
entropy

Article

Implementing a Chaotic Cryptosystem by Performing
Parallel Computing on Embedded Systems
with Multiprocessors

Abraham Flores-Vergara 1,2, Everardo Inzunza-González 1 , Enrique Efren García-Guerrero 1 ,
Oscar Roberto López-Bonilla 1 , Eduardo Rodríguez-Orozco 2,
Juan Miguel Hernández-Ontiveros 3, José Ricardo Cárdenas-Valdez 4 and
Esteban Tlelo-Cuautle 5,*

1 UABC, Engineering, Architecture and Design Faculty, 22860 Ensenada, Mexico; aflores@ite.edu.mx (A.F.-V.);
einzunza@uabc.edu.mx (E.I.-G.); eegarcia@uabc.edu.mx (E.E.G.-G.); olopez@uabc.edu.mx (O.R.L.-B.)

2 ITE, Department of Electrical and Electronic Engineering, Ensenada Institute of Technology,
22780 Ensenada, Mexico; erodriguez@ite.edu.mx

3 CBTIS, Industrial Technological and Services Baccalaureate Center, 82017 Mazatlan, Mexico;
juan_miguel@uabc.edu.mx

4 ITT, Department of Electrical and Electronic Engineering, Tijuana Institute of Technology,
22435 Tijuana, Mexico; jose.cardenas@tectijuana.edu.mx

5 INAOE, Department of Electronics, 72840 Puebla, Mexico
* Correspondence: etlelo@inaoep.mx; Tel.: +52-222-2470-517

Received: 19 February 2019; Accepted: 5 March 2019; Published: 9 March 2019
����������
�������

Abstract: Profiling and parallel computing techniques in a cluster of six embedded systems
with multiprocessors are introduced herein to implement a chaotic cryptosystem for digital color
images. The proposed encryption method is based on stream encryption using a pseudo-random
number generator with high-precision arithmetic and data processing in parallel with collective
communication. The profiling and parallel computing techniques allow discovery of the optimal
number of processors that are necessary to improve the efficiency of the cryptosystem. That is,
the processing speed improves the time for generating chaotic sequences and execution of the
encryption algorithm. In addition, the high numerical precision reduces the digital degradation
in a chaotic system and increases the security levels of the cryptosystem. The security analysis
confirms that the proposed cryptosystem is secure and robust against different attacks that have been
widely reported in the literature. Accordingly, we highlight that the proposed encryption method is
potentially feasible to be implemented in practical applications, such as modern telecommunication
devices employing multiprocessors, e.g., smart phones, tablets, and in any embedded system with
multi-core hardware.

Keywords: cryptosystem; chaotic cryptography; embedded system; parallel computing; PRNG

1. Introduction

Chaos theory is widely used in the encryption of information because of its particular
properties [1–3], such as the high sensitivity to initial conditions, ergodicity, randomness, and topology
complexity, among others [4–7]. For instance, numerous works related to the encryption of information
using methods with chaotic and hyperchaotic models have been reported in [8–19]. On the one hand,
chaotic maps have been widely used for the encryption of digital images [20–26], because they require
generally few arithmetic operations compared to continuous-time chaotic systems. Additionally,
other methods of image encryption are reported in the literature, such as those based on the substitution

Entropy 2019, 21, 268; doi:10.3390/e21030268 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-7994-9774
https://orcid.org/0000-0001-5052-6850
https://orcid.org/0000-0003-4635-2813
https://orcid.org/0000-0002-5437-8215
https://orcid.org/0000-0001-7187-4686
http://dx.doi.org/10.3390/e21030268
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/21/3/268?type=check_update&version=2

Entropy 2019, 21, 268 2 of 28

box (S-box) or digital watermarking using algorithms with Hall property, which use the Arnold
transform to scramble the data and characterized by having low computational load [27,28].

On the other hand, pseudo-random number generators (PRNGs) [4,29–40], and truly random
number generators (TRNGs) [41–45] are important modules in the development of cryptosystems to
be robust against different types of security attacks. Some of these PRNGs and TRNGs have been
implemented in personal computers and in embedded systems [29–31,46–53].

A large number of methods that generate sequences with PRNG/TRNG and algorithms to encrypt
information for the purpose of transmitting or storing information securely has been reported in the
literature [1–14,16–18,20–26,29–53]. Most of these works use double precision in their arithmetic
floating-point operations according to the IEEE 754 standard [54]. However, one of the important
limitations when implementing chaotic systems in digital devices is related to their numerical
precision [55]. In this manner, due to the numerical rounding and in relation to the complexity of the
chaotic map dynamics, after a certain number of iterations the generator may present a certain degree of
periodicity or degradation of digital chaos [56–58]. This effect limits digital chaotic encryption for large
amounts of information, such as high-resolution images (greater than 1 megapixel), image sequence,
audio, and video. Therefore, many of the proposed digital image encryption schemes are designed
using chaotic maps with permutation-diffusion architecture. Although most of these schemes report
good statistical properties, their speed of execution is slow due to the inherent dependence of the data of
the proposed schemes. Some of these schemes are designed using complex chaotic systems that require
significant computational resources to obtain the key streams for the information encryption [59].

Moreover, technology is constantly evolving with significant advances in the new generation of
embedded systems with greater computing power including multi-core processors, for that reason,
new threats and vulnerabilities that compromise security information in telecommunications systems
are being devised [60]. Recently, several attacks and cryptanalysis to cryptosystems have been
reported in the literature [61–66] , therefore, it is important to continue with the development of
new cryptosystems with greater complexity and efficiency, that is, to increase their security, such as
key space, entropy, resistance against differential and statistical attacks, among others. Thus, the great
technological advances and new emerging technologies have allowed an exponential increase in
practical applications for the Internet of Things (IoT), for which it is expected that by the year 2020,
more than 50,000 million devices, machines, and systems with digital communication technology
through the use of embedded systems will be connected to the Internet [67–69]. By interconnecting
machines and systems with the Internet, IoT devices can be connected wirelessly or directly via
Ethernet cable through a network switch or access point [70]. However, these services and multiple
electronic applications that carry out the exchange of confidential information through public
telecommunications channels, such as the Internet, and that use electronic devices or embedded
systems with digital technology [71], put privacy and confidentiality at risk of the information that
is processed. Therefore, the cryptographic security in these systems is an integral and indivisible
part of this evolutionary process, thus the necessity to constantly develop new methods, systems,
and techniques to protect confidential information and to guarantee a greater cryptographic security
in modern telecommunications systems [13,72,73].

Meanwhile, parallel computing is a form of computation in which many instructions are executed
simultaneously [74]. It operates on the principle that large problems can often be divided into
smaller ones, which are then solved simultaneously (parallel). There are different types of parallel
computing: bit-level parallelism, instruction level parallelism, data parallelism, and task parallelism.
Parallelism has been employed for many years, especially in high-performance computing; however,
interest in this field has grown lately due to the physical hardware that limits the increase of frequency
of CPUs [41,59,74,75]. In addition, the consumption of energy and consequently the generation of
heat from computers constitutes a focal point in the technological development of recent years [75,76].
Therefore, parallel computing has become a dominant paradigm in computer architecture, mainly in
the form of multi-core processors [76].

Entropy 2019, 21, 268 3 of 28

From our knowledge and based on the reviewed literature, few works report the use of parallel
computing for the encryption of information, see for example [15,41,44,59,77–82], but nevertheless,
there are not any reported works in which profiling techniques and parallel computation are used for
the encryption of high-resolution digital images using PRNGs on a cluster of embedded systems with
multiprocessors. Except the work [41] reports a parallelizable chaos-based TRNG implemented on
mobile device, but is not reported any implementation of parallel encryption on embedded system.
Therefore, this paper proposes to use a different hardware from that commonly reported in the
literature. The experiments are performed in a cluster with six System on Chip (SoC) Raspberry
Pi 3, which allows us to physically integrate up to 24 cores, to run as many feasible processes
that use parallel computing, and thus improve the efficiency of the new generation of embedded
cryptosystems. Additionally, the method reported by [73] is used for the encryption of information
using multiple-precision arithmetic [83]. The Python programming language [84] is used to process
several significant decimals higher than that reported in the works [1–14,16–18,20–26,29–51] and which
are based on the IEEE 754 standard [54], typically used in computers and FPGAs. It is important
to emphasize that Python is a scientific programming language [84] with the following advantages:
open-source, free license, and multiplatform. Under this perspective, the main contribution of this
paper is that through the cluster integrated by six embedded systems, the feasible processes of
parallelization are executed to improve the efficiency of the proposed cryptosystem by executing
high-precision numerical operations under the scheme described by [73]. Additionally, the proposed
cryptosystem must comply with the basic requirements of any chaos-based cryptographic system [85],
such as the NIST SP 800-22 statistical tests designed for cryptographic modules [86,87] and other
well-known attacks in the literature, such as Number of Pixels Change Rate (NPCR) and Unified
Average Changing Intensity (UACI) differential attacks [88], entropy [89–91], key space [92,93],
which are commonly applied to the cryptosystems.

The rest of this paper is organized as follows: Section 2 describes the proposed PRNG and dynamic
keys generator. Section 3 describes the implementation of the proposed high-precision cryptosystem
using parallel computing and profiling. Section 4 provides a security analysis according to [85–88] and
performance analysis according to Amdahl’s law [94]. The last section concludes this paper with a
summary of the results achieved.

2. Proposed PRNG and Dynamic Keys Generator

The PRNG and dynamic keys generator that is implemented in this paper is shown in
Figure 1, both corresponds to the method reported by [73], which use multiple precision. In this
work we introduce a method to encrypt/decrypt color images applying profiling techniques and
parallel computing, with the aim to improve the cryptosystem efficiency to be implemented on
embedded systems with multi-cores that have limited computational resources. As an example
the Tinkerbell map [73,95,96] is defined by (1), which remains in a chaotic regime for the ranges
of its control parameters 0.84 < a ≤ 0.9, −0.61 < b < −0.59, 1.9 < c ≤ 2 and 0.45 < d ≤ 0.5,
where −1.25 ≤ xn ≤ 0.55 and −1.6 < yn ≤ 0.55, and initial conditions x0 and y0 that correspond to
points that are within the space of the chaotic attractor, such as x0 = −0.72 e y0 = −0.64 [96].

xn+1 = x2
n − y2

n + axn + byn,

yn+1 = 2xnyn + cxn + dyn. (1)

The generated pseudo-random sequences consider two attributes: (i) the number of significant
decimals is predefined to establish their level of precision np, for example np = 99 and (ii) each
sequence is generated with different initial conditions and recurrent points of its attractor. For example,
taking as initial conditions x0 = −0.72, y0 = −0.64 and iterating k = 2500 times (one can choose a
number greater than 2500), if (1) considers a numerical precision np = 99, one gets [73]:

Entropy 2019, 21, 268 4 of 28

x1 = −0.5044175778616422926572575875229294547046448096553074629030668113991951. . .
y1 = −0.3460286548462436652145266889485621403916728515023067284157645131661259. . .

From these values, a new level of precision and npx0 truncation of significant decimals for
the new initial x′0 and y′0 are predefined. For example, if npx0= 50 significant decimals, then is obtained:

x′0 = −0.50441757786164229265725758752292945470464480965530
y′0 = −0.34602865484624366521452668894856214039167285150230.

SoC
Raspberry Pi 3

Control
parameters

Initial
conditions

Chaotic Map Converter to
binary sequence

Cipher series
adjustment

Chaotic series
adjustment

D

High precision chaos generator

Pseudo-random series generator

B

S{x
0
, y

0
, …, z

0
}

X

Figure 1. Pseudo-random number generator (PRNG) implemented in a SoC Raspberry Pi 3,
taken from [73].

This procedure guarantees that the new values of initial conditions are within the space of the
chaotic attractor and are valid in the long term for new initial conditions, that is, new dynamic keys are
generated for the encryption of large amounts of information. When generating numerical values for
the initial conditions very different from each other, they produce chaotic series with different dynamic
behaviors without losing their properties, which makes them suitable for use in the encryption of
images regardless of their level of resolution. Figure 2 shows an example of the chaotic trajectories of
xn+1. It is observed that due to the sensitivity to the initial conditions presented by the chaotic systems,
different trajectories are generated from the first iteration.

x n
+
1

k iterations

x0=−0.72
x0=−0.1544

Figure 2. High-precision chaotic trajectories with pseudo-random initial conditions.

Proposed Pseudo-Random Bit Generator (PRBG)

The proposed PRBG shown in Figure 3, is based on the high-precision chaos generator (HPCG)
described in [73]. In this paper, we show the use of parallel computing techniques for the simultaneous
generation of bit sequences, which allows the cryptosystem to be more efficient when using its multiple
cores. In relation to Figure 3, each pseudo-random sequence of bits is obtained by converting each
number of the chaotic series generated into a binary equivalent through the [Chaotic series adjustment]
and [Converter to binary sequence] blocks. The binary equivalent that results in each iteration is
concatenated each time and stored in a resulting bit string identified with letter B. In this way,
a pseudo-random B string of bits is generated for each equation contained in the chaotic map.

Entropy 2019, 21, 268 5 of 28

Element with
 bitsnb=log2(1×10nd)+1Elements with np high

precision

{xn}

Converter to binary
sequence{d n }

B={b0 , b1 , ... ,bk−1}
Chaotic series adjustment

Integer number
with
digits

nd =np+1

d n=xn(1×10np)

X D

bn

Figure 3. Block diagram of the pseudo-random bit series generator using HPCG, taken from [73].

3. Proposed Parallel Encryption Method

The proposed system for encryption and decryption of digital color images is shown in Figure 4.
It is based on the method of stream encryption with Symmetric key [97], and in the method for
generation of pseudo-random numbers using multiple-precision arithmetic reported in [73]. In relation
to Figure 4a), the Original image OI (Object image) goes through a data distribution stage that is illustrated
in the [Data scattering] block and that corresponds to divide the image into n blocks (sub-images),
OI1 = {o11, o12, ..., o1k}, OI2 = {o21, o22, ..., o2k},..., OIn = {on1, on2, ..., onk}, where onk corresponds to
k-pixel of the plain image (OIn). Each of these sub-images are sent to each n process of the embedded
system cluster, where they are encrypted simultaneously (parallel), as shown in Figure 4a). In Figure 4b)
each n process encrypts the onk pixels with the corresponding byte to the associated encryption
series B1 = {b11, b12, ..., b1k}, B2 = {b21, b22, ..., b2k},..., Bn = {bn1, bn2, ..., bnk}, through the simple
logical operation XOR. Subsequently, each of the sub-cryptograms achieved C1 = {c11, c12, ..., c1k},
C2 = {c21, c22, ..., c2k},..., Cn = {cn1, cn2, ..., cnk}, are sent to the [Data Gathering] stage, where all the
encrypted information is integrated to obtain the Full cryptogram C. To execute the scheme of the
Figure 4a) for data processing in parallel with collective communication, it is proposed to use the
Message Passing Interface (MPI) library reported in [98,99] commonly used in computers, nevertheless,
in this paper, it is implemented in a cluster of six embedded systems with multi-core processors,
which is described in Section 3.5. When using the logical operation XOR as an encryption operator and
due to its duality property, the same method can be used to encrypt and decrypt digital images [73].

XOR

Dynamic key
generator

High Precision
Chaos Generator

Chaotic series
adjustment

x, y

Elements of the
sub-image (OI)

Sub-image1

Sub-image2

 Sub-image3

Sub-image n

HPCG

XOR

n process

Sub-
image

n

Sub-
cryptogram n

1 process

2 process

3 process

n process

Sub-cryptogram 1

Cryptogram

Symmetric key

Object image

Master Key (MK)

Master
Key

n

Data
scattering

MK
1

Data
Gathering

Full cryptogram

Sub-cryptogram 3

Sub-cryptogram n Original
image

OI
n
={o

n1
, o

n2
, …, o

nk
}

B
n
={b

n1
, b

n2
, …, b

nk
}

C
n
={c

n1
, c

n2
, …, c

nk
}

b) Block diagram of n process used in the proposed parallel cryptosystem.

a) Block diagram of the proposed cryptosystem by using n process in parallel.

Key stream

MK
2

MK
3

MK
n

Full
cryptogram

Figure 4. Block diagram of image encryption method using parallel computing.

3.1. Profiling Algorithms Using Python

A profiler is a program that analyzes and collects information about the behavior of another
object program during its execution. The type of information that is analyzed includes the processing
times of the program’s subroutines and the number of times each subroutine is called. The above,
with the purpose of allowing the developer to optimize the program code to improve the speed in the
execution of the complete program, adjusting the code design implementing adjustment techniques

Entropy 2019, 21, 268 6 of 28

and, if possible, the implementation of parallel processing techniques. The profiling tool used in
this work is the “line-by-line” profiling tool known as Line_Profiler for Python. Line_Profiler is
supported by the tag @profile to identify the function of the program to be profiled and perform the
corresponding analysis. The performance of the “Encrypter” with the profiling tool is done by means
of the command: kernprof -l -v Encrypter.py, run from the GNU Linux console. The -v parameter
of the kernprof command allows the user to observe the profiling analysis report as an immediate
response to the execution of the previous command in the command terminal. Otherwise, the profiling
tool stores the corresponding analysis information in a binary file with extension .lprof with the same
name as the Python code file. The complete report can be observed executing the report file through:
python -m line_ profiler Encrypter.py.lprof . The following report is an example that corresponds to
the profiling analysis of the encrypt() function, considering the “landscape.png” file as the object
image. The image to be encrypted is a high-resolution color image in 32-bit format with 2560× 1600
pixels, that is, each pixel of the image is composed of 4 elements of 8 bit giving a total of 16,384,000
bytes to be encrypted.

Wrote profile results to Encrypter.py.lprof
Timer unit: 3.79968e-07 s

Total time: 862.992 s
File: Encrypter.py
Function: encrypt at line 5

Line # Hits Time Per Hit % Time Line Contents
==
4 @profile
5 def encrypt():
6 1 146078 146078.0 0.0 foto = Image.open(’land...
7 1 761832 761832.0 0.0 foto = np.array(foto)
8 1 63 63.0 0.0 ren = foto.shape[0]
9 1 7 7.0 0.0 col = foto.shape[1]
10 1 6 6.0 0.0 cap = foto.shape[2]
11 1 8 8.0 0.0 vector=ren*col*cap
12 1 97 97.0 0.0 foto=np.reshape(foto,(v...
13 1 98 98.0 0.0 a= Decimal(’0.9’)
14 1 11 11.0 0.0 b= Decimal(’-0.6013’)
15 1 9 9.0 0.0 c= Decimal(’2.0’)
16 1 9 9.0 0.0 d= Decimal(’0.5’)
17 1 8 8.0 0.0 x0= Decimal(’-0.72’)
18 1 8 8.0 0.0 y0= Decimal(’-0.64’)
19 1 5 5.0 0.0 ret=0
20 1 4 4.0 0.0 npx0=8
21 1 4 4.0 0.0 np_prec=99
22 1 15 15.0 0.0 getcontext().prec=npx0
23 2 12 6.0 0.0 while (ret<1):
24 1 69 69.0 0.0 x1 = Decimal((x0*x0)...
25 1 14 14.0 0.0 y1 = Decimal((2*x0*y...
26 1 5 5.0 0.0 x0=x1
27 1 6 6.0 0.0 y0=y1
28 1 6 6.0 0.0 ret=ret+1
29 1 6 6.0 0.0 getcontext().prec=np_prec
30 1 6 6.0 0.0 j=0
31 16384001 78137141 4.8 3.4 while(j<vector):
32 16384000 439917303 26.9 19.4 x1 = Decimal((x0*...
33 16384000 351247125 21.4 15.5 y1 = Decimal((2*x...
34 16384000 87992069 5.4 3.9 x0=x1
35 16384000 79512478 4.9 3.5 y0=y1
36 16384000 300653689 18.4 13.2 x1=x1*Decimal(10**...
37 16384000 136258513 8.3 6.0 x1=Decimal.to_inte...
38 16384000 91137986 5.6 4.0 if x1<0:
39 10906047 83757897 7.7 3.7 x1=x1*(-1)
40 16384000 185584508 11.3 8.2 s1=int(x1%255)
41 16384000 337097363 20.6 14.8 foto[j]= foto[j]^s1
42 16384000 93981721 5.7 4.1 j=j+1
43 1 77 77.0 0.0 foto=np.reshape(foto,(ren,c...
44 1 456 456.0 0.0 foto=Image.fromarray(foto)
45 1 5036187 5036187.0 0.2 foto.save(’output.png’)

Entropy 2019, 21, 268 7 of 28

The report initially displays the value of 3.79968e−07 s as timer unit, and it is observed that the total
execution time of the encrypt() function is 862.992 s. Additionally, the report indicates the execution
time of each instruction per program code line. From the results reported in [73], it is observed that the
series for the state yn+1 also present high levels of randomness, so that they are potentially viable to
be used as a cipher series. In this paper, the proposed method also includes the chaotic series yn+1,
and it is estimated that the encrypt() function reduces the total time, as T(1) = 639 s, corresponding
to the iterations of the chaotic map when n = 1 process. Therefore, with the information obtained
through the profiling tool, one can identify the instructions that are executed a greater number of
times, thus requiring a greater amount of time. This allows identification of in a specific way, where to
implement code optimization adjustment techniques, or to divide the main program in one part with
sequential processing and another parallelizable.

3.2. Parameters of Parallel Processing

Profiling analysis can determine that the function can be divided into a sequential part and
a parallelizable part. There are a series of parameters to evaluate the parallel processing as the
performance improvement factor or “speed-up” and the efficiency of the performance. If O(n) is
defined as the number of elementary operations performed by a system with n process, and T(n)
as the execution time in unit steps of time, then T(n) < O(n), if n process perform more than one
operation per unit of time. The performance improvement factor S(n) for n process is defined by (2),
and the efficiency of the E(n) system, for a system with n processes, is determined by (3).

S(n) =
T(1)
T(n)

, (2)

E(n) =
S(n)

n
=

T(1)
n · T(n) . (3)

The lowest system’s efficiency E(n) → 0 occurs when all instructions in the object program
are executed sequentially in a single processor system. The maximum system efficiency E(n) = 1
corresponds to the case in which all the processors of the system are being completely used during the
execution of the program. Another parameter for the evaluation of systems with parallel processing is
scalability. It is said that a system is scalable for a certain number of n process, if the efficiency of the
system E(n) is constant and at all times greater than a factor of 0.5 [100]. In practice, scalable systems
can be divided into several n process from which the efficiency of the system begins to decrease.
In the analyzed program from the profiling report, of the total instructions, the 99.7% is potentially
parallelizable (lines 13 to 42 of profiling report) and 0.3% is executed sequentially. Therefore,
according to the analysis of the profiling report, if T(1) = 639 s the values of S(n) and E(n) for
n = 2 are:

T(1) = 639s = 99.7% + 0.3% = 637.08s + 1.92s,

S(2) = T(1)/T(2) = 639s/(318.54s + 1.92s) = 639s/320.46s = 1.994,

E(2) = S(2)/2 = T(1)/2 ∗ T(2) = 1.9940/2 = 0.9970.

A first approximation to the n process among which the analyzed program can be established
from Equation (3), that is,

E(n) = 50%, i.e. 0.5,

Entropy 2019, 21, 268 8 of 28

if T(1) = 639 s, and is considered to be 100%,

T(1) = 100 = α + βp(n) = 0.3 + 99.7,

T(n) = α + βp(n) = α + (βp(1)/n) = α + (100− α)/n,

then,

0.5 = 100/(n(α + (100− α)/n)),

0.5 = 100/((n− 1)α + 100),

n− 1 = ((100/0.5)− 100)/α,

n = 100/α + 1 = 334.33,

where, α is the sequential time, and βp is the parallel time. Figure 5 shows the graph of the efficiency
values of the system E(n) of the “Encrypter.py” program. It is observed that for n > 334 the efficiency
of the system is less than 0.5.

E
(n

)

n

Cryptosystem's efficiency

E (334)=0.5002

Figure 5. Characteristic curve of cryptosystem’s efficiency E(n) with α = 0.3%.

In relation to [100], the performance factor can be classified into three different types: (i) based on
whether the load or problem size is fixed and what is intended to be reduced is the problem execution
time, (ii) on the basis that there is a certain time to execute the problem or that it is intended to increase
the size of the machine and, (iii) that applies to scalable problems where the main limitation in the
execution process is the system memory. In this paper, a problem in which the computational load or
problem size is fixed, and is intended to reduce the execution time of encryption process. Therefore, it is
necessary to perform an analysis of the performance factor based on Amdahl’s law [94]. Amdahl’s law
considers problems where the objective is to distribute the fixed load in more process to decrease the
total execution time. In this case, the Amdahl performance improvement factor (Sn) described by
(4), is determined by the percentage of the sequential time of the algorithm which is identified as α.
The percentage of parallel time is identified with βp = 1− α,

Sn =
n

1 + (n− 1)α
. (4)

Entropy 2019, 21, 268 9 of 28

On the proposed cryptosystem, the percentage of sequential time α = 0.3% implies that Sn

approaches asymptotically at 1/α as the number of n process increases. The graph of Figure 6
shows the characteristic curve of Amdahl performance factor considering a sequential part α of 0.3%
compared to the characteristic curve when the parallelizable part is zero or α = 0%. Additionally,
and for comparison purposes, the curves are shown for different values of α where it is observed that
as the percentage of sequential time increases, the “speed-up” value of Amdahl performance factor
begins to decline to a great extent.

S
n

n

Amdahl performance factor

α=0

α=0.3

α=1

α=5
α=10

Figure 6. Curves of performance factor Sn for different α values compared to the Sn curve for the
proposed cryptosystem with α = 0.3%.

In the analysis performed it is considered that the process is under ideal conditions of
computational resource of software and hardware, that is to say, at the time of executing the algorithm
each time, considering different numbers of process, each process works under the same conditions
and with the same computational resources. In the realization, another factor that is considered
in the study of parallel processing is the communication between processors. In the cryptosystem,
the computational load or size of the problem corresponds to the image that will be encrypted
or decrypted. Considering that when carrying out the parallelization process the computational
load is evenly distributed among the total number of processors executing the algorithm, then,
there is a distribution time for the image in equal parts to be encrypted and a collection time of
the sub-cryptograms to obtain the full cryptogram. Due to this, the total time in the execution of the
algorithm is affected by the distribution and collection of the data load. Presently, there are tools that
perform collective communication optimizing the distribution and load collection times among the
processors, such as the MPI tool for Python, which provides collective communication functions that
optimize the distribution and data collection times and information between process [98,99].

3.3. Implementing the MPI Library Using Collective Communication in the Algorithm

The code fragment shown in Algorithm 1, describes the setup of the system’s processors involved
in the cryptosystem. In addition to a part of the sequential processing of the algorithm α, this part
of the sequential processing is responsible for reading from the file of original image to encrypt or
decrypt, identified with the name of “image.png” and the re-arrangement of the data in an equitable
manner for distribution through collective communication.

Entropy 2019, 21, 268 10 of 28

Algorithm 1 First sequential time (α)

1: from mpi4py import MPI
2: import numpy as np
3: from PIL import Image
4: from decimal import *
5: comm=MPI.COMM_WORLD
6: size=comm.Get_size() # Number of processors
7: rank=comm.Get_rank() # Processor ID
8: if rank == 0:
9: imagen=Image.open(’image.png’) # Read original image

10: imagen=np.array(imagen) # Convert the object image into an array
11: ren=imagen.shape[0] # Size of the array (rows)
12: col=imagen.shape[1] # Size of the array (cols)
13: cap=imagen.shape[2]
14: n_ren=np.int(ren/size) # Resize the array
15: foto=np.reshape(imagen,(size,n_ren,col,cap)) # for scattering data

The instruction “size = comm.Get_size()” identifies the total number of processors included in the
cryptosystem, and the instruction “rank = comm.Get_rank()”, identifies each processor. The reading
of original image is done through the “Image.open()” function provided by the image processing
tool for Python PIL. The “Image.open()” function returns an object of the “Image” class, therefore,
the object is converted to an “array” type to obtain a matrix for processing with the “numpy” tool.
The aforementioned instructions are executed by a first processor which is identified as rank = 0
and performs the functions of the main processor (coordinator). In other words, the main processor
is responsible for reading the data to be processed, for the equitable data distribution between the
different processors, and for collecting the information to provide the final result, i.e., full cryptogram.
Once the plain image is read and distributed, each processor (including the main processor) executes
the encryption method described in Figure 4b). In the [Symmetric key] block, the values corresponding
to the encryption master key are set. In the [Dynamic key generator] block, the initial conditions for
each processor are generated independently this, in order that each processor count with a different
encryption key. In section [Data scattering], the scatter() function is used to optimize the time in
data distribution. Additionally, once the equitable distribution is made, each processor has the
corresponding sub-image to be encrypted, therefore, for the purpose of optimizing the cryptographic
method, the data is re-arranged in a one-dimensional array. Subsequently, the instructions for the blocks
[HPCG], [Chaotic series adjustment] and [XOR] are executed. Once the cryptographic process has been
performed, the instructions in the [Data gathering] section are executed to send the result to the main
processor, the sending of information is done through the data collection function “comm.gather()”.
It is important to highlight that the functions “comm.gather()” and “comm.scatter()” work in a
corresponding way, that is, the format of the sending data must be the same as the receiving format,
therefore, it is necessary to perform a re-arrangement of the resulting vector to its original matrix format.
Finally, the main processor (rank = 0), collects the information and converts the resulting matrix array
into an object of the “Image” class to store the final result in a file identified as “output.png”. The above
is done through the instructions of the code fragment shown in Algorithm 2.

Algorithm 2 Second sequential time (α)

1: if rank == 0:
2: foto=np.array(newData)
3: foto=np.reshape(foto,(ren,col,cap))
4: foto=Image.fromarray(foto)
5: foto.save(’output.png’)
6: fin=datetime.now()
7: print("Done!")
8: print(end-brgin)
9: if __name__ == ’__main__’:

10: encrypt()

Entropy 2019, 21, 268 11 of 28

3.4. Implementing a Machine Based on Raspberry Pi 3

The SoC Raspberry Pi 3 has a Cortex-A-53 64-bit Quad Core 1.2 GHz processor with 1 GB DDR2
RAM memory. One of the aspects considered in the study of parallel processing is the processor
machine in which the algorithms are executed. The execution of the main algorithm that uses parallel
processing through the use of the MPI library [98,99] and the profiling tool is carried out by means of
the command: mpiexec -n < n > kernprof -l -v Encrypter.py, where the parameter < n > indicates
the number of process that the machine that executes the algorithm contains. Figure 7 shows the
composition of the Raspberry Pi 3 machine where it is observed that internally has a Quad Core
structure with internal communication bus and 1GB of RAM.

Core
1

Core
2

Core
3

Core
4

1GB RAM

Raspberry Pi 3 machine

Internal communication bus

Figure 7. Block Diagram of Raspberry Pi 3 Machine.

When executing the previous command, the Raspberry Pi 3 system creates a machine with n
process for program execution. Figure 8 shows some of the applications and services that are running
on the Raspberry Pi 3 system when executing the command for processing with 1 processor (n = 1).
It is observed that a virtual machine is created with a resource of %CPU = 100.0 and a memory
resource of %MEM = 2.6 in a process identified as PID = 1542.

Figure 8. Computational resource assigned to Raspberry Pi 3 virtual machine with n = 1 processor.

Figure 9a, shows the execution of the machine considering n = 4 process, and Figure 9b shows the
computational resource assigned to each processor when the proposed method is executed with n = 8
process. It is observed that each processor is assigned to a computational resource of CPU different
from that assigned to each processor when it increases the process’ number of the machine. Due to the
above, the Amdahl performance factor (Sn) calculated and shown in the graph of Figure 6, is greatly
affected because the machines do not have the same computational hardware resource for execution as
the number of process increases.

Entropy 2019, 21, 268 12 of 28

a)

b)

Figure 9. Computational resource assigned to Raspberry Pi 3 machine: (a) with n = 4 process and (b)
with n = 8 process.

From the comparison shown in Figure 9a,b, the most optimal computational resource for the
Raspberry Pi 3 machine, is presented when the number of process that execute the program is n = 4.
Therefore, the maximum gain in runtime is obtained with n = 4 processors. From n > 4 process
the gain in runtime decreases each time, this is because physically there are no more processors in a
Raspberry Pi 3.

3.5. Implementing a Machine Based on a Cluster of Six Embedded Systems (FIAD Cluster)

The FIAD cluster is composed of six Raspberry Pi 3 embedded systems and whose organization
is generally described in Figure 10. It is observed that when the complete machine is integrated,
a total of 24 Cores is obtained. In theory it is expected that the maximum gain will be obtained in
executions of the program with n = 24 process. However, in addition to the fact that each Raspberry
Pi 3 system has an internal communication bus, each Raspberry Pi 3 communicates externally with
the remaining 5 devices through an Ethernet communication channel at a speed of 100 Mbit/s.
That way, the communication time between processes is affected. The Figure 11 shows an image of the
experimental arrangement implemented for the execution of encryption tests using parallel computing
on six embedded systems.

Entropy 2019, 21, 268 13 of 28

Core
1

Core
2

Core
3

Core
4

1GB RAM
Raspberry Pi 3 (One)

Internal communication bus

Core
1

Core
2

Core
3

Core
4

1GB RAM
Raspberry Pi 3 (Four)

Internal communication bus

Core
1

Core
2

Core
3

Core
4

1GB RAM
Raspberry Pi 3 (Two)

Internal communication bus

Core
1

Core
2

Core
3

Core
4

1GB RAM
Raspberry Pi 3 (Five)

Internal communication bus

Core
1

Core
2

Core
3

Core
4

1GB RAM
Raspberry Pi 3 (Three)

Internal communication bus

Core
1

Core
2

Core
3

Core
4

1GB RAM
Raspberry Pi 3 (Six)

Internal communication bus

E
T
H
E
R
N
E
T

100
Mbit/s

Figure 10. FIAD cluster machine composed of six Raspberry Pi 3.

Figure 11. Image of the experimental arrangement of the FIAD cluster.

4. Experimental Results

To test the robustness and security of the proposed cryptosystem, the following security analyses
were performed: Statistical tests of NIST for cryptographic modules, histogram analysis, entropy,
differential attack tests (NPCR and UACI) and key space. The quality evaluation of the randomness is
carried out to demonstrate the satisfactory security of the new proposed chaos-based cryptosystem.
In addition, to test the efficiency of the cryptosystem, a performance analysis of parallel computing in
information encryption is accomplished. Besides, with the purpose of testing the proposed method
in a different hardware and with multiprocessing capability, it also was implemented in a computer
with CPU AMD A6 4400M APU 2.7 GHz (Accelerated Processing Unit), which is a mobile dual-core
processor based on the Trinity architecture, works with Windows 10 operating system and Python
version 3.5.2.

Entropy 2019, 21, 268 14 of 28

4.1. Security Analysis

4.1.1. The NIST Statistical Test

For NIST tests, each p-value is the probability that a perfect random number generator would have
produced a sequence less random than the sequence that was tested, given the kind of non-randomness
assessed by the test. If a p-value for a test is determined to be equal to 1, then the sequence appears
to have perfect randomness. A p-value of zero indicates that the sequence appears to be completely
non-random. A significance level (α) can be chosen for the tests. If p-value > α, i.e., the sequence
appears to be random. If p-value < α, i.e., the sequence appears to be non-random. For all 16 tests in
the NIST suite [86] performed in this paper, the significance level (α) was set to 0.01. If a computed
p-value is greater than 0.01, the binary sequence is accepted as random with a confidence of 99%;
otherwise, it is considered to be non-random [4,86,101]. In addition, the following setup parameters
are considered: Block Frequency test - block length (M) = 128, Non-Overlapping Template test - block
length (m) = 9, Overlapping Template test - block length (m) = 9, Approximate Entropy test - block
length (m) = 10, Serial test - block length (M) = 16, Linear Complexity test - block length (M) = 500.
All these tests were performed using 1000 series (sequences) of stream length = 1,000,000 bit. Table 1
lists the comparative results of the success percentages obtained with Tinkerbell map [73,95,96] using
high precision of np = 99 significant decimals. If the proportion of success is greater than 0.98, it can
be concluded that the sequences pass the NIST tests, i.e., those are random sequences. These results
demonstrate that the proposed PRNG can be used in cryptosystems [73].

Table 1. NIST tests results for the chaotic sequences generated by each component of Tinkerbell
map [73].

Test Name
p-Value p-Value

x Proportion Results y Proportion Results

Frequency 0.108791 0.980 Success 0.008513 0.960 Failed
Block Frequency 0.224821 1.000 Success 0.017694 1.000 Success
Cumulative Sums-Forward 0.304126 0.980 Success 0.009790 0.970 Failed
Cumulative Sums-Reverse 0.383827 0.980 Success 0.008536 0.970 Failed
Runs 0.009025 0.970 Failed 0.009200 0.970 Failed
Longest Run 0.554420 1.000 Success 0.224821 1.000 Success
Rank 0.129620 1.000 Success 0.851383 1.000 Success
FFT 0.595549 0.990 Success 0.924076 0.990 Success
Non-Overlapping Templates 0.455937 0.996 Success 0.637119 0.982 Success
Overlapping Templates 0.012971 0.990 Success 0.699313 0.990 Success
Universal 0.008285 0.970 Failed 0.012964 0.990 Success
Approximate Entropy 0.007955 0.960 Success 0.008597 0.970 Failed
Random Excursions 0.090936 0.996 Success 0.016196 0.985 Success
Random Excursions Variant 0.437274 0.998 Success 0.012650 0.986 Success
Linear Complexity 0.678686 0.990 Success 0.514124 0.990 Success
Serial (2m∇Ψ) 0.009240 0.975 Failed 0.955835 0.990 Success
Average 0.250716 0.985 - 0.306925 0.983 -

4.1.2. Histogram Analysis

The histogram of a digital image is a graph that shows the number of pixels of each different
intensity value found in the image. For an image with an 8-bit format, there are 256 different
intensity levels [93]. The distribution of the histogram of the encrypted image is the most important.
More specifically, it must hide the redundancy of the original image and no confidential information
should leak from the original image or that there will be a relationship between the encrypted image
and the original image [92]. Therefore, the more uniform the distribution of the histogram of the
encrypted image, the stronger the algorithm will be against statistical attacks. For experimental
purposes, the “Lena.png” image was encrypted with an 8-bit RGB format with a size 512× 512× 3,

Entropy 2019, 21, 268 15 of 28

therefore, it has a total of 786,432 pixels to be encrypted. Figure 12 shows the original image of Lena
RGB 512× 512× 3 and the resulting cryptogram when implementing the encryption method with the
HPCG generator by considering the states xn+1 and yn+1 of the Tinkerbell map [73] to generate the
pseudo-random series. It is observed that the cryptogram is a totally unintelligible image that shows
no traces of the original image, so it can be seen that the histograms of the RGB components have a
uniform distribution, thus confirming that the cryptosystem is robust against statistical attacks [92,93].

R component

G component

B component

Histogram of R component

Histogram of G component

Histogram of B component

Figure 12. RGB Image of “Lena.png” with size 512× 512× 3 and cryptogram obtained using the
proposed cryptosystem with the Tinkerbell map [73] with both chaotic states in the encryption method.

Entropy 2019, 21, 268 16 of 28

4.1.3. Entropy

In the works reported by Shannon [102,103], the mathematical foundations of the theory of
information applied to communication and data storage were proposed. The entropy of the information
is a criterion that measures the randomness of the data [13]. It can also be used to evaluate the security
of the encryption [104]. Equation (5) is used to calculate the entropy H(s) [89–91], of a source (s),

H(s) =
2N−1

∑
i=0

P(si) · Log2(
1

P(si)
) bit, (5)

where P(si) represents the probability of the si symbol. For a purely random source that is emitting 2N

symbols with the same probability after evaluating (5), the entropy H(s) = N, in this case, for images
with completely random pixels with 8-bit format, its ideal entropy is H(s) = 8 bit. When digital
images are encrypted, ideally their entropy must be 8. When a cryptographic system emits symbols
(cryptograms) with entropy less than 8, this encryptor has a certain degree of predictability, so that
its security is put at risk [13,89,90]. For purposes of comparison the entropy results to other related
works that also report results using the Lena RGB image 512× 512× 3 with 8-bit RGB format. Table 2
shows that the proposed method using the Tinkerbell map [73] presents better entropy results versus
most related works reported by [4,11,25,32,36,59,77,81], except work [41], which reports the better
entropy. Thus, confirming that the high arithmetic precision helps to improve the entropy of the
encrypted information.

Table 2. Comparison of entropy results for Lena image of size 512× 512× 3 with 8-bit RGB format.

Cryptogram Size
512 × 512 × 3

Components RGB of 8 bit
Entropy (bit/symbol)

Chaotic Map Average Entropy R G B
Proposed Tinkerbell [73] 7.99925 7.99925 7.99924 7.99926
Related work
Logistic 1D [25] 7.997200 7.99740 7.99750 7.99690
PELM [36] 7.994500 N/A N/A N/A
Tent [32] 7.998000 N/A N/A N/A
Novel 3D [4] 7.998200 7.99830 7.99820 7.99820
Chen [11] 7.997200 7.99720 7.99730 7.99710
Lorenz & Chen [81] 7.999300 N/A N/A N/A
5D Hyperchaotic [77] 7.997300 N/A N/A N/A
Logistic 1D [41] 7.999999 N/A N/A N/A
Logistic 1D [59] 7.999100 N/A N/A N/A

On the other hand, using the FIAD cluster (see Figures 10 and 11), Table 3 shows the entropy
results obtained from the Lena RGB cryptogram of 512× 512× 3 using n process (n = 1 to n = 128)
and the Tinkerbell map with high numerical precision np = 99 [73]. It can be appreciated that in all
the results there is an entropy of about 7.999xxxx, hence, it can be said that the cryptosystem’s security,
i.e., entropy is not affected using parallel computing on embedded systems. In addition and with the
purpose of testing the proposed method in a different hardware and with multiprocessing capability,
the proposed method also was implemented in a computer with CPU AMD A6 4400M APU 2.7 GHz
(Accelerated Processing Unit), which is a mobile dual-core processor based on the Trinity architecture,
and it works with Windows 10 operating system and Python version 3.5.2.

Entropy 2019, 21, 268 17 of 28

Table 3. Entropy for the cryptogram of Lena RGB image 512× 512× 3 using n processes and Tinkerbell
map [73].

Cryptogram Size
512×512 ×3

Components RGB of 8 bit
Entropy (bit/symbol)

n Process Average Entropy (%) R G B

FIAD cluster, CPU 1.2 GHz
1 7.9992743 7.9992716 7.9992623 7.9992888
2 7.9992962 7.9992525 7.9993085 7.9993277
4 7.9992476 7.9992258 7.9992211 7.9992959
8 7.9992692 7.9991658 7.9993238 7.9993182
16 7.9992042 7.9991641 7.9992064 7.9992421
32 7.9992992 7.9991472 7.9993798 7.9993705
64 7.9992831 7.9992403 7.9993189 7.9992901
128 7.9993141 7.9992695 7.9992722 7.9994006

CPU 2.7 GHz
1 7.9992742 7.9992716 7.9992623 7.9992888
2 7.9992962 7.9992525 7.9993085 7.9993276
4 7.9992476 7.9992258 7.9992210 7.9992959
8 7.9992692 7.9991657 7.9993237 7.9993181
16 7.9992041 7.9991640 7.9992063 7.9992421
32 7.9992991 7.9991472 7.9993798 7.9993704
64 7.9992831 7.9992403 7.9993188 7.9992901
128 7.9993140 7.9992695 7.9992721 7.9994006

4.1.4. NPCR and UACI Differential Attacks

To perform an analysis against differential attacks and understand the differences between
encrypted images [13], two measures in common are used, NPCR and UACI. These measures are used
to test the influence of change of a pixel in the whole encrypted pattern.

Let us consider the cryptograms C1 and C2 obtained with a tiny difference of 1−90 in the encryption
key using 1 processor obtained from a Lena RGB image with 8 bit RGB format adjusted to a size
of M × N, where M = N = 512 pixels. According to [88], the critical values for the NPCR test in
the image encryption with the levels of significance Nα are: N0.05 = 99.5994%, N0.01 = 99.5952%,
and N0.001 = 99.5906%. Table 4 depicts the results of enforcement the NPCR test to the obtained
cryptograms through the proposed method by implementing the Tinkerbell map [73]. If the values are
less than Nα, then, it is considered that C1 and C2 fail the test according to [88]. In Table 4, it can be
observed that the results achieved by Tinkerbell map pass all the NPCR critical values test according
to [88]. Also, it can be observed that the results obtained from NPCR have similar levels to those
reported in related works [4,11,25,32,34,36,59,77].

Table 4. NPCR test for the cryptogram of Lena image 512× 512× 3 pixels using 1 processor and
Tinkerbell map [73], and comparison versus other related work.

Cryptogram Size Critical NPCR Values [88]

512×512 × 3 N0.05 = 99.5893%, N0.01 = 99.5810%, N0.001 = 99.5717%,

Chaotic Map Average NPCR (%) NPCR Test Result
Proposed Tinkerbell [73] 99.6029 Passed Passed Passed

Related work
Logistic 1D [25] 99.6100 Passed Passed Passed

PELM [36] 99.5774 Failed Failed Passed
Multi-modal [34] 99.0000 Failed Failed Failed

Tent map [32] 99.6300 Passed Passed Passed
Novel 3D [4] 99.6100 Passed Passed Passed

Chen [11] 99.8031 Passed Passed Passed
5D Hyperchaotic [77] 99.6122 Passed Passed Passed

Logistic 1D [59] 99.6100 Passed Passed Passed

Table 5 presents the NPCR results obtained with the Lena image 512× 512× 3 using FIAD cluster
(see Figures 10 and 11) with multiprocessors and the Tinkerbell map [73] for the encryption of the

Entropy 2019, 21, 268 18 of 28

information. It can be observed that in most cases the test is passed according to the critical values
established by [88], even though, some results failed by a hundredth or a thousandth before reaching
the minimum critical value. Therefore, it can be said that the cryptosystem’s security is not affected by
the use of parallel computing.

Table 5. NPCR test for cryptogram of Lena image 512× 512× 3 pixels using n processes and Tinkerbell
map [73].

Cryptogram Size Critical NPCR Values [88]

512×512 × 3 N0.05 = 99.5893%, N0.01 = 99.5810%, N0.001 = 99.5717%,

n Process Average NPCR (%) NPCR Test Result

FIAD cluster (1.2 GHz)
1 99.6029 Passed Passed Passed
2 99.5925 Passed Passed Passed
4 99.5900 Passed Passed Passed
8 99.5908 Passed Passed Passed
16 99.5884 Failed Passed Passed
32 99.5930 Passed Passed Passed
64 99.5908 Passed Passed Passed
128 99.5749 Failed Failed Passed

CPU (2.7) GHz
1 99.6028 Passed Passed Passed
2 99.5924 Passed Passed Passed
4 99.5900 Passed Passed Passed
8 99.5908 Passed Passed Passed
16 99.5883 Failed Passed Passed
32 99.5929 Passed Passed Passed
64 99.5908 Passed Passed Passed
128 99.5749 Failed Failed Passed

Table 6 shows the UACI results achieved with the Lena image 512× 512× 3 using FIAD cluster
(illustrated in Figures 10 and 11) and the Tinkerbell map [73] for the encryption information. It can be
observed that in all cases, the UACI test is passed according to the critical values established by [88].
Therefore, it is verified that security is not affected by the use of parallel computing.

Table 6. UACI test for cryptogram of Lena image 512× 512× 3 pixels using n processes with Tinkerbell
map [73] and comparison versus other related work.

Cryptogram Size Critical UACI Values [88]

512×512 ×3 U−
0.05 = 33.3730%,

U+
0.05 = 33.5541%,

U−
0.01 = 33.3445%,

U+
0.01 = 33.5826%,

U−
0.001 = 33.3115%,

U+
0.001 = 33.6156%,

n Process Average UACI (%) UACI Test Result

FIAD cluster, CPU 1.2 GHz

1 33.4318 Passed Passed Passed
2 33.4113 Passed Passed Passed
4 33.4262 Passed Passed Passed
8 33.4206 Passed Passed Passed
16 33.4452 Passed Passed Passed
32 33.4431 Passed Passed Passed
64 33.4814 Passed Passed Passed
128 33.4140 Passed Passed Passed

CPU (2.7) GHz
1 33.4317 Passed Passed Passed
2 33.4112 Passed Passed Passed
4 33.4262 Passed Passed Passed
8 33.4205 Passed Passed Passed
16 33.4452 Passed Passed Passed
32 33.4431 Passed Passed Passed
64 33.4814 Passed Passed Passed
128 33.4139 Passed Passed Passed

Entropy 2019, 21, 268 19 of 28

Table 6. Cont.

Cryptogram Size Critical UACI Values [88]

512×512 ×3 U−
0.05 = 33.3730%,

U+
0.05 = 33.5541%,

U−
0.01 = 33.3445%,

U+
0.01 = 33.5826%,

U−
0.001 = 33.3115%,

U+
0.001 = 33.6156%,

n Process Average UACI (%) UACI Test Result

Related work
Logistic 1D [25] 33.3600% Failed Passed Passed
PELM [36] 33.3014% Failed Failed Failed
Multi-modal [34] 34.8353% Failed Failed Failed
Tent map [32] 33.2800% Failed Failed Failed
Novel 3D [4] 33.4500% Passed Passed Passed
Chen [11] 33.6236% Failed Failed Failed
5D Hyperchaotic [77] 33.4573% Passed Passed Passed
Logistic 1D [59] 33.4500% Passed Passed Passed

Regarding the security analysis performed on the cryptosystem against differential attacks NPCR
and UACI, it can be concluded that it does not affect the use of more process in parallel for the
encryption of information as shown in Tables 4–6, where the security levels of NPCR and UACI remain
satisfactory regardless of the number of process used in encrypting the information.

4.2. Key Space

The key space is the total number of different keys that can be used in the encrypted or decrypted
process [13]. For a cryptographic system to be effective and safe, the key space must be large enough
to make unfeasible the brute force attack [92]. The key cryptosystem proposed consists of two parts:
(i) the dynamic keys generator, and (ii) the control parameters of the same chaotic map. If the key space
of an encryption algorithm is large enough, typically greater than 128 bits, it is already considered
safe for most cryptographic applications in terms of the speed of current computers. According to
the key space result reported in [73], the key space is 22041 using the Tinkerbell map with a high
precision of np = 99 significant decimals. However, in this work it is proposed to use the FIAD
cluster (illustrated in Figures 10 and 11) the key space is increased virtually depending on the number
n of process used. That is, the key space is 2n×2041, therefore, the brute force attack applied to the
cryptosystem is unfeasible to break by current computers [13,93]. Table 7 lists the key space obtained
by the proposed embedded cryptosystem using Tinkerbell chaotic map [73] and a comparison with
other related works [4,25,32,33,35–40]. It can be observed, that there exists an exponential increase on
the key space when using multiple precision in the numerical calculation determined by np = 99 and
np = 999 significant decimals against the methods using double precision [4,25,32,33,35–40]. Hence,
the Kerckhoffs’s principles are met, which says, the security of the system must rest on the security of
the key, being supposed to know the rest of the parameters of the cryptosystem [37,38,105]. It can be
appreciated that the key space results achieved in this paper using multiple precision are greater than
those reported in related works [4,11,13,25,32–39,59,77]. Hence, the proposed embedded cryptosystem
has virtually unlimited key space, such as [4,35,37,38,73].

Entropy 2019, 21, 268 20 of 28

Table 7. Comparison of key space to other related works.

Key Space

Chaotic
Map

Simple Precision
np = 8

Double Precision
np = 16

Multiple Precision
(Proposed PRNG)

np = 99 np = 999

Proposed Tinkerbell (nprocess) [73] 2n×192 2n×384 2n×2041 2n×19,979

Tinkerbell (1− process) [73] 2192 2384 22041 219,979

Related work

Rössler hyperchaotic [13] N/A 2744 N/A N/A
Discrete [35] N/A 2428 N/A N/A
Three chaotic maps [37] N/A 2400 N/A N/A
5D Hyperchaotic [77] N/A 1090 ' 2299 N/A N/A
Chen [11] N/A 2256 N/A N/A
Tent map [32] N/A 2255 N/A N/A
Two chaotic maps [38] N/A 2213 N/A N/A
Logistic 1D [59] N/A 2199 N/A N/A
Novel 3D [4] N/A 2198 N/A N/A
Tinkerbell [39] N/A 2183 N/A N/A
Multi-modal [34] N/A 2159 N/A N/A
PLM [33] N/A 2136 N/A N/A
Logistic 1D [36] N/A 2128 N/A N/A
Logistic 1D [25] N/A 2128 N/A N/A

4.3. Performance Results Using Parallel Computing

To execute the performance analysis using parallel computing and to ensure that it has an equitable
distribution among the processors involved in the execution of the program in parallel, it is proposed to
use the color image “lena.png” 320× 320× 3 with 8-bit format. Table 8 shows the results obtained on a
FIAD cluster with six Raspberry Pi 3, Cortex-A-53 64-bit Quad Core 1.2 GHz processor, RAM memory
1 GB, and Raspbian Wheezy operating system, therefore, a total of 24 cores are integrated into the
FIAD cluster. It shows the execution times of the sequential part α of the algorithm, as well as the
execution times of the parts with parallel processing βp and communication time when the encryption
algorithm is executed. In addition, it can be observed in Table 8 that the total encryption time using
n = 1 processor is 87.6573 s, and as n increases the number of process, the total time decreases until
reaching a minimum time of 5.6330 s using n = 16 process. Subsequently, the total time begins to
increase, which means that the optimal number of process is n = 16. This analysis allows discovery of
the optimal number of processes and cores in parallel. In addition and with the purpose of testing the
proposed method in a different hardware and with multiprocessing capability, the proposed method
also was implemented in a personal computer with CPU AMD A6 4400M APU 2.7 GHz (Accelerated
Processing Unit), which is a mobile dual-core processor based on the Trinity architecture, it works
with Windows 10 operating system and Python version 3.5.2. With respect to the results obtained with
the dual-core 2.7 GHz CPU, it is observed that the shortest encryption time is presented with n = 2,
this is due to the dual core of the hardware, that is, with this it is verified that they are necessary more
cores to increase efficiency and reduce the total encryption time. In Table 8, it can be observed that as
the number of processes increases, the speed of the PRNGs is increased directly proportional, this is
because they work simultaneously.

On the other hand, Figure 13 was obtained with the times of the FIAD cluster, it can be observed
that the results obtained by encrypting the image of “lena.png ” in the FIAD cluster, the total encryption
time using n = 1 core is 87.6573 s and as the number of process increases, the total time decreases until
it reaches a minimum of 5.6330 s with n = 16 process. Hence, when using excess process in parallel
without having the necessary hardware (cores), the performance is affected (these experiments were
performed with a total of 24 cores). This verifies that the profiling tool helps to find the optimal number
of process to be used in the encryption process in such a way that it is not only about increasing the
process or using few processes for encryption—the interesting thing about the tool of profiling and
processing of parallel computing is that it allows optimization of hardware resources.

Entropy 2019, 21, 268 21 of 28

Also, it is important to mention, in parallel computing, when the communication time is greater
than the total processing time, it is said that the efficiency of the system begins to be lost, therefore there
is no performance, in this case, it is recommended to increase the quantity of processors or cores,
this can be observed in more detail in Figure 14.

Table 8. Comparison of performance with other related work.

Quantity Cryptosystem Times and PRNG Speed

(n Process) Total Time (s) α (s) βp(s) Communication Time (s) PRNG Speed (Mbit/s)

FIAD cluster, CPU 1.2 GHz
1 87.6573 87.6563 N/A N/A 0.011799
2 46.7736 0.5612 45.8394 0.3730 0.045848
4 42.6746 1.4609 41.7796 1.0299 0.100242
8 24.7102 1.1856 22.0905 1.4341 0.381060
10 15.3867 0.9041 15.3251 3.0074 0.682574
16 5.6330 1.1036 5.6104 6.1188 2.998515
20 5.7472 1.2210 4.5173 6.0029 4.673369
32 6.2665 1.5226 5.4581 4.6424 6.169972
40 7.7156 1.7689 6.7280 3.0649 6.338776
64 7.6150 2.0601 3.2211 7.4354 20.131226
80 7.9121 3.0578 6.6620 3.3478 12.362623

Dual core CPU 2.7 GHz
1 14.2769 14.2769 N/A N/A 0.114700
2 10.3276 0.1136 10.1526 0.0614 0.317600
4 10.5160 0.2208 9.4552 0.8400 0.580280
8 12.1092 0.3753 8.9377 2.7962 1.259200
16 14.0868 0.3293 3.4450 10.3125 7.654400
32 18.0704 1.3010 1.1705 15.5989 44.56640
64 21.5714 1.1648 0.4477 19.9589 199.6928
80 31.4447 0.9118 0.3797 30.1532 348.5520

Related work
1 CPU, 2.7 GHz [73] N/A N/A N/A N/A 9.1491
1 CPU, 2.5 GHz [32] N/A N/A N/A N/A 0.1450
1 CPU 2.0 GHz [36] N/A N/A N/A N/A 1.7000
1 CPU, 1.9 GHz [35] N/A N/A N/A N/A 1.2600
1 CPU, 2.8 GHz [39] N/A N/A N/A N/A 0.4901
1 CPU, 2.1 GHz [39] N/A N/A N/A N/A 0.4844
1 CPU, 2.4 GHz [11] N/A N/A N/A N/A 47.7653
1 CPU, 3.0 GHz [15] N/A N/A N/A N/A 44.9389

Octa core CPU, 2.5 GHz [41] N/A N/A N/A 118.90

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

1 2 4 8 1 0 1 6 2 0 3 2 4 0 6 4 8 2

Processors

Se
co

nd
s

Sequential processing α

Parallel processing βp
Communication processing

Figure 13. Performance graph of the proposed cryptographic method with parallel processing
implemented in a FIAD cluster.

Entropy 2019, 21, 268 22 of 28

Se
co
nd
s

n process

Figure 14. Performance graph of the proposed cryptographic method with parallel processing
implemented in a Personal Computer Dual-core CPU 2.7 GHz.

Figure 15 shows the result of the encryption process of the input image “Lena.png”, where it can
be observed that the recovered image Figure 15c is identical to the original image Figure 15a and that
the cryptogram Figure 15b is totally unintelligible.

a) c)b)

Figure 15. Result of encryption with parallel processing: (a) Input image, (b) Cryptogram,
and (c) Recovered image.

In the same way, Figure 16 shows the result of the decryption process with an error in the
parameter corresponding to the number n process involved in the encryption.

Figure 16. Examples of recovering the image in the process of decryption with an error in the parameter
corresponding to the number of process.

Finally, it is important to mention that when implementing the proposed method in a Raspberry
Pi 3, the execution times of the program implemented with parallel processing are affected by the
execution of other applications and services, so the theoretical estimations of the Performance factor
and system efficiency may vary from real-time execution results. In addition, by encrypting the image
separately (divided), n encryptions are performed where each encryption process has its corresponding
encryption key (dynamic keys). Finally, it can be observed that the gain in execution time depends

Entropy 2019, 21, 268 23 of 28

on the number of process involved in the execution of the program and the resource in software and
hardware assigned to each processor, with n = 16 process being the optimal value for the case of a
FIAD cluster, which is within the total available cores (24 cores). In the case of the personal computer
CPU 2.7 GHz, the optimal time was n = 2, this because its hardware is a dual-core CPU.

5. Conclusions

In this paper, the implementation of a chaotic cryptosystem using profiling and parallel
computation techniques in a cluster of embedded systems with multiprocessors was presented.
With the experimental results, it was found that the efficiency of the embedded cryptosystem is
improved and verified to comply with Amdahl’s law. To verify that the proposed method is scalable
to other hardware with multiprocessing capability, the proposed method also was implemented in
a personal computer with 2.7 GHz CPU, which is a mobile dual-core processor based on the Trinity
architecture. In both hardware implementations, the results of security and performance analysis
were satisfactory. The proposed method helps to find the optimal number of parallel processes to
be used in the cryptosystem. It is verified that when using excess of processes in parallel without
having the necessary hardware (cores), the performance is affected, as shown in Figures 13 and 14.
A great advantage of using parallel computing on embedded systems is that it is possible to reduce
the total execution time by identifying the section of the algorithm that can be run simultaneously
or parallel. In addition, it was possible to verify that the algorithms to generate the chaotic series
can be adapted to obtain a high degree of parallelization. Using several processors and multiple
precision in the cryptosystem add a greater degree of difficulty for cryptanalysts. Regarding the
security analysis performed to the algorithm against the different types of attacks, such as statistical,
entropy, differential (NPCR, UACI), key space, it can be concluded that the use of more processors in
parallel for the encryption of the information does not affect, and as shown in Tables 3–7, the security
levels remain satisfactory regardless of the n processes used. Regarding key space, when implementing
the Tinkerbell map with high precision of np = 99 significant decimals and when using n processes
in parallel for the encryption of the information, the key space is increased virtually up to 2n×2041,
where n is the number of parallel processes (see Table 7). Therefore, the Kerckhoffs’s principles are
met. Finally, the proposed cryptographic method can be implemented in practical applications and
with different types of hardware with multiprocessing capabilities.

Author Contributions: Funding acquisition, E.I.-G. and E.E.G.-G.; Investigation, A.F.-V., E.R.-O., E.I.-G., E.E.G.-G.,
O.R.L.-B., J.M.H.O., J.R.C.-V. and E.T.-C.; Methodology, A.F.-V., E.I.-G.; Supervision, E.E.G.-G.; Writing original
draft, A.F.-V., E.R.-O. and O.R.L.-B.; Writing, review, and editing, E.I.-G., E.E.G.-G., J.R.C.-V. and E.T.-C.

Funding: This work was supported by the research project approved at the 18th Internal Call for Research Projects
by UABC, with number 485. The researchers A.F.V., E.R.O. and J.M.H.O. were supported for their postgraduate
studies at PhD level by CONACyT. Thanks to PRODEP (Professional Development Program for Professors) for
supporting the new generations and for innovating the application of knowledge with the number 402/377/E.
In addition, the authors would like to express their gratitude to the TECNM for its financial support by the project
6578.18-P.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References

1. Tsai, C.J.; Wang, H.C.; Wu, J.L. Three Techniques for Enhancing Chaos-Based Joint Compression and
Encryption Schemes. Entropy 2019, 21, 40. [CrossRef]

2. Natiq, H.; Said, M.; Al-Saidi, N.; Kilicman, A. Dynamics and Complexity of a New 4D Chaotic Laser System.
Entropy 2019, 21, 34. [CrossRef]

3. Huang, L.; Cai, S.; Xiao, M.; Xiong, X. A Simple Chaotic Map-Based Image Encryption System Using Both
Plaintext Related Permutation and Diffusion. Entropy 2018, 20, 535. [CrossRef]

http://dx.doi.org/10.3390/e21010040
http://dx.doi.org/10.3390/e21010034
http://dx.doi.org/10.3390/e20070535

Entropy 2019, 21, 268 24 of 28

4. Sahari, M.L.; Boukemara, I. A Pseudo-Random Numbers Generator Based on A Novel 3D Chaotic Map with
An Application to Color Image Encryption. Nonlinear Dyn. 2018, 94, 723–744. [CrossRef]

5. Kocarev, L.; Lian, S. Chaos-Based Cryptography. Theory, Algorithms and Aplications; Springer-Verlag: Berlin,
Germany, 2011; Volume 354.

6. Lü, J.; Chen, G. New Chaotic Attractor Coined. Int. J. Bifurc. Chaos 2002, 12, 659–661. [CrossRef]
7. Eckmann, J.P.; Ruelle, D. Ergodic Theory of Chaos and Atrange Attractors. Rev. Mod. Phys. 1985, 57, 617–656.

[CrossRef]
8. Zhu, S.; Zhu, C.; Wang, W. A New Image Encryption Algorithm Based on Chaos and Secure Hash SHA-256.

Entropy 2018, 20, 716. [CrossRef]
9. Mondal, B.; Kumar, P.; Singh, S. A chaotic permutation and diffusion based image encryption algorithm for

secure communications. Multimed. Tools Appl. 2018, 77, 31177–31198. [CrossRef]
10. Fu, C.; Huang, J.B.; Wang, N.N.; Hou, Q.B.; Lei, W.M. A Symmetric Chaos-Based Image Cipher with an

Improved Bit-Level Permutation Strategy. Entropy 2014, 16, 770–788. [CrossRef]
11. Norouzi, B.; Mirzakuchaki, S. A Fast Color Image Encryption Algorithm based on Hyper-chaotic Systems.

Nonlinear Dyn. 2014, 78, 995–1015. [CrossRef]
12. Hermassi, H.; Rhouma, R.; Belghith, S. Improvement of an Image Encryption Algorithm based on

Hyper-chaos. Telecommun. Syst. 2013, 52, 539–549. [CrossRef]
13. Inzunza-González E.; Cruz-Hernández, C. Double Hyperchaotic Encryption for Security in Biometric

Systems. Nonlinear Dyn. Syst. Theory 2013, 13, 55–68.
14. Fu, C.; Chen, J.J.; Zou, H.; Meng, W.H.; Zhan, Y.F.; Yu, Y.W. A Chaos-Based Digital Image Encryption Scheme

with an Improved Diffusion Strategy. Opt. Express 2012. [CrossRef] [PubMed]
15. Seyedzadeh, S.; Mirzakuchaki, S. A fast color image encryption algorithm based on coupled two-dimensional

piecewise chaotic map. Signal Process. 2012, 92, 1202–1215. [CrossRef]
16. Gao, T.; Chen, Z. A New Image Encryption Algorithm Based on Hyper-chaos. Phys. Lett. A 2008, 372, 394–400.

[CrossRef]
17. Mao, Y.; Chen, G.; Lian, S. A Novel Fast Image Encryption Scheme Based on 3D Chaotic Baker Maps. Int. J.

Bifurc. Chaos 2004, 14, 3613–3624. [CrossRef]
18. Fridrich, J. Symmetric Ciphers Based on Two-Dimensional Chaotic Maps. Int. J. Bifurc. Chaos 1998.

[CrossRef]
19. Matthews, R. On the derivation of a chaotic encryption algorithm. Cryptologia 1989, 13, 29–42. [CrossRef]
20. Ping, P.; Wu, J.; Mao, Y.; Xu, F.; Fan, J. Design of Image Cipher Using Life-Like Cellular Automata and

Chaotic Map. Signal Process. 2018, 150, 233–247. [CrossRef]
21. Özkaynak, F. Brief review on application of nonlinear dynamics in image encryption. Nonlinear Dyn. 2018,

92, 305–313. [CrossRef]
22. Xu, L.; Li, Z.; Li, J.; Hua, W. A novel bit-level image encryption algorithm based on chaotic maps.

Opt. Lasers Eng. 2016, 78, 17–25. [CrossRef]
23. Cao, C.; Sun, K.; Liu, W. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map.

Signal Process. 2018, 143, 122–133. [CrossRef]
24. Pak, C.; Huang, L. A new color image encryption using combination of the 1D chaotic map. Signal Process.

2017, 138, 129–137. [CrossRef]
25. Murillo-Escobar, M.A.; Cruz-Hernández, C.; Abundiz-Pérez, F.; López-Gutiérrez, R.M.; del Campo, O.R.

A RGB Image Encryption Algorithm Based on Total Plain Image. Signal Process. 2015, 109, 119–131.
[CrossRef]

26. Kwok, H.; Tang, W.K. A Fast Image Encryption System Based on Chaotic Maps with Finite Precision
Representation. Chaos Solitons Fractals 2007, 32, 1518–1529. [CrossRef]

27. Muhammad, N.; Bibi, N.; Qasim, I.; Jahangir, A.; Mahmood, Z. Digital watermarking using Hall property
image decomposition method. Pattern Anal. Appl. 2018, 21, 997–1012. [CrossRef]

28. Farwa, S.; Muhammad, N.; Shah, T.; Ahmad, S. A Novel Image Encryption Based on Algebraic S-box and
Arnold Transform. 3D Res. 2017, 8, 1–14. [CrossRef]

29. Garcia-Bosque, M.; Perez-Resa, A.; Sanchez-Azqueta, C.; Aldea, C.; Celma, S. Chaos-Based Bitwise
Dynamical Pseudorandom Number Generator on FPGA. IEEE Trans. Instrum. Meas. 2019, 68, 291–293.
[CrossRef]

http://dx.doi.org/10.1007/s11071-018-4390-z
http://dx.doi.org/10.1142/S0218127402004620
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.3390/e20090716
http://dx.doi.org/10.1007/s11042-018-6214-z
http://dx.doi.org/10.3390/e16020770
http://dx.doi.org/10.1007/s11071-014-1492-0
http://dx.doi.org/10.1007/s11235-011-9459-7
http://dx.doi.org/10.1364/OE.20.002363
http://www.ncbi.nlm.nih.gov/pubmed/22330475
http://dx.doi.org/10.1016/j.sigpro.2011.11.004
http://dx.doi.org/10.1016/j.physleta.2007.07.040
http://dx.doi.org/10.1142/S021812740401151X
http://dx.doi.org/10.1142/S021812749800098X
http://dx.doi.org/10.1080/0161-118991863745
http://dx.doi.org/10.1016/j.sigpro.2018.04.018
http://dx.doi.org/10.1007/s11071-018-4056-x
http://dx.doi.org/10.1016/j.optlaseng.2015.09.007
http://dx.doi.org/10.1016/j.sigpro.2017.08.020
http://dx.doi.org/10.1016/j.sigpro.2017.03.011
http://dx.doi.org/10.1016/j.sigpro.2014.10.033
http://dx.doi.org/10.1016/j.chaos.2005.11.090
http://dx.doi.org/10.1007/s10044-017-0613-z
http://dx.doi.org/10.1007/s13319-017-0135-x
http://dx.doi.org/10.1109/TIM.2018.2877859

Entropy 2019, 21, 268 25 of 28

30. Rezk, A.; Madian, A.; Radwan, A.; Soliman, A. Reconfigurable Chaotic Pseudo Random Number Generator
Based on FPGA. AEU - Int. J. Electron. Commun. 2019, 98, 174–180. [CrossRef]

31. Elmanfaloty, R.; Abou-Bakr, E. Random Property Enhancement of a 1D chaotic PRNG with Finite Precision
Implementation. Chaos Solitons Fractals 2019, 118, 134–144. [CrossRef]

32. Palacios-Luengas, L.; Pichardo-Méndez, J.L.; Díaz-Méndez, J.A.; Rodríguez-Santos, F.; Vázquez-Medina, R.
PRNG Based on Skew Tent Map. Arabian J. Sci. Eng. 2018, 1–14. [CrossRef]

33. Wang, Y.; Liu, Z.; Ma, J.; He, H. A Pseudorandom Number Generator Based on Piecewise Logistic Map.
Nonlinear Dyn. 2016, 83, 2373–2391. [CrossRef]

34. García-Martínez, M.; Campos-Cantón, E. Pseudo-Random Bit Generator Based on Multi-Modal Maps.
Nonlinear Dyn. 2015, 82, 2119–2131. [CrossRef]

35. Dragan, L.; Mladen, N. Pseudo-Random Number Generator Based on Discrete-Space Chaotic Map.
Nonlinear Dyn. 2017, 90, 223–232.

36. Murillo-Escobar, M.A.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Méndez-Ramírez, R. A novel
pseudorandom number generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn.
2017, 87, 407–425. [CrossRef]

37. François, M.; Grosges, T.; Barchiesi, D.; Erra, R. Pseudo-random number generator based on mixing of three
chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 887–895. [CrossRef]

38. François, M.; Grosges, T.; Barchiesi, D.; Erra, R. A New Pseudo-Random Number Generator Based on Two
Chaotic Maps. Informatica 2013, 24, 181–197.

39. Stoyanov, B.; Kordov, K. Novel secure pseudo-random number generation scheme based on two tinkerbell
maps. Adv. Stud. Theor. Phys. 2015, 9, 411–421. [CrossRef]

40. Liu, Y.; Tong, X.J. A new pseudorandom number generator based on complex number chaotic equation.
Chin. Phys. B 2012, 21, 090506.

41. Yeoh, W.; Teh, J.; Chern, H. A Parallelizable Chaos-Based True Random Number Generator Based on Mobile
Device Cameras for the Android Platform. Multimed. Tools Appl. 2018, 1–21. [CrossRef]

42. Zhang, Y.; Aviad, Y.; Grahn, H.T. Chaotic Current Self-oscillations in Doped, Weakly Coupled Semiconductor
Superlattices for True Random Number Generation. In Coupled Mathematical Models for Physical and Biological
Nanoscale Systems and Their Applications; Springer Proceedings in Mathematics & Statistics; Bonilla, L.,
Kaxiras, E., Melnik, R., Eds.; Springer: Cham, Switzerland, 2018; Volume 232, pp. 35–50.

43. Avaroğlu, E.; Tuncer, T.; Özer, A. A novel chaos-based post-processing for TRNG. Nonlinear Dyn. 2015,
81, 189–199. [CrossRef]

44. Teh, J.; Samsudin, A.; Al-Mazrooie, M. GPUs and Chaos: A New True Random Number Generator.
Nonlinear Dyn. 2015, 82, 1913–1922. [CrossRef]

45. Cicek, I.; Pusane, A.; Dundar, G. A new dual entropy core true random number generator. Analog Integr.
Circuits Signal Process. 2014, 81, 61–70. [CrossRef]

46. Pano-Azucena, A.D.; Ovilla-Martinez, B.; Tlelo-Cuautle, E.; Muñoz-Pacheco, J.M.; de la Fraga, L.G.
FPGA-based implementation of different families of fractional-order chaotic oscillators applying Grünwald–
Letnikov method. Commun. Nonlinear Sci. Numer. Simul. 2019, 72, 516–527. [CrossRef]

47. Rodríguez-Orozco, E.; García-Guerrero, E.E.; Inzunza-Gonzalez, E.; López-Bonilla, O.R.; Flores-Vergara, A.;
Cárdenas-Valdez, J.R.; Tlelo-Cuautle, E. FPGA-based Chaotic Cryptosystem by Using Voice Recognition as
Access Key. Electronics 2018, 7, 414. [CrossRef]

48. Wang, Q.; Yu, S.; Li, C.; Lü, J.; Fang, X.; Guyeux, C.; Bahi, J.M. Theoretical design and FPGA-based
implementation of higher-dimensional digital chaotic systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2016,
63, 401–412. [CrossRef]

49. Sadoudi, S.; Tanougast, C.; Azzaz, M.S.; Dandache, A. Design and FPGA implementation of a wireless
hyperchaotic communication system for secure real-time image transmission. EURASIP J. Image Video Process.
2013, 2013, 43. [CrossRef]

50. Azzaz, M.S.; Tanougast, C.; Sadoudi, S.; Fellah, R.; Dandache, A. A new auto-switched chaotic system and
its FPGA implementation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1792–1804. [CrossRef]

51. Guillen-Fernandez, O.; Melendez-Cano, A.; Tlelo-Cuautle, E.; Nuñez-Perez, J.C.; Rangel-Magdaleno, J.J.
On the synchronization techniques of chaotic oscillators and their FPGA-based implementation for secure
image transmission. PLoS ONE 2019, 14, 1–34. [CrossRef]

http://dx.doi.org/10.1016/j.aeue.2018.10.024
http://dx.doi.org/10.1016/j.chaos.2018.11.019
http://dx.doi.org/10.1007/s13369-018-3688-y
http://dx.doi.org/10.1007/s11071-015-2488-0
http://dx.doi.org/10.1007/s11071-015-2303-y
http://dx.doi.org/10.1007/s11071-016-3051-3
http://dx.doi.org/10.1016/j.cnsns.2013.08.032
http://dx.doi.org/10.12988/astp.2015.5342
http://dx.doi.org/10.1007/s11042-018-7015-0
http://dx.doi.org/10.1007/s11071-015-1981-9
http://dx.doi.org/10.1007/s11071-015-2287-7
http://dx.doi.org/10.1007/s10470-014-0324-y
http://dx.doi.org/10.1016/j.cnsns.2019.01.014
http://dx.doi.org/10.3390/electronics7120414
http://dx.doi.org/10.1109/TCSI.2016.2515398
http://dx.doi.org/10.1186/1687-5281-2013-43
http://dx.doi.org/10.1016/j.cnsns.2012.11.025
http://dx.doi.org/10.1371/journal.pone.0209618

Entropy 2019, 21, 268 26 of 28

52. Carbajal-Gomez, V.; Tlelo-Cuautle, E.; Sanchez-Lopez, C.; Fernandez-Fernandez, F. PVT-Robust CMOS
Programmable Chaotic Oscillator: Synchronization of Two 7-Scroll Attractors. Electronics 2018, 7. [CrossRef]

53. De la Fraga, L.; Torres Pérez, E.; Tlelo-Cuautle, E.; Mancillas-López, C. Hardware implementation of
pseudo-random number generators based on chaotic maps. Nonlinear Dyn. 2017, 90, 1661–1670. [CrossRef]

54. Zuras, D.; Cowlishaw, M.; Aiken, A.; Applegate, M.; Bailey, D.; Bass, S.; Bhandarkar, D.; Bhat, M.; Bindel, D.;
Boldo, S.; et al. IEEE Standard for Floating-Point Arithmetic; IEEE Std 754-2008; IEEE: Piscataway, NJ, USA,
2008; pp. 1–70.

55. Li, S.; Mou, X.; Cai, Y.; Ji, Z.; Zhang, J. On the Security of a Chaotic Encryption Scheme: Problems with
Computerized Chaos in Finite Computing Precision. Comput. Phys. Commun. 2003, 153, 52–58. [CrossRef]

56. Li, S.; Chen, G.; Mou, X. On the Dynamical Degradation of Digital Piecewise Linear Chaotic Maps. Int. J.
Bifurc. Chaos 2005, 15, 3119–3151. [CrossRef]

57. Hu, H.; Deng, Y.; Liu, L. Counteracting the Dynamical Degradation of Digital Chaos via Hybrid Control.
Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 1970–1984. [CrossRef]

58. Liu, L.; Liu, B.; Hu, H.; Miao, S. Reducing the Dynamical Degradation by Bi-Coupling Digital Chaotic Maps.
Int. J. Bifurc. Chaos 2018, 28, 1850059-1–1850059-14. [CrossRef]

59. Lee, W.-K.; Phan, R.C.-W.; Yap, W.-S.; Goi, B.-M. SPRING: A novel parallel chaos-based image encryption
scheme. Nonlinear Dyn. 2018, 92, 575–593.

60. ITU. Global Cybersecurity Index (GCI) 2017; Technical Report; ITU: Geneva, Switzerland, 2017.
61. Liang, W.; Huang, W.; Chen, W.; Li, K.C.; Li, K. Hausdorff Distance Model-Based Identity Authentication for

IP Circuits in Service-Centric Internet-of-Things Environment. Sensors 2019, 19, 487. [CrossRef] [PubMed]
62. Zhu, C.; Wang, G.; Sun, K. Improved Cryptanalysis and Enhancements of an Image Encryption Scheme

Using Combined 1D Chaotic Maps. Entropy 2018, 20, 843. [CrossRef]
63. Zhu, C.; Wang, G.; Sun, K. Cryptanalysis and Improvement on an Image Encryption Algorithm Design

Using a Novel Chaos Based S-Box. Symmetry 2018, 10, 399. [CrossRef]
64. Farajallah, M.; Assad, S.; Deforges, O. Cryptanalyzing an image encryption scheme using reverse

2-dimensional chaotic map and dependent diffusion. Multimed. Tools Appl. 2018, 77, 28225–28248. [CrossRef]
65. Yoo, T.; Kang, J.S.; Yeom, Y. Recoverable Random Numbers in an Internet of Things Operating System.

Entropy 2017, 19, 113. [CrossRef]
66. Ge, X.; Lu, B.; Liu, F. Cryptanalyzing an image encryption algorithm with compound chaotic stream cipher

based on perturbation. Nonlinear Dyn. 2017, 90, 1141–1150. [CrossRef]
67. Ng, I.C.; Wakenshaw, S.Y. The Internet-of-Things: Review and research directions. Int. J. Res. Mark. 2017,

34, 3–21. [CrossRef]
68. Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of things: A survey

on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376.
[CrossRef]

69. Ashton, K. That “Internet of Things| Thing. RFiD J. 2009, 22, 97–114.
70. Hussain, M.; Beg, M. Fog Computing for Internet of Things (IoT)-Aided Smart Grid Architectures. Big Data

Cogn. Comput. 2019, 3, 8. [CrossRef]
71. Sanou, B. ICT Facts and Figures 2017; ITU: Geneva, Switzerland, 2017.
72. Ferreira, H.G.C.; de Sousa Junior, R.T. Security Analysis of a Proposed Internet of Things Middleware.

Clust. Comput. 2017, 20, 651–660. [CrossRef]
73. Flores-Vergara, A.; Garcia-Guerrero, E.E.; Inzunza-Gonzalez, E.; Bonilla, O.R.L.; Rodriguez-Orozco, E.;

Cardenas-Valdez, J.R.; Tlelo-Cuautle, E. Implementing a chaotic cryptosystem in a 64-bit embedded system
by using multiple-precision arithmetic. Nonlinear Dyn. 2019, 1–20. [CrossRef]

74. Almasi, G.S.; Gottlieb, A. Highly Parallel Computing; ACM Digital Library: New York, NY, USA, 1989.
75. Adve, S.V.; Adve, V.S.; Agha, G.; Frank, M.I.; Garzarán, M.J.; Hart, J.C.; Hwu, W.m.W.; Johnson, R.E.;

Kale, L.; Kumar, R.; et al. Parallel Computing Research at Illinois: The UPCRC Agenda; University of Illinois:
Urbana-Champaign, IL, USA, 2008.

76. Asanovic, K.; Bodik, R.; Catanzaro, B. The Landscape of Parallel Computing Research: A View from Berkeley;
Technical Report; EECS: Berkeley, CA, USA, 2006.

77. Yuan, H.M.; Liu, Y.; Lin, T.; Hu, T.; Gong, L.H. A New Parallel Image Cryptosystem Based on 5D
Hyperchaotic System. Signal Process. Image Commun. 2017, 52, 87–96. [CrossRef]

http://dx.doi.org/10.3390/electronics7100252
http://dx.doi.org/10.1007/s11071-017-3755-z
http://dx.doi.org/10.1016/S0010-4655(02)00875-5
http://dx.doi.org/10.1142/S0218127405014052
http://dx.doi.org/10.1016/j.cnsns.2013.10.031
http://dx.doi.org/10.1142/S0218127418500591
http://dx.doi.org/10.3390/s19030487
http://www.ncbi.nlm.nih.gov/pubmed/30682866
http://dx.doi.org/10.3390/e20110843
http://dx.doi.org/10.3390/sym10090399
http://dx.doi.org/10.1007/s11042-018-6015-4
http://dx.doi.org/10.3390/e19030113
http://dx.doi.org/10.1007/s11071-017-3715-7
http://dx.doi.org/10.1016/j.ijresmar.2016.11.003
http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.3390/bdcc3010008
http://dx.doi.org/10.1007/s10586-017-0729-3
http://dx.doi.org/10.1007/s11071-019-04802-3
http://dx.doi.org/10.1016/j.image.2017.01.002

Entropy 2019, 21, 268 27 of 28

78. Luo, Y.; Zhou, R.; Liu, J.; Cao, Y.; Ding, X. A Parallel Image Encryption Algorithm Based on the Piecewise
Linear Chaotic Map and Hyper-Chaotic Map. Nonlinear Dyn. 2018, 93, 1165–1181. [CrossRef]

79. Burak, D. Parallelization of an Encryption Algorithm Based on a Spatiotemporal Chaotic System and a
Chaotic Neural Network. Procedia Comput. Sci. 2015, 51, 2888–2892. [CrossRef]

80. Kim, J.; Kim, S.G.; Nam, B. Parallel multi-dimensional range query processing with R-trees on GPU. J. Parallel
Distrib. Comput. 2013, 73, 1195–1207. [CrossRef]

81. Omid, M.; Mahdi, Y.; Hassan, I. A New Image Encryption Method: Parallel Sub-Image Encryption with
Hyper Chaos. Nonlinear Dyn. 2012, 67, 557–566.

82. Zhou, Q.; Wong, K.; Liao, X.F.; Xiang, T.; Hu, Y. Parallel Image Encryption Algorithm Based on Discretized
Chaotic Map. Chaos Solitons Fractals 2008, 38, 1081–1092. [CrossRef]

83. Smith, D.M. Using multiple-precision arithmetic. Comput. Sci. Eng. 2003, 5, 88–93. [CrossRef]
84. Larsen, A.H.; Mortensen, J.J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.;

Hammer, B.; Hargus, C.; et al. The atomic simulation environment—A Python library for working with
atoms. J. Phys. Condens. Matter 2017, 29, 273002. [CrossRef] [PubMed]

85. Alvarez, G.; Li, S. Some basic cryptographic requirements for chaos-based cryptosystems. Int. J. Bifurc. Chaos
2006, 16, 2129–2151. [CrossRef]

86. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.;
Heckert, A.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications; National Institute of Standards and Technology Special Publication 800-22 Rev.1a; National
Institute of Standards and Technology Special: Gaithersburg, MD, USA, 2010; pp. 1–131.

87. NIST. Security Requirements for Cryptographic Modules; Federal Information Processing Standard (FIPS
PUB 140-2); NIST: Gaithersburg, MD, USA, 2001; pp. 1–56.

88. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. 2011,
1, 31–38.

89. Behnia, S.; Akhshani, A.; Ahadpour, S.; Mahmodi, H.; Akhavand, A. A Fast Chaotic Encryption Scheme
Based on Piecewise Nonlinear Chaotic Maps. Phys. Lett. A 2007, 366, 391–396. [CrossRef]

90. Behnia, S.; Akhshani, A.; Mahmodi, H.; Akhavand, A. A Novel Algorithm for Image Encryption Based on
Mixture of Chaotic Maps. Chaos Solitons Fractals 2008, 35, 408–419. [CrossRef]

91. Akhshani, A.; Behnia, A.A.S.; Hassan, H.A.; Hassan, Z. A Novel Scheme for Image Encryption based on 2D
Piecewise Chaotic Maps. Opt. Commun. 2010, 283, 3259–3266. [CrossRef]

92. Fu, C.; Lin, B.b.; Miao, Y.s.; Liu, X.; Chen, J.J. A Novel Chaos-Based Bit-Level Permutation Scheme for Digital
Image Encryption. Opt. Commun. 2011, 284, 5415–5423. [CrossRef]

93. Patidar, V.; Pareek, N.K.; Purohit, G.; Sud, K.K. A Robust and Secure Chaotic Standard Map Based
Pseudorandom Permutation-Substitution Scheme for Image Encryption. Opt. Commun. 2011, 284, 4331–4339.
[CrossRef]

94. Gene, A. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities.
IEEE Solid-State Circuits Soc. Newsl. 2007, 12, 19–20.

95. Yuan, S.; Jiang, T.; Jing, Z. Bifurcation and Chaos in the Tinkerbell map. Int. J. Bifurc. Chaos 2011, 11,
3137–3156. [CrossRef]

96. Goldszztejn, A.; Hayes, W.; Collins, P. Tinkerbell is Chaotic. Siam J. Appl. Dyn. Syst. 2011, 10, 1480–1501.
[CrossRef]

97. Menezes, A.J.; Oorschot, P.C.V.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton,
FL, USA, 1996.

98. Dalcin, L.; Kler, P.; Paz, R.; Cosimo, A. Parallel Distributed Computing using Python. Adv. Water Resour.
2011, 34, 1124–1139. [CrossRef]

99. Dalcin, L.; Paz, R.; Storti, M. MPI for Python. J. Parallel Distrib. Comput. 2005, 65, 1108–1115. [CrossRef]
100. Hwang, K.; Jotwani, N. Advanced Computer Arquitecture: Parallelism, Scalability, Programmability; McGraw

Hill: New York, NY, USA, 2011.
101. Pareschi, F.; Rovatti, R.; Setti, G. On statistical tests for randomness included in the NIST SP800-22 test suite

and based on the binomial distribution. IEEE Trans. Inf. Forensics Secur. 2012, 7, 491–505. [CrossRef]
102. Shannon, C.E. Communication Theory of Security Systems. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
103. Shannon, C.E. Communication Theory of Secrecy System. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]

http://dx.doi.org/10.1007/s11071-018-4251-9
http://dx.doi.org/10.1016/j.procs.2015.05.453
http://dx.doi.org/10.1016/j.jpdc.2013.03.015
http://dx.doi.org/10.1016/j.chaos.2007.01.034
http://dx.doi.org/10.1109/MCISE.2003.1208649
http://dx.doi.org/10.1088/1361-648X/aa680e
http://www.ncbi.nlm.nih.gov/pubmed/28323250
http://dx.doi.org/10.1142/S0218127406015970
http://dx.doi.org/10.1016/j.physleta.2007.01.081
http://dx.doi.org/10.1016/j.chaos.2006.05.011
http://dx.doi.org/10.1016/j.optcom.2010.04.056
http://dx.doi.org/10.1016/j.optcom.2011.08.013
http://dx.doi.org/10.1016/j.optcom.2011.05.028
http://dx.doi.org/10.1142/S0218127411030581
http://dx.doi.org/10.1137/100819011
http://dx.doi.org/10.1016/j.advwatres.2011.04.013
http://dx.doi.org/10.1016/j.jpdc.2005.03.010
http://dx.doi.org/10.1109/TIFS.2012.2185227
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x

Entropy 2019, 21, 268 28 of 28

104. Mao, Y.Y.; Deng, Z.C. A New Image Encryption Algorithm of Input-Output Feedback Based on Multi-chaotic
System. Appl. Mech. Mater. 2011, 40–41, 924–929. [CrossRef]

105. Kerckhoffs, A. La cryptographie militaire. J. Sci. Mil. 1883, IX, 161–191.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.4028/www.scientific.net/AMM.55-57.924
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Proposed PRNG and Dynamic Keys Generator
	Proposed Parallel Encryption Method
	Profiling Algorithms Using Python
	Parameters of Parallel Processing
	Implementing the MPI Library Using Collective Communication in the Algorithm
	Implementing a Machine Based on Raspberry Pi 3
	Implementing a Machine Based on a Cluster of Six Embedded Systems (FIAD Cluster)

	Experimental Results
	Security Analysis
	The NIST Statistical Test
	Histogram Analysis
	Entropy
	NPCR and UACI Differential Attacks

	Key Space
	Performance Results Using Parallel Computing

	Conclusions
	References

