2.2. Contact Frequencies between Actors in Undirected Graphs

In an affiliation matrix for a network described in Section 2.1, rows will denote actors and columns
will denote platforms; it has entry one in row v1i and column v2k if (v1i, v2k) ∈ E and zero, otherwise.
This affiliation matrix A = An1×n2 hence is a rectangular matrix with n1 rows and n2 columns.
Therefore, AAT is an n1 × n1 matrix, whose entries are the actors’ mutual contact frequencies. In
the same way, AT A is an n2 × n2 matrix, whose entries constitute the number of joint memberships
in platforms.

Borgatti [8], Everett [12] showed a block matrix that combines both views, calling this a “bipartite
adjacency matrix B”.

B =

(
0n1×n1 An1×n2

AT
n2×n1

0n2×n2

)
(1)

KEY: Zero refers to matrices filled with zero entries.
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B is square (n1 + n2)× (n1 + n2). B · B then gives:

B2 =

(
AAT 0

0 AT A

)
(2)

and consequently, both the actors’ contact frequencies and joint memberships in platforms. B3, B4, as
well as greater powers can be formed directly, and this, e.g., gives:

B3 =

(
0 AAT A

AT AAT 0

)
(3)

B4 =

(
AAT AAT 0

0 AT AAT A

)
. (4)

While the entries in B2 show the actors’ contact frequencies and joint memberships in platforms
(see above), B3 demonstrates the impossibility of linking actors with actors or platforms with platforms
in three steps. Finally, B4 shows the contact frequencies between actors also using an intermediary
and indirect joint memberships. In other words, actor i might not be a member of the same platform as
actor j, but both have the same membership as a third party. This can now be applied to platforms and
extrapolated to matrices for greater powers.

2.3. From Contact Frequencies to Transfer Probabilities

If we assume that the contact frequencies between actors indicate their disposition towards
passing on messages or news, this would be in line with the basic idea put forward by the respective
literature [7,8,16]. We will now present a short example to make this idea more transparent.

Let us take a look at the affiliation network in Figure 2.

v21 v22 v23 v24 ← platforms

v11 v12 v13 v14 v15 ← actors

Figure 2. A concrete affiliation network.

We chose this example because:

(i) it includes actors not present in all platforms
(ii) some pairs of actors share several platforms

(iii) some pairs of actors can only contact each other via an intermediary
(iv) some pairs of actors can only contact each other via two intermediaries

These verbal characterizations can now be visualized in matrices, with explanations provided.



Entropy 2019, 21, 277 5 of 17

A =



v21 v22 v23 v24

v11 1 1 0 0

v12 1 1 0 0

v13 1 1 1 0

v14 0 0 1 1

v15 0 0 0 1


Where ones are shown, this
denotes an undirected connection
between actors and platforms.
Zeroes corroborate (i).

(5)

AAT =



v11 v12 v13 v14 v15

v11 2 2 2 0 0

v12 2 2 2 0 0

v13 2 2 3 1 0

v14 0 0 1 2 1

v15 0 0 0 1 1


The entries show the direct
contact frequencies between
actors on platforms. Entries
greater than one corroborate
(ii).

(6)

AAT AAT =



v11 v12 v13 v14 v15

v11 12 12 14 2 0

v12 12 12 14 2 0

v13 14 14 18 5 1

v14 2 2 5 6 3

v15 0 0 1 3 2



These entries show the
contact frequencies between
actors via an intermediary.
Whenever positive entries
occur where AAT previously
contained zero, this
corroborates (iii).

(7)

AAT AAT AAT =



v11 v12 v13 v14 v15

v11 76 76 92 18 2

v12 76 76 92 18 2

v13 92 92 115 29 6

v14 18 18 29 20 9

v15 2 2 6 9 5



These entries show the
contact frequencies between
actors via two intermediaries.
Whenever positive entries
occur where AAT AAT

previously contained zero,
this corroborates (iv).

(8)

The traditional literature only uses direct contacts such as those contained in the matrix AAT to
calculate transfer probabilities. Such probabilities are estimated based on relative frequencies applying
various scaling rules. If (uij)n1×n1 are the elements of the matrix AAT , then we can scale as follows
according to Borgatti [8]:

uij

n2
(9)

uij

min(uii, ujj)
(10)

uij

uii + ujj − uij
(11)
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With reference to Formulas (9)–(11) and AAT as per (6), we obtain the following transfer probabilities:
− 0.5 0.5 0 0
0.5 − 0.5 0 0
0.5 0.5 − 0.25 0
0 0 0.25 − 0.25
0 0 0 0.25 −

 (9′)


− 1 1 0 0
1 − 1 0 0
1 1 − 0.5 0
0 0 0.5 − 1
0 0 0 1 −

 (10′)


− 1 0.67 0 0
1 − 0.67 0 0

0.67 0.67 − 0.25 0
0 0 0.25 − 0.5
0 0 0 0.5 −

 (11′)

The missing entries along the diagonal are self-explanatory.
All scalings can be applied easily, but nevertheless, the question arises which of these transfer

probabilities should be used in further analyses.
Using the examples of (7) and (8), this section demonstrates that indirect contacts can exist via one,

two, or several intermediaries. Similar transfer probability patterns could also easily be estimated from
AAT AAT or AAT AAT AAT , but the problem of how to choose the most suitable scaling would remain.

Keep in mind that the entries in the matrices (6)–(8) describe walks of lengths of 2, 4, or 6 and that
this might involve multiple contacts between nodes or repeated runs along the same edge. By way of
example, from the 12 walks from v11 to v12 in (7), four come back to v11 before reaching v12; and 10 are
not even trails, as they run twice along the same edge. We verify that there are only two paths from
v11 to v12 with one intermediary, in this case, v13. What finally remains as a suitable set of direct or
indirect contacts is an open question and is highly context-dependent.

If we accept that the messages can also be transferred indirectly via intermediaries, we must
still determine how direct and indirect contacts or contact frequencies should be weighted in relation
to each other. What is the significance of a contact via one or several intermediaries compared to a
direct contact?

2.4. Contact Frequencies and Transfer Probabilities in Directed Graphs

The bipartite adjacency matrix—if modified slightly—is also ideal for representing directed
graphs. Why directed graphs? As already mentioned in the Introduction, a message transfer from an
actor to a platform does not necessarily occur with the same level of likelihood as vice versa. Imagine
a club has set up a newsletter to inform its members about upcoming fundraising campaigns or future
meetings of members, etc. Undoubtedly, the frequency of reaching a member when sending a message
is different from the likelihood of an actor to reveal an item of information to the club. Hence, directed
graphs are a must in affiliation network analysis. The upper part of (12) shows the adjacencies of
actors in relation to platforms, while the lower part describes that of platforms to actors. In general,
such matrices are not transposed with each other, of course. We can write the general version as:

B̄ =

(
0 A

Ā 0

)
. (12)
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B̄ again is square (n1 + n2)× (n1 + n2). B̄ · B̄ now results in:

B̄2 =

(
AĀ 0

0 ĀA

)
. (13)

In addition, B̄3, B̄4, and greater powers can also be formed, which, e.g., creates:

B̄3 =

(
0 AĀA

ĀAĀ 0

)
(14)

B̄4 =

(
AĀAĀ 0

0 ĀAĀA

)
. (15)

The entries in B̄2 again show the contact frequencies between actors (upper part) and joint
memberships (lower part). B̄3 and B̄4 can be interpreted accordingly; for details, see Section 2.2. These
frequencies are of course significantly limited by the direction of arrows.

Figure 3 contains all connections from platforms to actors as in Figure 2, now directed, but it only
has three connections from actors to platforms. We can now specify A, Ā, AĀ, ĀA, AĀAĀ, ĀAĀA.

A =


0 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 Ā =


1 1 1 0 0
1 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 (16)

AĀ =


0 0 0 0 0
1 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 0

 ĀA =


1 0 1 0
1 0 1 0
0 0 1 1
0 0 0 1

 (17)

AĀAĀ =


0 0 0 0 0
1 1 2 1 0
0 0 1 2 1
0 0 0 1 1
0 0 0 0 0

 ĀAĀA =


1 0 2 1
1 0 2 1
0 0 1 2
0 0 0 1

 (18)

The estimation of transfer probabilities from contact frequencies follows the same logic as in
Section 2.3 and results in similar difficulties as for non-directional bipartite structures. Therefore, this
is omitted here.

v21 v22 v23 v24 ← platforms

v11 v12 v13 v14 v15 ← actors

Figure 3. A concrete directional affiliation network.

To sum up, this section shows a severe problem in determining transfer probabilities by means
of direct or indirect contact frequencies, be the respective graphs undirected or directed. Due to the
great variety of calculating such probabilities, the analyst might choose the wrong aggregation method
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and hence obtain a biased result. To the best of our knowledge, the only probabilistic method that
leads to an unbiased representation of contact frequencies uses the principle of maximum entropy.
All available data concerning direct and indirect contact frequencies are “married” in a probabilistic
conditional-logical framework; for an axiomatic justification, cf. Kern-Isberner [17].

3. Entropy-Driven Bipartite Network Analysis

3.1. Syntax and Network Load

The details in this section are based on the representation of knowledge processing in social
networks in Rödder et al. [13], Brenner et al. [18]. They are repeated here and applied to affiliation
networks in the subsequent Section 3.2.

Let us take a set of n nodes {v1, . . . , vn}. Each node vi is represented by a binary variable Vi
with the values Vi = vi and vi = 1/0. Therefore, v = {v1, . . . , vn} are the respective configurations.
For pairs of nodes, Vj = 1 | Vi = 1 are conditionals; | is the conditional operator. For a detailed
discussion on conditionals, see, e.g., Calabrese [19] or also Rödder et al. [13].

The semantics of these symbols is as follows: Vi = 1/0 is the proposition; node vi either knows
the message (1) or not (0). The conditionals describe potential transfer: if vi has the message, then it
probably has vj. Therefore, conditionals replace weighted arrows in graphs.

Let us assume that sociological inquiries have only provided transfer probabilities pij for several
pairs of nodes 〈vi, vj〉, and not for others. As such, this network consists of a set N ⊆ {1, . . . , n} ×
{1, . . . , n}, and the related conditionals and probabilities:

Vj = 1 | Vi = 1 with pij for (i, j) ∈ N. (19)

Now, we look for a probability distribution Q on {v}, which takes account of the
transfer probabilities:

Q(Vj = 1 | Vi = 1) = pij for (i, j) ∈ N. (20)

Such a distribution is called a network load.
If pij are entered consistently, then (21) yields a particular distribution on a network.

Q∗ = arg min R(Q,P0) = ∑
v
Q(v) log2

Q(v)
P0(v)

subject to Q(Vj = 1 | Vi = 1) = pij, (i, j) ∈ N.
(21)

Equation (21) respects all pij and creates the distribution Q∗ of Minimal Relative Entropy
(MinREnt) or Kullback–Leibler divergence R from the uniform distribution P0 on {v}. As is well known,
the minimization in (21) is equivalent to the maximization of the entropy H = −∑v Q(v) log2 Q(v).
Therefore, we call Q∗ a Maximum Entropy (MaxEnt) load on the net. Q∗ is a distribution used in
artificial intelligence as a knowledge base for the entire network structure [14]. Keep in mind that (21)
has a strict axiomatic justification; see again Kern-Isberner [17].

For solving optimization Problem (21), an algorithmic framework is needed. Two frameworks
are, e.g., LEXMED [20] and SPIRIT [21]. In the remainder of this paper, we focus on the latter, which
was developed at the FernUniversität in Hagen, Germany. For its functionalities, see [21].
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Once a distribution is calculated, what is the impact of a specific message sent by node vi: Vi := 1?
If node vi sends the message, it will penetrate the network according to the probabilistic conditional
structure. This process can be performed in SPIRIT [22] by solving the equation:

Q∗∗ = arg min R(Q,Q∗) = ∑
v
Q(v) log2

Q(v)
Q∗(v)

subject to Q(Vi = 1) = 1.
(22)

Q∗∗ is the distribution on the network of minimum divergence from Q∗ subject to the condition that
Vi = 1. Therefore, this means conditioning a distribution as a whole. If we have Q∗∗, then Q∗∗(Vj = 1)

can be calculated for other j 6= i. Q∗∗(Vj = 1) is the probability that vj receives the message if vi
sends it, i.e., actor j’s reception probability. According to the considerations in this section, vj can be a
neighbor of vi, or not. Q∗∗(Vj = 1) even applies to vj, which can only be reached in the network via
one or several intermediaries. Rödder et al. [23] also dealt with the extent to which such reception
probabilities are only vague conjectures or resilient estimates.

The probabilistic conditional-logical framework developed so far will be applied to two-mode
networks in the next section.

3.2. MaxEnt Distributions in Two-Mode Networks

Now, we consider the sets V1 = {v11, . . . , v1i, . . . , v1n1}, V2 = {v21, . . . , v2k, . . . , v2n2} and the
related variables {V11, . . . , V1i, . . . , V1n1}, {V21, . . . , V2k, . . . , V2n2}.

Conditionals can then be displayed as follows:

• V1i = 1 | V2k = 1 [pki] for transfers from platforms to actors and
• V2k = 1 | V1i = 1 [pik] for transfers from actors to platforms,

with the probabilities pki and pik.
Let us refer to Figure 3 to illustrate the relationships, and assume, first, that no transfer probabilities

are known. Therefore, the set of conditionals in (21) is empty, and according to Figure 4 (top), the set of all
nodes yields the marginal distributions P0(V1i = 1) = P0(V2k = 1) = 0.5. The conditioning process, i.e.,
solving Equation (22) for specific nodes, can be realized in SPIRIT through clicking, e.g., V12 := 1 results in
Figure 4 (bottom). As expected, the marginal distributions for all nodes—except V12—have not changed.

Exemplary probabilities are now assigned to the conditionals as shown in Table 1.

Table 1. A specific affiliation network.

V11 = 1 | V21 = 1 [1.0] V11 = 1 | V22 = 1 [1.0] V12 = 1 | V21 = 1 [1.0]
V12 = 1 | V22 = 1 [1.0] V13 = 1 | V21 = 1 [1.0] V13 = 1 | V22 = 1 [1.0]
V13 = 1 | V23 = 1 [1.0] V14 = 1 | V23 = 1 [1.0] V14 = 1 | V24 = 1 [1.0]
V15 = 1 | V24 = 1 [1.0] V21 = 1 | V12 = 1 [0.8] V23 = 1 | V13 = 1 [0.8]
V24 = 1 | V14 = 1 [0.8]

This can be depicted compactly as matrices of transfer probabilities:

P =


0 0 0 0

0.8 0 0 0
0 0 0.8 0
0 0 0 0.8
0 0 0 0

 P̄ =


1 1 1 0 0
1 1 1 0 0
0 0 1 1 0
0 0 0 1 1

 (23)
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These probabilities mean that the transfer from platforms to actors is certain (=1), whereas actors
are less likely to communicate (=0.8). If we enter the conditionals and these transfer probabilities in
SPIRIT, then upon solving Equation (21), we come up with Q∗, whose marginal probabilities are shown
in the variables in Figure 5.

Figure 4. Marginal distributions for an empty set of conditionals before and after having evidentiated.

Figure 5. A bipartite network in SPIRIT.

Now, in contrast to Figure 4 (top), the marginal distributions have changed. They enable us to
make a priori estimates of message transfers in the network, merely based on the structure. We notice
lower probabilities for V = 1 for nodes more likely to be senders and higher probabilities for V = 1

for nodes more likely to be receivers. A first attempt to make these observations more transparent are
the following information-theoretical considerations.

For V := 1 as in (22), R(Q∗∗,Q∗) measures the change of the conditional structure from Q∗ to Q∗∗,
cf. Brenner et al. [18]. Rödder et al. [13] called this number the diffusion potential of a node, and in
Theorem 2 on page 7975, it is shown that:

R(Q∗∗,Q∗) = − log2 Q
∗(V = 1). (24)
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The entire conditional structure change in the network is already anticipated in (24).
Therefore, − log2(Q

∗(V1i = 1)) is the measure of diffusion in the network for each actor i.
The deeper his/her message penetrates the network, the higher his/her diffusion.

− log2(Q
∗(V2k = 1)) is also the measure of diffusion for platform k in the network. The deeper a

message known there penetrates the network—through direct or indirect contacts—the higher is its
diffusion potential.

The greater − log2 Q
∗(V = 1), the smaller is Q∗(V = 1) for each node in the network; either for

an actor or a platform. The MaxEnt distribution assigns low probabilities to related V = 1 correctly,
whose network penetration—direct or indirect contacts to other nodes—is high. In the same way,
it assigns high probabilities to nodes with low network penetration.

SPIRIT allows marginal probabilities to be switched to negative logarithms. Figure 6 shows
these logarithms for Figure 5. As such, V12 = 1 has the greatest diffusion potential of all actors, and
V22 = 1 has the greatest diffusion potential of all platforms; this is in line with the intuitive conditional
structure of the network.

Figure 6. Information values for Figure 5.

Going back to the example in Table 1 and now clicking on the value 1 for the actor i = 2 or the
platform k = 2, we get the probabilities of reception as shown in Figures 7 and 8 for all actors and
platforms. Obviously, they confirm the values of preset probabilities. They also demonstrate that,
if actor i = 2 sends the message, this also increases the probability of reception for actors with only
indirect contacts. Therefore, the knowledge processing concept implemented in SPIRIT incorporates
impacts on the probabilities of reception via one or several intermediaries.

The conditional probabilities of reception as presented in Figures 7 and 8 are unbiased estimates
of reception opportunities for all actors and platforms after the message has been sent. For instance,
the probabilities for V21 = 1 | V12 = 1 [0.8] in Figure 7 or for V11 = 1 | V22 = 1 [1.0] in Figure 8
are preassigned, and other conditional probabilities of reception result from the MinREnt model,
as in (22). Furthermore, we notice that the probability of reception for V24 = 1 has only increased
slightly compared to the a priori probability; see Figures 5 and 7.
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Figure 7. Conditional probabilities of reception under V12 = 1.

Figure 8. Conditional probabilities of reception under V22 = 1.

The next section examines how the concepts developed so far can be used to analyze a real
medium-sized network.

4. Analysis of the Network “Corporate Directors”

Barnes and Burkett [24] described an affiliation network called “corporate directors”. As the name
suggests, this is a group of—in this case—20 directors and their memberships in 24 different institutions,
such as clubs, management boards, supervisory boards, etc. The 99 affiliations are presented in the
affiliation matrix in Figure A1 in Appendix A.

The preliminary column shows directors =̂ actors and the preliminary row shows institutions =̂
platforms. For reasons of consistency, we will call the directors v1,1–v1,20 and the institutions v2,1–v2,24.
Figure 9 clearly shows the bipartite structure in SPIRIT.

Figure 9. Bipartite structure of corporate directors in SPIRIT.
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The aim of this section is to demonstrate the usefulness of the entropy-driven analysis with respect
to the transfer of messages and knowledge between actors and/or institutions. As in Section 3.2,
we assume a directional bipartite structure with the following properties:

• Message transfer in the direction from institution to director is highly probable. Platforms are set
up in order to make messages and news available to its members, where possible. As already
stated in the Introduction, such message transfer might be realized via notice-boards, newsgroups,
or social media. For our purposes, we choose the respective transfer probabilities to be a fictitious
0.9. Statistical analysis might help to verify such a 90% page view rate.

• The probabilities of message transfer from actors to institutions are even more difficult to survey
due to the unknown willingness of persons to share information with others. We thwart this
flaw using random numbers between 0.5 and one for the transfer probabilities. A first step to
predicting the posting behavior of individuals the reader might find in Kim et al. [25].

These transfer probabilities are entered into SPIRIT in a two-step process: first, for institutions
to directors, then for directors to institutions. The conditionals for the former part can be deduced
from adjacencies in Figure A1 in Appendix A plus 0.9 probability. The conditionals for the latter part
are shown in Table A1 in Appendix A. Rödder et al. [21] set out in sufficient detail how this two-step
learning process in SPIRIT can be implemented. The results are summarized in Figure 10, and the
perspective according to information theory—diffusion—introduced in Section 3.2 and Equation (24)
is shown in Figure 11.

Figure 10. Marginal distribution across institutions and directors in SPIRIT.

Figure 11. Information theory perspective in relation to institutions and directors in SPIRIT.

As expected, diffusions in institutions tend to be greater than for directors, but some directors are
also fairly communicative, e.g., directors v1,11 and v1,2.
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The results in Figure 11 allow us to rank actors and institutions based on their diffusion. Here,
high numbers mean much influence in the network, and low numbers mean less influence. Let us look
at two actors and two institutions to further demonstrate the network analysis made possible using
this model. Actor v1,11 has the highest diffusion and actor v1,20 the lowest. The lowest and highest
diffusions for institutions are those for v2,11 and, e.g., v2,20; please refer back to Figure 11. If we now
click on the respective values V = 1 for these nodes, this means—as explained in detail above—that
the message has been sent throughout the entire network.

Tables 2 and 3 allow comparing the prior distribution to those after message posting.

Table 2. A priori probabilities and probabilities of message reception for actors with evidence v1,11

and v1,20.

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9 v1,10 . . .
A priori 0.68 0.52 0.59 0.60 0.87 0.76 0.76 0.87 0.91 0.66 . . .
Ev.v1,11 0.98 0.93 0.82 0.89 0.90 0.95 0.97 0.98 0.90 0.94 . . .
Ev.v1,20 0.69 0.53 0.60 0.61 0.87 0.76 0.76 0.87 0.91 0.67 . . .

v1,11 v1,12 v1,13 v1,14 v1,15 v1,16 v1,17 v1,18 v1,19 v1,20
A priori 0.39 0.91 0.73 0.66 0.81 0.57 0.70 0.65 0.59 0.92
Ev.v1,11 − 0.97 0.97 0.99 0.98 0.95 0.94 0.96 0.89 0.94
Ev.v1,20 0.40 0.91 0.74 0.67 0.81 0.58 0.70 0.65 0.60 −

Table 3. A priori probabilities and probabilities of message reception for actors with evidence v2,11

and v2,20.

v1,1 v1,2 v1,3 v1,4 v1,5 v1,6 v1,7 v1,8 v1,9 v1,10 . . .
A priori 0.68 0.52 0.59 0.60 0.87 0.76 0.76 0.87 0.91 0.66 . . .
Ev.v2,11 0.88 0.77 0.74 0.79 0.89 0.89 0.90 0.94 0.90 0.84 . . .
Ev.v2,20 0.81 0.68 0.69 0.73 0.88 0.84 0.85 0.91 0.90 0.78 . . .

v1,11 v1,12 v1,13 v1,14 v1,15 v1,16 v1,17 v1,18 v1,19 v1,20
A priori 0.39 0.91 0.73 0.66 0.81 0.57 0.70 0.65 0.59 0.92
Ev.v2,11 0.71 0.96 0.89 0.94 0.92 0.81 0.86 0.84 0.78 0.94
Ev.v2,20 0.54 0.93 0.84 0.79 0.87 0.79 0.80 0.85 0.73 0.92

His/her transfer probabilities make actor v1,11 an opinion leader in the network. He/she reaches
all other actors and raises their probability of reception significantly. This is entirely different for
actor v1,20. Now, the probabilities of reception are only minimally above a priori probabilities, which
indicates only marginal influence in the network. The conditionals in Table A1 might help to clarify
this issue.

As was already made apparent by the diffusions for institutions, we do not expect a strong
heterogeneity with regard to message transfer. The examples of the two institutions v2,11 and v2,20

confirm this. Nevertheless, in most cases, we can see a clear increase in the probabilities of reception
compared to those of the prior distribution in the net.

To summarize, the entropy-driven approach opens up new possibilities for analysis, which were
not previously available in traditional graph-based methods.

5. Summary and Prospects

This paper considered social affiliation networks. The respective graphs have a bipartite
structure; the node set is bi-modal: e.g., actors and clubs. First, we present the traditional approach
towards analyzing such networks; this is based on the frequencies of mutual affiliations between
actors and joint memberships in clubs. Indirect connections between actors—intermediaries—and
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indirect connections between clubs—an intermediary club might have members from either side—are
formulated mathematically, and their potential for analysis is studied. Then, directed bipartite
structures are depicted mathematically and differentiated from undirected structures.

A new type of probabilistic-conditional modeling is ideally suited to analyzing directional bipartite
networks. Even weighted directional edges can be formulated as probabilistic conditionals. If an actor
or a club is aware of a message or has specific knowledge, then he/she or it transfers it with preset
probabilities. An entropy-driven information processing grounded in artificial intelligence supports
such analyses. Even actors or clubs not in direct contact with the sender of such a message receive
it via intermediaries. The software SPIRIT allows for calculation of respective transfer probabilities.
The power of the new model is demonstrated analyzing a well-known example called “corporate
directors”. The underlying network counts 20 directors and their memberships in 24 institutions.
The new method permits a ranking of actors, as well as clubs with respect to their influential power.
This kind of analysis is applicable to any bipartite network structure.

There are interesting prospects for further research on this issue:

• What are the consequences for the whole network if actors or groups of actors disappear (due to
disease or career change)?

• Might indices like centrality and centralization suitably be defined in entropy-driven analyses of
bipartite social networks?

• Can these analyses also apply to more complex structures like multigraphs or hypergraphs?

We hope that articles on these topics might stimulate our research.

Author Contributions: Conceptualization, W.R. and A.D.; methodology, W.R. and A.D. and F.K. and E.R.;
software, F.K. and E.R.; formal analysis, S.L. and A.D.; visualization, S.L.; writing–original draft preparation, W.R.
and A.D.; writing—review and editing, A.D. and S.L.

Funding: This research received no external funding.

Acknowledgments: This work was supported by FernUniversität in Hagen and Private Hochschule für Wirtschaft
und Technik.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1 contains all conditionals from directors to institutions. Those from institutions to
directors are not shown, but can be deduced from the affiliation matrix in Table A1, in conjunction
with the fact outlined earlier that institutions will send messages to directors, always with a transfer
probability 0.9.
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Table A1. Conditionals of the Directors network from actors to institutions.

V25 = 1 | V11 = 1 [0.76] V215 = 1 | V11 = 1 [0.76] V218 = 1 | V11 = 1 [0.76]
V221 = 1 | V11 = 1 [0.76] V222 = 1 | V11 = 1 [0.76] V25 = 1 | V12 = 1 [0.91]
V29 = 1 | V12 = 1 [0.91] V210 = 1 | V12 = 1 [0.91] V217 = 1 | V12 = 1 [0.91]
V222 = 1 | V12 = 1 [0.91] V21 = 1 | V13 = 1 [0.90] V212 = 1 | V13 = 1 [0.90]
V21 = 1 | V14 = 1 [0.87] V212 = 1 | V14 = 1 [0.87] V221 = 1 | V14 = 1 [0.87]
V29 = 1 | V15 = 1 [0.58] V213 = 1 | V15 = 1 [0.58] V23 = 1 | V16 = 1 [0.70]
V29 = 1 | V16 = 1 [0.70] V221 = 1 | V16 = 1 [0.70] V22 = 1 | V17 = 1 [0.70]
V23 = 1 | V17 = 1 [0.70] V26 = 1 | V17 = 1 [0.70] V29 = 1 | V17 = 1 [0.70]
V221 = 1 | V17 = 1 [0.70] V222 = 1 | V17 = 1 [0.70] V25 = 1 | V18 = 1 [0.61]
V27 = 1 | V18 = 1 [0.61] V210 = 1 | V18 = 1 [0.61] V217 = 1 | V18 = 1 [0.61]
V218 = 1 | V18 = 1 [0.61] V221 = 1 | V18 = 1 [0.61] V223 = 1 | V18 = 1 [0.61]
V211 = 1 | V19 = 1 [0.54] V215 = 1 | V19 = 1 [0.54] V221 = 1 | V19 = 1 [0.54]
V222 = 1 | V19 = 1 [0.54] V22 = 1 | V110 = 1 [0.76] V26 = 1 | V110 = 1 [0.76]
V29 = 1 | V110 = 1 [0.76] V221 = 1 | V110 = 1 [0.76] V222 = 1 | V110 = 1 [0.76]
V223 = 1 | V110 = 1 [0.76] V27 = 1 | V111 = 1 [0.99] V211 = 1 | V111 = 1 [0.99]
V215 = 1 | V111 = 1 [0.99] V217 = 1 | V111 = 1 [0.99] V219 = 1 | V111 = 1 [0.99]
V222 = 1 | V111 = 1 [0.99] V25 = 1 | V112 = 1 [0.57] V27 = 1 | V112 = 1 [0.57]
V211 = 1 | V112 = 1 [0.57] V215 = 1 | V112 = 1 [0.57] V219 = 1 | V112 = 1 [0.57]
V221 = 1 | V112 = 1 [0.57] V222 = 1 | V112 = 1 [0.57] V21 = 1 | V113 = 1 [0.70]
V29 = 1 | V113 = 1 [0.70] V210 = 1 | V113 = 1 [0.70] V213 = 1 | V113 = 1 [0.70]
V214 = 1 | V113 = 1 [0.70] V216 = 1 | V113 = 1 [0.70] V219 = 1 | V113 = 1 [0.70]
V221 = 1 | V113 = 1 [0.70] V222 = 1 | V113 = 1 [0.70] V29 = 1 | V114 = 1 [0.77]
V211 = 1 | V114 = 1 [0.77] V215 = 1 | V114 = 1 [0.77] V216 = 1 | V114 = 1 [0.77]
V221 = 1 | V114 = 1 [0.77] V222 = 1 | V114 = 1 [0.77] V29 = 1 | V115 = 1 [0.65]
V215 = 1 | V115 = 1 [0.65] V222 = 1 | V115 = 1 [0.65] V24 = 1 | V116 = 1 [0.85]
V28 = 1 | V116 = 1 [0.85] V29 = 1 | V116 = 1 [0.85] V217 = 1 | V116 = 1 [0.85]
V218 = 1 | V116 = 1 [0.85] V220 = 1 | V116 = 1 [0.85] V221 = 1 | V116 = 1 [0.85]
V222 = 1 | V116 = 1 [0.85] V224 = 1 | V116 = 1 [0.85] V21 = 1 | V117 = 1 [0.77]
V29 = 1 | V117 = 1 [0.77] V212 = 1 | V117 = 1 [0.77] V24 = 1 | V118 = 1 [0.81]
V28 = 1 | V118 = 1 [0.81] V219 = 1 | V118 = 1 [0.81] V220 = 1 | V118 = 1 [0.81]
V224 = 1 | V118 = 1 [0.81] V24 = 1 | V119 = 1 [0.87] V29 = 1 | V119 = 1 [0.87]
V214 = 1 | V119 = 1 [0.87] V25 = 1 | V120 = 1 [0.56] V211 = 1 | V120 = 1 [0.56]
V219 = 1 | V120 = 1 [0.56] V221 = 1 | V120 = 1 [0.56] V222 = 1 | V120 = 1 [0.56]



v2,1 v2,2 v2,3 v2,4 v2,5 v2,6 v2,7 v2,8 v2,9 v2,10 v2,11 v2,12 v2,13 v2,14 v2,15 v2,16 v2,17 v2,18 v2,19 v2,20 v2,21 v2,22 v2,23 v2,24

v1,1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0
v1,2 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0
v1,3 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
v1,4 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
v1,5 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v1,6 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
v1,7 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
v1,8 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0
v1,9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0
v1,10 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
v1,11 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0 0
v1,12 0 0 0 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0 0
v1,13 1 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 0 0
v1,14 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0
v1,15 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0
v1,16 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1
v1,17 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
v1,18 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1
v1,19 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
v1,20 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 0



Figure A1. Affiliation matrix of the network “corporate directors”.
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