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Abstract: Besides the superior efficiency compared to their classical counterparts, quantum algorithms
known so far are basically task-dependent, and scarcely any common features are shared between
them. In this work, however, we show that the depletion of quantum coherence turns out to be a
common phenomenon in these algorithms. For all the quantum algorithms that we investigated,
including Grover’s algorithm, Deutsch–Jozsa algorithm, and Shor’s algorithm, quantum coherence
of the system states reduces to the minimum along with the successful execution of the respective
processes. Notably, a similar conclusion cannot be drawn using other quantitative measures such as
quantum entanglement. Thus, we expect that coherence depletion as a common feature can be useful
for devising new quantum algorithms in the future.
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1. Introduction

The emergence of quantum algorithms that can solve problems exponentially faster than any
classical algorithms is one of the leading incentives for the rapid development of quantum information
science over the last three decades. Especially exciting is the new concept of computing that makes
use of quantum fundamental principles, coined quantum computing [1]. In 1992, the Deutsch–Jozsa
(DJ) algorithm [2] was first proposed, which can confirm a given function’s type with only one single
evaluation, compared to at worst 2n−1 + 1 (n being the number of two-valued digits) queries by any
possible classical algorithms. Moreover, the DJ algorithm is deterministic in the sense that it can always
produce the correct answer, which greatly improves the original solution by Deutsch [3] that can only
succeed with probability of one half. Soon, the basic problem of factoring a large integer was offered
a new quantum solution, that is, Shor’s algorithm [4]. The exponentially faster speed-up over any
classical approaches could be used to break public-key cryptography schemes, such as the widely used
Rivest–Shamir–Adleman (RSA) scheme, once a quantum computer were built. Then, it is Grover’s
search algorithm [5] which is used to locate a target item in an unsorted database. For this problem,
Grover’s algorithm runs only quadratically faster compared to any classical algorithms, but it has been
proven to be asymptotically optimal [6].

Coincidentally, all the quantum algorithms mentioned above were proposed in the 1990s. Since the
dawn of this century, however, few new speed-up quantum algorithms have been designed that
are comparable in impact to the existing ones. For two exceptional developments, see the DQC1
algorithm [7] and the HHL algorithm [8] which we skip to consider in the current work. One of the
possible reasons for this lies in the fact that all the quantum algorithms known so far are basically
task-dependent; in other words, they share very few common features, if there were any. Along with
this line, the series of works by Latorre and coauthors [9–11] reported that all known efficient quantum
algorithms obey a majorization principle (see Reference [12] for a recent experimental realization of
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majorization.). To be more precise, the time arrow in these algorithms is a majorization arrow, which is
conjectured to be a sort of driving force for the respective processes. Aside from this one, there are no
other general features being reported.

In this paper, however, we present a new common feature underling the efficient quantum
algorithms in terms of quantum coherence (see Section 2 for a brief review). Note that we only consider
the ideal scenario of no decoherence from the environment. Specifically, we find that coherence of
the system states all reduces to the minimum along with the successful execution of the respective
algorithms. In a rough sense, this is a “coherence arrow” in quantum algorithms, but with many
flexibilities. This feature is similar to the majorization principle, with the possible reason being that
both the concepts of coherence and majorization are basis-dependent [13,14]. However, unlike the
descriptive nature of majorization, quantum coherence can be computed quantitatively using various
coherence measures. In this aspect, the feature that we find with coherence is a more versatile tool
compared to the majorization principle. On the other hand, a similar conclusion cannot be drawn
using other quantitative measures, including quantum entanglement, which may be argued that
entanglement is basis-independent [15]. For instance, although works such as Reference [16] showed
that entanglement has some relations with the quantum advantage, others [17–19] also demonstrated
that the quantum speed-up can exist without entanglement.

Actually, the analysis of quantum algorithms using coherence is not new [20–22], but the respective
algorithms were considered independently in those works and a unified picture is missing. For instance,
in Reference [20] the author examined the role played by coherence as a resource in the DJ and related
algorithms, and found that the less coherence there is, the worse the algorithm will perform. However,
from different perspectives, both References [21,22] reported that the success probability of Grover’s
algorithm relies on coherence. Nevertheless, the results presented in this paper give a combined view
of all the quantum algorithms known so far with coherence.

This paper is organized as follows. In Section 2, we briefly review the resource theory of quantum
coherence, and introduce the commonly used coherence measures. Then we start with the investigation
of Grover’s algorithm in Section 3, where the evolution of quantum coherence is thoroughly analyzed.
Next, we move on to the DJ algorithm in Section 4 and Shor’s algorithm in Section 5. In Section 6,
the consequences of coherence played in quantum algorithms are discussed, along with a comparison
with other quantitative measures such as quantum entanglement. We close with a short conclusion in
Section 7.

2. Resource Theory of Quantum Coherence

Along with the rapid development of quantum information science, an alternative way of
assessing quantum phenomena as resources has appeared. Consequently, many tasks that are
not previously possible within the realm of classical physics may be now exploited with the
new approach. This resource-driven viewpoint has motivated the development of a quantitative
theory that captures the resource character of physical properties in a mathematically rigorous
manner. The formulation of such resource theories was initially pursued with the quantitative
theory of entanglement [23,24], but has since spread to encompass many other operational settings,
including quantum coherence [25–27]; see Reference [28] for a recent review.

Resource theory provides a unified framework for studying resource quantification and
manipulations under restricted operations that are deemed free. For coherence, we are restricted
to incoherent operations, so only incoherent states are free. Recall that a state is incoherent if it is
diagonal in the reference basis. Recently, it has been demonstrated that coherence can be converted to
other quantum resources, such as entanglement and discord by certain operations [29–31]. However,
compared to entanglement and discord, evidence shows that coherence may be a potentially more
fundamental quantum resource [32]. To quantify coherence, a rigorous framework has been proposed
by Baumgratz et al. in Reference [33]. In this work, we employ the two most commonly used coherence
measures, namely the relative entropy of coherence and the l1-norm of coherence.
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The relative entropy of coherence [33] is defined as

Cr(ρ) = S(ρdiag)− S(ρ) , (1)

where S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy and ρdiag = ∑i ρii|i〉〈i| denotes the state
obtained from ρ by deleting all the off-diagonal elements. For pure states, the von Neumann entropy
is 0, so the relative entropy can be simplified to

Cr(ρ) = S(ρdiag), if tr(ρ2) = 1 . (2)

The l1-norm of coherence [33] is defined intuitively as

Cl1(ρ) = ∑
i 6=j
|ρij| , (3)

which comes from the fact that coherence is tied to the off-diagonal elements of the states. Recently,
it is demonstrated by Zhu et al. [34] that the l1-norm of coherence is the analog of negativity in
entanglement theory and sum negativity in the resource theory of magic-state quantum computation.
It is worth mentioning that both the relative entropy and the l1-norm are proper measures of
quantum coherence.

3. Grover’s Algorithm

We start with Grover’s algorithm [5], which is a quantum search algorithm that runs quadratically
faster than any equivalent classical algorithms. Given an unsorted database with N items,
this algorithm can find the target item using only O(

√
N) steps, compared to at least O(N) steps

required by any classical schemes. Although not offering an exponential speed-up, Grover’s algorithm
has been proven to be asymptotically optimal for the search problem [6]. For convenience, we assume
N = 2n such that the N entries in the database can be supplied by n qubits. Let f (x) be a function
that takes in index x = 0, 1, . . . , N − 1, and outputs f (x) = 1 if x is a solution to the search problem,
and f (x) = 0 otherwise.

Grover’s algorithm begins with the initialized equal superposition state,

|ψ(0)〉 = 1√
2n

2n−1

∑
x=0
|x〉 , (4)

which has the maximal coherence

C(0)r = S(I/2n) = n , (5a)

C(0)l1
=

2n−1

∑
i 6=j

∣∣∣∣ 1
2n

∣∣∣∣ = 2n − 1 . (5b)

Suppose there are exactly M solutions in the database with 1 ≤ M ≤ N, we can re-express
|ψ(0)〉 as

|ψ(0)〉 =
√

N −M
N
|α〉+

√
M
N
|β〉 , (6)

where |α〉 represents the group of states that are not solutions to the search problem (marked by xn

below), while |β〉 represents those that are solutions (marked by xs). Explicitly, we have
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|α〉 ≡ 1√
N −M ∑

xn

|xn〉 , (7)

|β〉 ≡ 1√
M

∑
xs

|xs〉 . (8)

Then, a subroutine known as the Grover iteration is applied to |ψ(0)〉 repeatedly. The Grover
iteration consists of two basic operations G = DO, i.e.,

O : |x〉 → (−1) f (x)|x〉 , (9)

D = 2|ψ(0)〉〈ψ(0)| − I , (10)

where O is an oracle (a black-box operation), and D is the Grover diffusion operator. After k iterations
of applying G, the state becomes

|ψ(k)〉 ≡ Gk|ψ〉 = cos ω|α〉+ sin ω|β〉 , (11)

where

ω =
2k + 1

2
θ, with cos

(
θ

2

)
=

√
N −M

N
. (12)

It is not difficult to see that with high probabilities, a solution to the search problem can be

obtained by having k =

⌊
π
4

√
N
M

⌉
Grover iterations, where the symbol b·e denotes the closest integer

to the rational number inside. Next, we calculate the quantum coherence of state |ψ(k)〉, such that

C(k)r = −2
(

cos2 ω log
| cos ω|
N −M

+ sin2 ω log
| sin ω|

M

)
, (13a)

C(k)l1
=
(√

N −M| cos ω|+
√

M| sin ω|
)2
− 1 . (13b)

Note that the oracle O only marks the solution by changing the phase of state |β〉, i.e.,

O|ψ(k)〉 = cos ω|α〉 − sin ω|β〉 , (14)

so, this operation will not change the coherence. It is the operation D that indeed changes the coherence.
In Figure 1, we plot the values of coherence with respect to the number of Grover iterations k,

for the case of n = 10 qubits. Note that in Figure 1b, we plot instead C(k)
′

l1
= log2(C

(k)
l1

+ 1). As can
be seen, a solution to the search problem is found when the coherence first reaches the minimum

value, that is, when k∗ =
⌊

π
4

√
N
M

⌉
. At this point, the task of Grover’s algorithm is actually completed.

However, if the Grover iteration is continued, a periodic feature of the coherence appears such that we
will get the solution again around 2k∗ iterations. This observation is repeated as long as the Grover
iteration goes on.
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Figure 1. In the case of n = 10 qubits, we plot the values of coherence with respect to the number of

Grover iterations k: (a) the relative entropy of coherence C(k)r in Equation (13a); (b) C(k)
′

l1
= log2(C

(k)
l1

+ 1)

with C(k)l1
being the l1-norm of coherence in Equation (13b). The plots show the results with M = 1, 2, 4

and 16 solutions, respectively. The minimal values indicate that an solution is found. As we can see,
with the number of possible solutions increased, not only the number of Grover iterations needed
decreases, but also the minimal value of coherence increases accordingly. See text and Figure 2 for
more details.

Another phenomenon from the plots is as follows: with the number of possible solutions increased,
not only the number of Grover iterations needed decreases, but also the minimal value of coherence
gets bigger accordingly. This is easy to understand as several answers (M > 1) make up a superposition
state of which the coherence is finite; see Figure 2. To understand it better, let us look at the derivatives
of the coherence in Equation (13), which are given by

dC(k)r
dk

= θ sin[(2k + 1)θ] log
[

M
N −M

cot2
(

2k + 1
2

θ

)]
, (15a)

dC(k)l1
dk

= θ
{
(2M− N) sin[(2k + 1)θ] (15b)

+ 2
√
(N −M)M sgn{sin[(2k + 1)θ]} cos[(2k + 1)θ]

}
.

By forcing the derivatives to be zero, we get four different cases:
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1. cos
(

2k+1
2 θ

)
= 0 corresponds to the minimal values in Figure 1, namely the solution state |β〉.

2. cot2
(

2k+1
2 θ

)
= cot2

(
θ
2

)
corresponds to the maximal values in Figure 1. Because of the square in

this solution, there are actually two peaks close to each other (not quite visible if the number of
solutions M is small). The right peak corresponds to the superposition state |ψ(0)〉, while the left
one corresponds to O|ψ(0)〉.

3. cos
(

2k+1
2 θ

)
= ±1 corresponds to the local minimal values between the two peaks in Figure 1.

Because the distance between these two peaks is exactly 1 and we are considering discrete
operations, so this local valley has no physical meaning.

4. θ = 0 means that there is no solution, i.e., M = 0.

To summarize, one learns that the depletion of quantum coherence can be regarded as a signal
for the successful executions of Grover’s algorithm. We will see later that the same conclusion can be
drawn for other quantum algorithms including the Deutsch–Jozsa algorithm and Shor’s algorithm.
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log2M

0

2
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10

C
(k
=
k
∗
)

r
or

C
(k
=
k
∗
)′

l 1

Figure 2. Minimal coherence of the system state with respect to the logarithm of the number of
solutions log2 M. As we can see, with the number of solutions M increased, the minimal value of
coherence gets bigger which clearly indicates a superposition state consisting of more terms.

4. Deutsch–Jozsa Algorithm

Given a function f (x) defined over the variable x = 0, 1, . . . , 2n − 1 with n being the number
of dichotomic-valued digits, the Deutsch–Jozsa (DJ) algorithm [2] aims to confirm whether f (x) is
constant for all values of x, or else it is balanced, namely f (x) = 1 for exactly half of all possible x, and 0
for the other half. Although of little practical use, the DJ algorithm is deterministic in the sense that it
can always produce the correct answer using only one correspondence, whereas it requires at worst
2n−1 + 1 queries for any possible classical algorithms.

Same as Grover’s algorithm, the DJ algorithm begins by first preparing the equal superposition
state of Equation (4),

|ψ(0)〉 = 1√
2n

2n−1

∑
x=0
|x〉 , (16)

which has the maximal coherence

C(0)r = n , (17a)

C(0)l1
= 2n − 1 . (17b)
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However, unlike Grover’s algorithm, no iteration is needed in the DJ algorithm. The next step is
an oracle U f : |x〉 → (−1) f (x)|x〉 that transforms the state to

|ψ(1)〉 = 1√
2n

2n−1

∑
x=0

(−1) f (x)|x〉 , (18)

which leaves the coherence unchanged. The final step of the DJ algorithm is to apply the Hadamard
gate H, such that the state becomes

|ψ(2)〉 = 1
2n

2n−1

∑
y=0

2n−1

∑
x=0

(−1)x·y+ f (x)|y〉 , (19)

where x · y is the bitwise inner product of x and y. Now, by examining the probability of measuring

|0〉⊗n, i.e.,
∣∣∣∑x(−1) f (x)/2n

∣∣∣2, one gets 1 if f (x) is constant and 0 if it is balanced. Depending on the

function type of f (x), the coherence of |ψ(2)〉 can have the following two cases:

1. If f (x) is a constant function, then

|ψ(2)〉 = 1
2n

(
±2n 0 · · · 0

)T
, (20)

the coherence of which is C(2)r = C(2)l1
= 0.

2. If f (x) is a balanced function, then

C(2)r ∈ [0, n− 1] , (21a)

C(2)l1
∈ [0, 2n−1 − 1] . (21b)

For the second case, the coherence has a range instead of a single value due to the possible
different forms of the balanced function. For instance, if f (x) takes values 01010101 · · · (for more than
three qubits), then |ψ(2)〉 is nothing but a basis state with coherence being zero. However, if f (x) takes
the sequence such as 01100101 · · · , then |ψ(2)〉 is a superposition of basis states with nonzero coherence.
Notably, the coherence cannot take the maximal value as that in Equation (17), because the basis state
|0〉 disappears in |ψ(2)〉 for the balanced case.

Therefore, no matter what the function type of f (x) is, we find that the coherence of the system
state always decreases once the algorithm stops. Again, coherence depletion can be used as a good
signature to signal the success of the DJ algorithm.

5. Shor’s Algorithm/Quantum Order-Finding

Shor’s algorithm [4] is a particular instance of the family of quantum phase-estimation
algorithms [35]. Informally, Shor’s algorithm solves the following problem: given an integer N,
find its prime factors. The crucial step in Shor’s algorithm is the so-called quantum order-finding
(QOF) subroutine which offers the quantum speed-up over any classical approaches. For two positive
integers x and N, the objective of QOF is to determine the order of x modulo N, which is defined as the
least integer r > 0, such that xr = 1(mod N).

The QOF subroutine begins with t = 2L + 1 +
⌈

log(2 + 1
2ε )
⌉

qubits initialized to |0〉 (the first
register) and L qubits initialized to |1〉 (the second register), where L ≡ dlog(N)e denotes the closest
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integer larger than log(N) and ε is the error tolerance. Application of the Hadamard gate H on the
first register transforms the initial state to

|ψ(0)〉 = 1
2t

2t−1

∑
j=0
|j〉|1〉 , (22)

which has the maximal coherence on the first t qubits, i.e.,

C(0)r = t , (23a)

C(0)l1
= 2t − 1 . (23b)

Then a black-box operation Ux,N : |j〉|k〉 → |j〉|xj(mod N)〉 transforms the state to

|ψ(1)〉 = 1
2n

2t−1

∑
j=0
|j〉|xj(mod N)〉 . (24)

Although the state |ψ(1)〉 looks rather different from |ψ(0)〉, its coherence (on the first t qubits)
does not change, namely

C(1)r = C(0)r = t , (25a)

C(1)l1
= C(0)l1

= 2t − 1 . (25b)

Because of the periodic nature of the component |xj(mod N)〉, the state |ψ(1)〉 can be
approximated as

|ψ(1)〉 ≈ 1√
r2n

r−1

∑
s=0

2t−1

∑
j=0

e2πi · sj/r|j〉|us〉 . (26)

The period of the phase in |ψ(1)〉 can be obtained by applying inverse Fourier transform to the
first register, such that

|ψ(2)〉 = 1√
r

r−1

∑
s=0
|s̃/r〉|us〉 , (27)

where |s̃/r〉 is a pretty good approximation of the phase s/r. Now, coherence of the state |ψ(2)〉 becomes

C(2)r = −r2 · 1
r2 log

1
r2 = 2 log r , (28a)

C(2)l1
=

r4 − r2

r2 = r2 − 1 , (28b)

which are functions of the solution r. Finally, by measuring the first t qubits, the solution r is obtained
by applying the continued fractions algorithm [1]. Once again, we find that coherence of the system
state reduces to the minimum by the end of the QOF subroutine, in turn also in Shor’s algorithm.

6. Discussion

For all the quantum algorithms that we have explored including Grover’s algorithm, DJ algorithm
and Shor’s algorithm, we find that quantum coherence plays a consistent role for signaling the
completion of all processes. To be more precise, upon successful executions of these algorithms,
coherence of the respective systems all reduces to the minimum compared to the initial values.
Specifically, all the three quantum algorithms begin with the equal superposition state which has the
maximal coherence. Then, an oracle is applied, which leaves the coherence unchanged. The final step
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can be seen as an adjustment for the system states, that is, diffusion operation for Grover’s algorithm,
Hadamard operation for DJ algorithm, and quantum inverse Fourier transform for Shor’s algorithm.
It is this final step of operation that indeed reduces the coherence. Hence, as a guide for future
quantum-algorithm design, the coherence-depletion operation might be taken as an indispensable
requirement for the relevant processes.

Then, it is natural to ask whether other quantitative measures such as entanglement may play a
similar role as coherence in quantum algorithms. Unfortunately, the answer is negative. Many previous
works have shown that a general principle cannot be drawn using entanglement. For instance,
in References [36–38] the authors analyzed thoroughly the entanglement properties in Shor’s algorithm,
and found that entanglement may vary with different entanglement measures. Then, similar
conclusions were reported in References [39–42] for the DJ algorithm. In particular, Reference [17]
showed that quantum algorithms can be efficiently simulated classically even when entanglement
exists, whereas References [17–19] demonstrated that quantum algorithms can show advantage without
entanglement. One of the possible reasons for the failure of using entanglement as a signature is due
to the differences in definitions of entanglement and coherence (also majorization), since both the
concepts of coherence and majorization are basis-dependent [13,14], while entanglement not.

No doubt that entanglement is a key (but not really sufficient [24]) resource for the quantum
speed-up in all these algorithms [16], it cannot be used as a good signature in quantum algorithms.
Actually, it is an NP-hard problem [43,44] to even detect entanglement if the system size is large,
let alone to quantify it. For multipartite quantum systems, entanglement can be classified into different
forms depending on how the subsystems are distributed. This complexity further makes any possible
entanglement measures hard to compute. Therefore, although essential for the quantum speed-up,
entanglement is not a good signature to use for quantum algorithms as compared to coherence.
Moreover, this fact also serves as an additional evidence that coherence may be a potentially more
fundamental quantum resource than entanglement and discord, as initially argued in Reference [32].

7. Conclusions

The scarceness of efficient quantum algorithms suggests that maybe some basic principles are
missing. In this paper, we find that the depletion of quantum coherence turns out to be a common
feature in these algorithms. For all the three quantum algorithms that we investigated including
Grover’s algorithm, Deutsch–Jozsa algorithm and Shor’s algorithm, quantum coherence of the system
states all reduces to the minimum along with the successful execution of the respective algorithms.
However, a similar conclusion cannot be drawn using other quantitative measures such as quantum
entanglement. Therefore, besides the fundamental interests in resource theory, this special feature of
quantum coherence is expected to be useful for devising new quantum algorithms in the future.
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