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Abstract: The entropy-weighting method (EWM) and variation coefficient method (VCM) are
two typical diversity-based weighting methods, which are widely used in risk assessment and
decision-making for natural hazards. However, for the attributes with a specific range of values (RV),
the weights calculated by EWM and VCM (abbreviated as WE and WV) may be irrational. To solve
this problem, a new indicator representing the dipartite degree is proposed, which is called the
coefficient of dipartite degree (CDD), and the corresponding weighting method is called the dipartite
coefficient method (DCM). Firstly, based on a large amount of statistical data, a comparison between
the EWM and VCM is carried out. It is found that there is a strong correlation between the weights
calculated by the EWM and VCM (abbreviated as WE and WV); however, in some cases the difference
between WE and WV is big. Especially when the diversity of attributes is high, WE may be much
larger than WV. Then, a comparison of the DCM, EWM and VCM is carried out based on two case
studies. The results indicate that DCM is preferred for determining the weights of the attributes with
a specific RV, and if the values of attributes are large enough, the EWM and VCM are both available.
The EWM is more suitable for distinguishing the alternatives, but prudence is required when the
diversity of an attribute is high. Finally, the applications of the diversity-based weighting method in
natural hazards are discussed.

Keywords: diversity-based weighting method; entropy-weighting method; variation coefficient
method; risk assessment; decision-making; natural hazards

1. Introduction

It is extremely important to conduct risk assessment and make decisions pertaining to natural
hazards in a timely and accurate manner, before the hazards occur. This is of great significance to
reduce the possible loss of life and property caused by hazards. At present, there are many methods
and techniques for multi-attribute risk assessment and decision-making in natural hazards, such as
GIS [1–3], TOPSIS [1,4], cluster algorithm [5], artificial neural network (ANN) [6,7], kernel logistic
regression (KLR) [8,9] and adaptive neuro-fuzzy inference system (ANFIS) [10], etc. When using some
methods and techniques, it is usually necessary to determine the weights of attributes, which affect the
reliability of the assessment and decision result. Many methods have been used in determining the
attribute weights for natural hazards, such as analytic hierarchy process (AHP) [1,2], the preference
ratio method [11], the entropy-weighting method (EWM) [4,5] and the variation coefficient method
(VCM) [3,12], etc. The subjective weighting method represented by AHP determines the attribute
weights based on experts’ knowledge, but is affected by subjective preference. To avoid the influence
of subjective preference on the assessment and decision result, the objective weighting method
represented by the EWM should be adopted.
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The EWM and VCM are two typical diversity-based weighting methods which calculate attribute
weights based on the diversity or dipartite degree of attribute data among the evaluation objects or
alternatives [3–5,12], effectively avoiding the deviation of human factors [13]. The EWM calculates
weights based on the information entropy (IE) of attributes, while the VCM calculates weights based on
the coefficient of variation (CV) of attributes. The IE and CV are the indicators to measure the diversity
or dipartite degree of attributes. In general, a smaller IE or CV of an attribute indicates a higher
diversity or dipartite degree of the attribute, a greater function in risk assessment and decision-making
as well as a larger weight of the attribute. For a larger IE or CV, the opposite trends are observed.
According to the existing literature, the EWM is more frequently used in determining attribute weights
than the VCM. It has been widely used in the risk assessment of various natural hazards, such as
floods [4,5], debris flows [14–16], drought [17,18] and landslides [19,20], etc. The VCM has been used in
the risk assessment of floor water inrush [3,12]. As objective weighting methods, subjective preference
is not involved in the EWM or the VCM. To obtain a more reasonable weight, the two methods are
always used in combination with subjective weighting methods such as AHP [3,20,21]. Sometimes,
the EWM and VCM are even used in combination with each other to determine attribute weights [12].

The EWM and VCM are similar in determining weight because both methods calculate weights
based on the diversity of attributes. However, it must be emphasized that there are still some differences
between the two methods, as the indicators used to measure the diversity of attributes are different. In
this paper, based on a large amount of statistical data, the two methods are compared with each other
to analyze the similarities and differences between them. In this paper, it is found that if an attribute
has a specific range of values (RV), in some cases both the IE and CV cannot accurately represent the
dipartite degree of the attribute, causing the weights calculated by the EWM and VCM (abbreviated as
WE and WV) to be irrational. To solve this problem, a new indicator representing the dipartite degree
is proposed in this paper, which is called the coefficient of dipartite degree (CDD)—the corresponding
weighting method is called the dipartite coefficient method (DCM). A comparison of the DCM, EWM
and VCM is carried out in this paper based on two case studies of drought-risk assessment and
decision-making for a prevention programme for debris flow. Some suggestions for the application of
the three methods in natural hazards are put forward in this paper. This study will provide new insight
into the application of information entropy in risk assessment and decision-making for natural hazards.

2. Materials and Methods

2.1. EWM

The calculation steps of the EWM are described as follows [17,18]:
(1) Establish the evaluation or decision matrix R =

{
rij
}

, where rij is the value of the jth attribute
in the ith object or alternative. Generally, the decision matrix R requires no processing. In some
studies, however, the evaluation or decision matrix R is normalized [3,22–24] and transformed to the
normalized matrix R

′
=
{

r′ij
}

, where r′ij is the normalized value of the jth attribute in the ith object
or alternative.

(2) Normalize the matrix R or R
′
; the calculation equation is written as:

Fij = rij/ ∑ m
i=1rij or Fij = r′ij/ ∑ m

i=1r′ij (1)

where m is the number of objects or alternatives.
(3) Calculate the IE of each attribute by the following equation:

E(j) = −K ∑ m
i=1FijlnFij (2)

where E(j) is the IE of the jth attribute; K = 1/ ln m . In particular, when Fij = 0, let lnFij = 0 [17].
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(4) Calculate the weight of each attribute by the following equation:

wj =
1− E(j)

∑n
j=1(1− E(j))

(3)

where wj is the weight of the jth attribute; n is the number of attributes.

2.2. VCM

The standard deviation can be used directly to measure the diversity of attribute data. However,
in many cases the attributes have different orders of magnitude and dimensions, and their standard
deviations are not comparable, which should be divided by the mean value. Thus, the diversity of the
attributes can be comparable. The CV of each attribute can be calculated by the following equation [3]:

V(j) =
σj

µj
(4)

where V(j) is the CV of the jth attribute; σj is the standard deviation of the jth attribute; µj is the mean
value of the jth attribute.

The weight of each attribute can be calculated by the following equation:

wj =
V(j)

∑n
j=1 V(j)

(5)

2.3. New Indicator Representing the Dipartite Degree

It is found that in some cases, neither the IE nor the CV can accurately represent the dipartite
degree of attribute. When an attribute has a specific RV, the dipartite degree of the attribute is
related to its RV. For example, both 10-point and 100-point scoring systems are used in decision
analysis. Assuming that there are three alternatives, the scores of an attribute under the 10-point
system are 5, 6 and 7; the scores of another attribute under the 100-point system are also 5, 6 and 7.
The IEs and CVs of the two attributes are identical, but the dipartite degrees are obviously different.
Apparently, the attribute under the 10-point system has a higher dipartite degree. Thus, the RV should
be considered when quantifying the dipartite degree of an attribute. Another case is that for three
alternatives under the 100-point system, the scores of an attribute are 5, 6 and 7; the scores of another
attribute are 95, 96 and 97. The CV of one attribute is 16 times of that of the other attribute, while
the 1-IE of one attribute is 257 times of that of the other attribute, but it seems that there is not much
difference between the dipartite degrees of the two attributes.

In view of the above two instances, the following new indicator representing the dipartite degree
is proposed, which is referred to as the coefficient of dipartite degree (CDD) in this paper. It can be
calculated by the following equation:

D(j) =
σj

Lj
(6)

where D(j) is the CDD of the jth attribute; Lj is the size of the RV for the jth attribute. For example,
the size of the RV under the 100-point system is 100. Obviously, when the RV for each attribute is the
same, the standard deviation can be used directly to measure the diversity of the attributes.

In the above two instances, the CDDs are 0.082, 0.0082 and 0.0082, 0.0082, respectively. Obviously,
the CDD can represent the dipartite degree of an attribute more accurately.

The weight of each attribute can be calculated by the following equation:

wj =
D(j)

∑n
j=1 D(j)

(7)
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In this paper, the method to calculate attribute weights based on the CDD is called the dipartite
coefficient method (DCM).

3. Results and Discussions

3.1. Comparison between EWM and VCM

Statistical data in the literature [3,12,22–27] were adopted to calculate the attribute weights using
the EWM or VCM, in order to compare the ability of the two methods to accurately determine weight.
The referenced studies were selected based on the following principles: (1) the EWM or the VCM was
used to calculate attribute weights; (2) raw data were provided. In some studies, the attribute weights
were calculated based on normalized data [3,22–24]. Correspondingly, when using the other method
to calculate weights, normalized data should be adopted.

3.1.1. Similarity

Figure 1 illustrates the statistical relation between WE and WV. A significant linear relationship is
observed between them, and the fitting formula is y = 1.2755x − 0.0393, the R2 of which is 0.964. This
shows a strong correlation between WE and WV. As illustrated in Figure 1, most points are located
close to the 45◦ line (all points on the 45◦ line have the same values of WE and WV), indicating that
these points have almost the same values of WE and WV. However, there are still some points located
far away from the 45◦ line. For these points, WE and WV are quite different. In particular, WE is
always larger than WV when the diversity of the attribute is high. This difference may result in a quite
different decision results between the EWM and VCM.
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Figure 1. The statistical relation between WE and Wv. WE and Wv are calculated using the statistical
data in References [3,12,22–27].

3.1.2. Difference

Figure 2 illustrates the statistical relation between WE and WV. The two types of weights were
calculated using the statistical data in Reference [3,12,22–27]. In this paper, exponential function, linear
regression, logarithmic function and power function were adopted as fitting functions, and the one
with the largest coefficient of determination R2 was selected as the final fitting function. A significant
linear relationship is observed between WE and WV in Figure 2d–f, while a significant power function
relationship is shown in Figure 2a–c as well as Figure 2g,h. The relationships between the trend line
and the 45◦ line in all the subfigures are similar. This is because when the diversity of an attribute
is small, the trend line is located below the 45◦ line, i.e., WE is smaller than WV. As the diversity of
an attribute increases, the trend line is located above the 45◦ line, i.e., WE is larger than WV. This
relationship indicates that the EWM is more sensitive to the diversity of attributes, as the range of WE
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is always larger than that of WV, as shown in Figure 3a. A positive correlation is observed between the
range of WE and the range of WV, and the fitting formula is y = 1.4568x − 0.0011, the R2 of which is
0.9933, as shown in Figure 3b. The range of WE is almost 1.5 times that of WV, while the mean value
of WE is equal to that of WV, indicating that the EWM can better distinguish the weight or diversity
of attributes. Correspondingly, the evaluation or decision result is more distinguishable when using
the EWM.
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Figure 2. The statistical relation between WE and WV. (a–h) show the statistical relations obtained
based on the statistical data in references [3,12,22–27], respectively.
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When the trend line is located above the 45◦ line, as the diversity of an attribute increases,
the difference between WE and WV increases, as shown in Figure 2. Thus, the largest WE may be much
larger than the largest WV. For example, in Figure 2f, the largest WE is 0.730—much larger than the
largest WC at 0.574. Thus, the evaluation or decision result may be seriously affected by the attribute
with the largest WE, which may result in an irrational evaluation or decision result when using the
EWM. This problem will be confirmed in the subsequent case study.
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Figure 3. The statistical relation between the range of WE and the range of WV. (a) Fitting formula;
(b) histogram.

3.2. Comparison of DCM, EWM and VCM

3.2.1. Case 1: Drought-Risk Assessment

The IE and CV may not accurately represent the dipartite degree of an attribute with a specific RV,
as the dipartite degree of the attribute is related to its RV. To confirm this problem, the drought-risk
assessment by Yi et al. [18] was taken as an instance. Observation data [18] and the attribute weights
calculated by the EWM, VCM and DCM are listed in Table 1. The three attributes are (1) monthly
precipitation anomaly percentage (MPAP), (2) monthly runoff anomaly percentage (MRAP) and (3)
monthly soil moisture anomaly percentage (MSMAP), which all have the same RV.

Table 1. Observation data and calculated results.

Attribute MPAP MRAP MSMAP

Observation data

Watershed 1 0 (no drought) −40 (moderate drought) −40 (moderate drought)
Watershed 2 0 (no drought) −55 (severe drought) −45 (moderate drought)
Watershed 3 0 (no drought) −70 (severe drought) −60 (severe drought)
Watershed 4 0 (no drought) −85 (extreme drought) −85 (extreme drought)
Watershed 5 −1 (no drought) −90 (extreme drought) −90 (extreme drought)

RV [−100, 0] [−100, 0] [−100, 0]

Calculated results

EWM
IE 0.000 0.9756 0.9692

WE 0.9477 0.0231 0.0292

VCM
CV −2.0000 −0.2736 −0.3179
WV 0.7718 0.1056 0.1227

DCM
CDD 0.0040 0.1860 0.2035
WD 0.0102 0.4727 0.5171

Table 1 shows that the MPAP data vary in a narrow domain [−1, −0] and are concentrated in
the “no drought” category. The MRAP and MSMAP data vary in a wide interval [−90, −40] and lie
in three grades, namely “moderate drought”, “severe drought” and “extreme drought”. As a result,
the dipartite degree of MPAP is the lowest among the three attributes [18]. However, the IE of MPAP is
zero, and the corresponding weight is 0.9477, which is much larger than that of the other two attributes.
This indicates that the dipartite degree of MPAP is the highest among the three attributes. In this
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case, the weight calculated by the EWM is irrational. Yi et al. [18] believed that the irrational weight
is caused by numerous zero values existing in the observation data. These zero values contribute
nothing to the IE, resulting in a small IE which cannot accurately represent the dipartite degree of the
attribute [18].

To prevent the occurrence of zero values from affecting the weight, some researchers use the
translation method to process the observation data [28–30]:

r′ij = rij + a (8)

where a is the translation value, which is usually set to 1 [29,30]; r′ij is the value after translation.
Taking MPAP in Table 1 as an example, data are translated to avoid zero values. The translation

values are set to −0.1, −1, −10 and −50, as shown in Table 2. The IE, CV and CDD of data after
translation are respectively calculated, and the results are shown in Table 2. It can be seen that after
data translation by −0.1, the IE of MPAP immediately exhibits a significant change, increasing from 0
to 0.5900. However, it is also smaller than the IEs of MRAP and MSMAP in Table 1, which indicates that
the dipartite degree of MPAP is still the highest among the three attributes. After data translation by
−1, the IE of MPAP increases to 0.9697, which is smaller than the IE of MRAP and almost equal to the IE
of MSMAP. However, this IE still cannot represent the real dipartite degree of MPAP. As the translation
value decreases to −50, the IE of MPAP approaches 1, which can represent the real dipartite degree
of MPAP. This indicates that as the values of attributes increase, the influence of the RV on the EWM
decreases. Although zero values are avoided in data translation, the IE is affected by the translation
value, and some IEs may result in an irrational dipartite degree of an attribute if the influence of the RV
on the dipartite degree is not considered when using the EWM. Thus, for the attributes with a specific
RV, if the values of the attributes are quite small, it is not recommended to use the EWM.

Table 2. Translated data and calculated results.

Attribute
(Translation Value) MPAP MPAP

(−0.1)
MPAP
(−1)

MPAP
(−10)

MPAP
(−50)

Translated data

Watershed 1 0 −0.1 −1 −10 −50
Watershed 2 0 −0.1 −1 −10 −50
Watershed 3 0 −0.1 −1 −10 −50
Watershed 4 0 −0.1 −1 −10 −50
Watershed 5 −1 −1.1 −2 −11 −51

Calculated results
IE 0.0000 0.5900 0.9697 0.9995 1.0000
CV −2.0000 −1.3333 −0.3333 −0.0392 −0.0080

CDD 0.0040 0.0040 0.0040 0.0040 0.0040

As shown in Table 1, the absolute value of the CV and the corresponding weight of MPAP are
the largest among the three attributes, which indicates that the weight calculated by the VCM is also
irrational. This is due to the influence of the RV on the dipartite degree, rather than the zero values.
Since the mean value will change after translation, the CV varies with the translation value. As the
translation value decreases, the CV gradually increases to approach 0, and the real dipartite degree of
MPAP gradually emerges, as shown in Table 2. As the values of attributes increase, the mean value
approaches the size of the RV, meaning that the influence of the RV on the VCM decreases. Thus,
for attributes with a specific RV, if the values of the attributes are quite small, it is not recommended to
use the VCM.

As shown in Table 1, the CDD and the corresponding weight of MPAP are the smallest among
the three attributes, indicating that its dipartite degree is extremely low, which is consistent with
the narrow domain [−1, −0] of the MPAP data. Since the standard deviation will not change after
translation, as the translation value decreases, the CDD remains constant (Table 2). This indicates that
the CDD is not affected by zero values and translation values. Thus, the CDD can be used to represent
the dipartite degree of attributes with a specific RV.



Entropy 2019, 21, 269 8 of 13

3.2.2. Case 2: Decision-Making for a Prevention Programme for Debris Flow

In the above case study, it is indicated that as the values of attributes increase, the influence
of the RV on the EWM and VCM decreases. Thus, if the values of attributes are large enough, the
EWM and VCM may be able to determine the weights of attributes with a specific RV. To verify
this, the decision-making for a prevention programme for the debris flow hazard in the Sandaogou
Mining Area of Fugu County, Shaanxi Province, China [31] was taken as an example. Six attributes
for decision-making are “safe reliability”, “environmental harmony”, “economic rationality”, “design
standardization”, “construction complexity” and “later maintainability”. The 100-point system is
used and experts’ opinions are combined to determine the scores of attributes for each proposed
programme [31], as shown in Table 3.

The attribute weights calculated by the EWM, VCM and DCM are listed in Table 4. In this instance,
as shown in Table 3, the scores of all the attributes are equal or higher than 70, indicating that the
VCM will be only slightly affected by the RVs of the attributes. Thus, the values of WV are very close
to the weights calculated by the DCM (abbreviated as WD), as shown in Table 4, resulting in a same
optimum prevention programme (Table 5). This indicates that if the values of attributes are large
enough, the VCM is able to determine the weights of attributes with a specific RV.

The total score of each proposed programme is calculated by the weighted sum model:

Si = ∑ n
j=1
(
wjrij

)
(9)

where Si is the total score of the ith programme; rij is the score of the jth attribute for the ith programme;
wj is the weight of the jth attribute.

Table 3. Scores of attributes for the proposed programmes [31].

Attribute Programme 1 Programme 2 Programme 3 Programme 4

Safe reliability 75 70 94 95
Environmental harmony 84 86 82 85

Economic rationality 88 85 90 80
Design standardization 90 94 95 95

Construction complexity 88 85 90 80
Later maintainability 85 80 90 95

Table 4. Calculated results of the three methods.

Attribute Safe
Reliability

Environmental
Harmony

Economic
Rationality

Design
Standardization

Construction
Complexity

Later
Maintainability

EWM
IE 0.9935 0.9999 0.9993 0.9998 0.9993 0.9985

WE 0.6715 0.0116 0.0728 0.0183 0.0728 0.1530

VCM
CV 0.1335 0.0176 0.0439 0.0220 0.0439 0.0639
WV 0.4110 0.0540 0.1352 0.0679 0.1352 0.1967

DCM
CDD 0.1115 0.0148 0.0377 0.0206 0.0377 0.0559
WD 0.4008 0.0532 0.1354 0.0741 0.1354 0.2010

Table 5. Total scores and rankings of the proposed programmes.

Proposed Programme Programme 1 Programme 2 Programme 3 Programme 4

EWM
Total score 78.801 74.339 92.685 92.701
Ranking 3 4 2 1

VCM
Total score 81.987 78.517 91.551 90.403
Ranking 3 4 1 2

DCM
Total score 82.122 78.703 91.548 90.405
Ranking 3 4 1 2
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The optimum prevention programme is determined based on the ranking of total scores. The total
scores and rankings of the proposed programmes are listed in Table 5. As shown in Table 5,
the optimum prevention programme determined by the VCM is the same as that determined by
the DCM, but different from that determined by the EWM. This depends on the similarities and
differences among the attribute weights calculated by the three methods. The EWM was more sensitive
to the diversity of attributes, so the rang of the total score of this method was higher than that of the
other two methods, as shown in Table 5.

A power function relationship is observed between WE and WD, and the fitting formula is
y = 4.2337x2.0435, the R2 of which is 0.9974, as illustrated in Figure 4. This shows a strong correlation
between WE and WD, which indicates that the values of WE are reasonable. Therefore, if the values
of attributes are large enough, the EWM is also able to determine the weights of the attributes with
a specific RV. Owing to the power function relationship, WE will be much larger than WD when the
diversity of an attribute is high. For example, the WE of “safe reliability” is 0.6715, which is much larger
than the WD of this attribute (0.4008). Compared to the other attributes, the WE of “safe reliability” is
too large. The values of WE for the attributes of “safe reliability” and “later maintainability” account
for over 80% of the total weight, meaning that the decision result almost exclusively depends on these
two attributes. For example, the scores of the two attributes for Programme 4 are the highest among
all programmes (Table 3), and correspondingly Programme 4 achieves the highest total score when
using the EWM, as shown in Table 5.
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Figure 4. The relationship between WE and WD.

For the DCM, “safe reliability” still has the largest weight, followed by “later maintainability”;
however, the values of WD of these two attributes just account for 60% of the total weight, while
the values of WD of “economic rationality” and “construction complexity” account for 27% of the
total weight, which significantly affects the decision result. Owing to the high scores of “economic
rationality” and “construction complexity”, Programme 3 achieves the highest total score when using
the DCM, even though the scores of “safe reliability” and “later maintainability” for Programme 3 are
not the highest among all the programmes.

As shown in Table 3, for “environmental harmony” and “later maintainability”, the scores of
Programme 3 are respectively 3 and 5 points lower than those of Programme 4, but for “economic
rationality” and “later maintainability”, the scores of Programme 3 are both 10 points higher than
those of Programme 4. For other attributes, there is no significant difference in the scores. In terms of
the scores of attributes, it seems that Programme 3 is preferred, which is consistent with the decision
result of the DCM rather than that of the EWM. This confirms the problem of the EWM mentioned
in Section 3.1.2. Compared to the VCM and DCM, the EWM is more suitable for distinguishing
alternatives due to its sensitivity to the diversity of attributes. However, when the diversity of an
attribute is too high, its decision result may be seriously affected by this attribute, which may result in
an irrational decision.
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3.3. Discussions

As traditional diversity-based weighting methods, the EWM and VCM may be not able to
determine the weights of attributes with a specific RV. In this study, a novel diversity-based weighting
method called the DCM is proposed to solve this problem. A comparison of the DCM, EWM and
VCM is carried out in this paper based on two case studies. The comparison results show that the
DCM is preferred for determining the weights of attributes with a specific RV; however, if the values of
attributes are large enough, the EWM and VCM are both acceptable. Compared with other weighting
methods, the diversity-based weighting methods are more sensitive to the diversity of attributes,
which leads to a higher dipartite degree of the decision or evaluation result. In particular, the EWM is
more suitable for distinguishing the alternatives than the VCM and DCM due to its high sensitivity to
the diversity of attributes. As shown in Table 5, the range of the total score is the highest when using
the EWM. However, when the diversity of an attribute is too high, the decision result may be seriously
affected by this attribute when using the EWM, which may result in an irrational decision. Therefore,
before applying a diversity-based weighting method, we should check whether the attributes have
a specific RV as well as check the diversity of attributes, so as to select an appropriate method for
accurate weighting results.

When using the diversity-based weighting method, the weight is calculated based on the
diversity or dipartite degree of an attribute. For decision-making, this kind of method is suitable for
distinguishing alternatives—especially the EWM. For natural hazard risk assessment, an important
assumption is made, which is that the dipartite degree of an attribute can represent its importance
correctly [18]. However, it was found by Yi et al. [18] that when the observation data are concentrated
in the worst category, the dipartite degree of an attribute cannot represent its importance correctly
in drought risk assessment. The dipartite degree of an attribute just depends on the statistical data
of the attribute, but ignores the relationship between the natural hazard risk and its associated
attributes. The formation mechanism of a natural hazard is not considered in the diversity-based
weighting method.

Taking debris flow risk assessment as an example, the formation of debris flow is closely related
to the condition of material sources, rainfall and topography. An intense rainfall is usually the trigger
of debris flow [32,33]. It is obvious that rainfall should be an important attribute in debris flow risk
assessment [34]. If the assessed gullies are in the same geographical area, such as a village or a county,
there may be little difference in rainfall among the gullies, which indicates that the dipartite degree of
this attribute is low. Thus, the weight of rainfall calculated by the diversity-based weighting method
will be small. For example, the weight of rainfall calculated by Wang and Sun [15] using the EWM
was just 0.051, and that calculated by Wang and Yin [16] using the same method was 0.081; both
weights were the smallest among all the attributes. In these cases, the dipartite degree of rainfall
cannot represent its importance correctly. Therefore, in natural hazard risk assessment, prudence is
required when using the dipartite degree of an attribute to represent its importance. The subjective
weighting method determines attribute weights based on experts’ knowledge, which can, to some
extent, represent the importance of attributes. It is recommended to use the diversity-based weighting
method in combination with a subjective weighting method for risk assessment in natural hazards.

As weighting methods, the EWM, VCM and DCM need to be combined with multi-attribute
decision-making or evaluation methods such as the weighted sum model [3], TOPSIS [4] or the cluster
algorithm [5] for risk assessment and decision-making in natural hazards. Diversity-based weighting
methods do not involve data distribution and correlation between attributes in calculating weights,
and do not need to check the independence of each attribute. If the independence of attributes is poor,
which will affect the decision or evaluation results, the EWM and VCM can be used combined with
principal component analysis (PCA) [35], factor analysis [36] or other similar methods.
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4. Conclusions

The common diversity-based weighting methods (the EWM and the VCM) for multi-attribute
evaluation and decision-making are compared with each other, and a new indicator (CDD) representing
the dipartite degree is proposed in this paper. The following conclusions are drawn:

(1) Significant linear and power function relationships are observed between WE and WV,
which indicates that there is a strong correlation between them. WE and WV are usually close to
each other, but in some cases the difference between them is large. Especially when the diversity
of an attribute is high, WE may be much larger than WV, which may result in an irrational decision
when using the EWM. Compared to the VCM, the EWM is more sensitive to the diversity of
attributes, as the range of WE is always larger than that of WV.

(2) The IE and CV may not accurately represent the dipartite degree of an attribute with a specific RV,
as the dipartite degree of an attribute is related to its RV. The DCM is preferred for determining
the weights of attributes with a specific RV, as the CDD can represent the dipartite degree of this
kind of attribute correctly.

(3) If the values of attributes are large enough, the EWM and VCM are both able to determine the
weights of attributes with a specific RV. Compared to the VCM and DCM, the EWM is more
suitable for distinguishing the alternatives due to its sensitivity to the diversity of attributes.
However, when the diversity of an attribute is too high, its decision result may be seriously
affected by this attribute, which may lead to an irrational decision result.

(4) In natural hazards risk assessment, the dipartite degree of an attribute may not accurately
represent its importance; thus, prudence is required when using the dipartite degree of an
attribute to represent its importance. It is recommended to use the diversity-based weighting
method in combination with a subjective weighting method for risk assessment in natural hazards.
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