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Abstract: In this paper, we researched some dynamical behaviors of a stochastic predator–prey
system, which is considered under the combination of Crowley–Martin functional response and
stage structure. First, we obtained the existence and uniqueness of the global positive solution of the
system. Then, we studied the stochastically ultimate boundedness of the solution. Furthermore, we
established two sufficient conditions, which are separately given to ensure the stochastic extinction of
the prey and predator populations. In the end, we carried out the numerical simulations to explain
some cases.
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1. Introduction

Population dynamics is one of the main parts of biological mathematics. The predator–prey
model is a classical problem in population research. Lotka and Volterra [1] researched the origin and
theory of predator–prey model, which is given by{

dx
dt = a0x(t)− c0x(t)y(t),
dy
dt = e0c0x(t)y(t)− d0y(t),

(1)

where x(t) and y(t) represent the population density of the prey and predator, respectively; a0 and d0

denote the intrinsic growth rate and death rate, respectively; and c0 and e0 are the predation rate of a
predator and nutrient-conversion rate, respectively.

An important feature of the predator–prey relationship is the functional response (i.e., the rate
of prey consumption by an average predator). Mukherjee [2] discussed persistence and bifurcation
on the predator–prey system of Holling Type II. Liu and Zhong [3] researched permanence and
extinction for the delayed periodic predator–prey system with Holling Type II response function and
diffusion. Zhang and Yang [4] studied Hopf bifurcation in the predator–prey system with Holling
Type III functional response and time delays. The functional responses of Holling Types I–III are
prey-dependent, which have been researched by many scholars. However, the functional response
is inevitably influenced by the behavior of a predator, such as foraging and competing. Therefore,
many scholars studied various types of predator-dependent functions. Gilliam and Skalski [5] claimed
that the predator-dependent can provide better descriptions of predators feeding over a range of
predator–prey abundances by comparing the statistical evidence from 19 predator–prey systems
with the three predator-dependent functional responses (Hassell–Varley [6], Beddington–DeAngelis
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[7–9], and Crowley–Martin [10,11]), and, in some cases, the Crowley–Martin functional response is
better. On the other hand, compared with the Hassell–Varley and Beddington–DeAngelis functional
responses, the Crowley–Martin functional response is more suitable for the case that the predator
feeding rate is decreased by higher predator density even when prey density is high. Thus, we consider
the Crowley–Martin functional response in this paper.

In the classical predator–prey model, it is always assumed that each predator has the same
predation capacity, and each prey has the same risk of predation. This assumption is unrealistic for
many species. In nature, there are many species whose individuals have a life history that takes
them through two stages, immature and mature. Individuals of different age groups exhibit different
biological behaviors. In view of this, many scholars have studied the predator–prey system with stage
structure [12–16]. Sun and Huo [17] considered bifurcation and stability in the predator–prey model
with stage structure for the predator. Xu [18] discussed the global dynamics of the predator–prey model
with time delay and stage structure for the prey. Lu [19] studied the stage-structured predator–prey
model with predation over juvenile prey. However, few researchers have studied the predator–prey
model with a stage structure for predator and prey. In nature, we know that immature predators have
no predatory capacity. Meanwhile, many species hatch from eggs. For example, the Saltcedar leaf
beetle is such a pest. In view of its eggshell, pathogens may not be effective against an immature pest.
Based on this situation, it is reasonable to assume that immature prey does not run the risk of being
preyed on. In terms of pest and disease control, the stage-structure model can better describe the
dynamic behavior of some species. Therefore, in this paper, we mainly consider the predator–prey
system with stage structure for both predator and prey.

We also consider the impact of environmental noise. Many scholars have studied various types
of stochastic predator–prey systems with stage structure and functional-response functions [20–22].
Liu and Jiang [23] researched the dynamics of a stochastic predator–prey model with stage structure for
predator and Holling Type II functional response. Chen and You [24] studied permanence, extinction,
and periodic solution of the predator–prey system with a Beddington–DeAngelis functional response
and stage structure for prey. Liu and Zhong [25] discussed the asymptotic properties of a stochastic
predator–prey model with a Crowley–Martin functional response.

The main contributions of our work can be summarized as follows. The predator–prey model
with random perturbation and Crowley–Martin functional response is established, which consider
stage structure on both prey and predator. The existence and uniqueness of the global positive solution
of the system is proved. Some sufficient conditions are given, which ensure the solutions of the system
are stochastically ultimate boundedness. Then, sufficient conditions for the extinction of prey and
predator are given, respectively. Finally, the conclusion is verified by numerical simulation results.

The paper is organized as follows. In Section 2, we give two prey–predator models with stage
structure and a Crowley–Martin functional response. One is deterministic, and another is stochastic,
which is discussed through the manuscript. In Section 3, we prove the existence and uniqueness of
the global positive solution. In Section 4, we obtain sufficient conditions for stochastically ultimate
boundedness of the prey and predator. In Section 5, we establish sufficient conditions for extinction of
the predator and prey in two cases. The first case is the prey and predator extinction; another case is
the predator extinction. In Section 6, numerical simulations illustrate the theoretical results. Section 7
gives the conclusions and future research directions.

2. Preliminaries

Before giving the main results, we first introduce some mathematical symbols and formulas in
this paper. Throughout this paper, we define

Rq
+ = {x = (x1, x2, · · · , xq) ∈ Rq : xi > 0, 1 ≤ i ≤ q}.
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Consider the process of q-dimensional Itô

dX(t) = LV(X(t), t)dt + g(X(t), t)dB(t), (2)

where B(t) = (B1(t), B2(t), · · · , Bq(t)) denotes independent standard Brownian motions defined on a
complete probability space (Ω,F , {Ft}t≥0, P) with a filtration {Ft}t≥0, and assume that the constant
initial value X0 ∈ Rq. Differential operator L of Formula (4) is given by

L =
∂

∂t
+

q

∑
i=1

fi(X(t), t)
∂

∂Xi
+

1
2

q

∑
i,j=1

[g(X(t), t), g(X(t), t)T ]ij
∂2

∂xi∂xj
.

We denote a function V(x(t), t) defined on C2,1(Rq,R). Applying L on V(X(t), t), one has

LV(X(t), t) = Vt(X(t), t) + VX(X(t), t) f (X(t), t) +
1
2

trace[gT(X(t), t)VXX(X(t), t)g(X(t), t)],

where Vt =
∂V
∂t , VX = ( ∂V

∂X1
, ∂V

∂X2
, · · · , ∂V

∂Xq
), VXX = ( ∂2V

∂Xi∂Xj
)d×d. By Itô formula, we can obtain

dV(X(t), t) = LV(X(t), t)dt + VX(X(t), t)g(X(t), t)dB(t).

If the system is autonomous, the definition of operator L and Itô formula discussed above can be
found in Reference [26].

Based on the statement in Section 1, consider the following model:

dx1(t)
dt = ax2(t)− d1x1(t)− px1(t),

dx2(t)
dt = px1(t)− d2x2(t)− b1x2

2(t)−
cx2(t)y2(t)

1+αx2(t)+βy2(t)+αβx2(t)y2(t)
,

dy1(t)
dt = ecx2(t)y2(t)

1+αx2(t)+βy2(t)+αβx2(t)y2(t)
− d3y1(t)− hy1(t),

dy2(t)
dt = hy1(t)− d4y2(t)− b2y2

2(t),

(3)

where x1(t) and x2(t) denote the densities of immature and mature prey at time t, respectively;
y1(t) and y2(t) represent the densities of immature and mature predators at time t, respectively; the
parameters a, d1, d2, d3, d4, b1, b2, p, h, e and c are positive constants, a is the birth rate of immature
prey, p and h indicate maturity rate of immature prey and immature predator, respectively; b1 and
b2 express the competition rate between a mature prey population and mature predator population,
respectively; d1 and d2 are the death rates of immature and mature prey, respectively; and d3 and d4

represent the death rates of immature and mature predators, respectively.
May [27] pointed out that due to continuous fluctuation in the environment, the birth rate, death

rates, carrying capacity, competition coefficients, and all other parameters involved with the model
exhibit random fluctuation. Thus, we consider environmental random disturbance as follows:

−d1 → −d1 + σ1Ḃ1(t), −d2 → −d2 + σ2Ḃ2(t), −d3 → −d3 + σ3Ḃ3(t), −d4 → −d4 + σ4Ḃ4(t),

where Bi(t)(i = 1, 2, 3, 4) represent independent standard Brownian motions, and σi(i = 1, 2, 3, 4) are
the intensities of the environmental random disturbance. Then, we can obtain the following system:

dx1(t) = [ax2(t)− d1x1(t)− px1(t)]dt + σ1x1(t)dB1(t),
dx2(t) = [px1(t)− d2x2(t)− b1x2

2(t)−
cx2(t)y2(t)

1+αx2(t)+βy2(t)+αβx2(t)y2(t)
]dt + σ2x2(t)dB2(t),

dy1(t) = [ ecx2(t)y2(t)
1+αx2(t)+βy2(t)+αβx2(t)y2(t)

− d3y1(t)− hy1(t)]dt + σ3y1(t)dB3(t),

dy2(t) = [hy1(t)− d4y2(t)− b2y2
2(t)]dt + σ4y2(t)dB4(t).

(4)

In this paper, we mainly research some population characteristics of System (3).
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3. Existence and Uniqueness of Global Positive Solution

As we know, the density of population x1(t), x2(t), y1(t) and y2(t) should be positive. Therefore,
we give the following theorem to ensure that the system has a unique positive solution.

Theorem 1. For any given initial data x1(0) > 0, x2(0) > 0, y1(0) > 0 and y2(0) > 0, there is a unique
solution (x1(t), x2(t), y1(t), y2(t)) to System (3), and the solution remains in R4

+ with probability 1.

Proof of Theorem 1. Since System (3) satisfies the local Lipschitz continuous condition, there is a local
unique solution {x1(t), x2(t), y1(t), y2(t)} ∈ R4

+ for any initial data {x1(0), x2(0), y1(0), y2(0)} ∈ R4
+

on t ∈ [0, τe) (with probability 1), where τe is the explosion time. To show that the solution is global,
we only need to prove τe = ∞ a.s. Give the following conditions for the initial value:

1
l0

< min{x1(0), x2(0), y1(0), y2(0)} ≤ max{x1(0), x2(0), y1(0), y2(0)} < l0,

where l0 is a sufficiently large number. For each integer l ≥ l0, define the stopping time

τl = in f {t ∈ (0, τe) : x1(t) /∈ (
1
l

, l) or x2(t) /∈ (
1
l

, l) or y1(t) /∈ (
1
l

, l) or y2(t) /∈ (
1
l

, l)},

where, in this paper, we set in f ∅ = ∞. According to the definition of τl , it is clear that τl increases as
l → ∞. Set τ∞ = liml→∞τl , whence τ∞ ≤ τe. That is to say, in order to prove the solution is global, it is
sufficient to show that τ∞ = ∞ a.s. Then, we define a C2-function V: R4

+ → R+ by

V(x1(t), x2(t), y1(t), y2(t)) =
2

∑
i=1

[xi(t)− 1− ln xi(t)] +
2

∑
i=1

[yi(t)− 1− ln yi(t)]. (5)

The non-negative of this function can be seen from

u− 1− ln u ≥ 0, ∀u > 0.

Let T > 0, for 0 ≤ t ≤ τm ∧ T. Applying Itô’s formula to V(x1(t), x2(t), y1(t), y2(t)), we have

d(V(x1, x2, y1, y2)) = L(V(x1, x2, y1, y2))dt +
4

∑
i=1

[(xi − 1)σidBi(t)]. (6)

According to the definition of operator L, we have

L(V(x1, x2, y1, y2)) = [F1(x1, x2, y1, y2) + F2(x1, x2, y1, y2) + H1(x1, x2, y1, y2) + H2(x1, x2, y1, y2)]dt,

where F1(x1, x2, y1, y2) = (1− 1
x1
)(ax2 − d1x1 − px1) +

σ2
1
2 , F2(x1, x2, y1, y2) = (1− 1

x2
)(px1 − d2x2 −

b1x2
2 −

cx2y2
1+αx2+βy2+αβx2y2

) +
σ2

2
2 , H1(x1, x2, y1, y2) = (1− 1

y1
)( ecx2y2

1+αx2+βy2+αβx2y2
− d3y1 − hy1) +

σ2
3
2 and

H2(x1, x2, y1, y2) = (1− 1
y2
)(hy1 − d4y2 − b2y2

2) +
σ2

4
2 .

Then, we have

LV(x1, x2, y1, y2) ≤ −b1x2
2 + (a + b1)x2 − b2y2

2 + b2y2 + p + h +
c
β
+

ec
αβ

+
4

∑
i=1

di +
4

∑
i=1

σ2
i

2
≤ K, (7)
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where K = (a+b1)
2

4b1
+ b2

4 + p + h + c
β + ec

αβ + ∑4
i=1 di + ∑4

i=1
σ2

i
2 > 0. It can be obtained from Formulas (6)

and (7) that

d(V(x1, x2, y1, y2)) ≤ Kdt +
4

∑
i=1

[(xi − 1)σidBi(t)]. (8)

Integrating both sides of Formula (8) from 0 to τl ∧ T, we have

V(x1(τl ∧ T), x2(τl ∧ T),y1(τl ∧ T), y2(τl ∧ T)) ≤ V(x1(0), x2(0), y1(0), y2(0)) + KT

+
∫ τl∧T

0
σ1(x1 − 1)dB1(t) +

∫ τl∧T

0
σ2(x2 − 1)dB2(t)

+
∫ τl∧T

0
σ3(y1 − 1)dB3(t) +

∫ τl∧T

0
σ4(y2 − 1)dB4(t).

(9)

Taking expectations at both sides of Formula (9), it is easy to obtain

EV(x1(τl ∧ T), x2(τl ∧ T), y1(τl ∧ T), y2(τl ∧ T)) ≤ M, (10)

where M = V(x1(0), x2(0), y1(0), y2(0)) + KT. According to the definition of τl , there is some i (i =
1, 2), such that xi(τl , ω) and yi(τl , ω) equal either 1

l or l. Then, V(x1(τl , ω), x2(τl , ω), y1(τl , ω), y2(τl , ω))

is no less than either
l − 1− ln l or

1
l
− 1− ln

1
l

.

Then, one has

V(x1(τl , ω), x2(τl , ω), y1(τl , ω), y2(τl , ω)) ≥ [(l − 1− ln l) ∧ (
1
l
− 1− ln

1
l
)].

According to Formula (10), we can obtain

M ≥ EV(x1(τl∧T), x2(τl∧T), y1(τl∧T), y2(τl∧T))

≥ E[1τl≤T(ω)V(x1(τl), x2(τl), y1(τl), y2(τl))]

≥ P{τl ≤ T}[(l − 1− ln l) ∧ (
1
l
− 1− ln

1
l
)].

(11)

Letting l → ∞, we have
lim
l→∞

P{τl ≤ T} = 0.

Since T > 0 is arbitrary, we have
P{τ∞ < ∞} = 0.

Then,
P{τ∞ = ∞} = 1.

The proof of Theorem 1 is completed.

4. Stochastically Ultimate Boundedness

Theorem 1 shows that the solution of System (3) remains in the positive cone R4
+. However,

this nonexplosion property in a population dynamical system is often not good enough. Therefore,
the property of ultimate boundedness is more desired. First, we give the definition of stochastically
ultimate boundedness.
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Definition 1 ([28]). With respect to System (3), the solution is said to be stochastically ultimate bounded, if for
ε ∈ (0, 1), there is a positive constant H = H(ε) such that for any initial data {x1(0), x2(0), y1(0), y2(0)} ∈
R4
+, the solution {x1(t), x2(t), y1(t), y2(t)} has the property that

lim sup
t→∞

P{|X(t)| ≥ H} ≤ ε, (12)

where |X(t)| = (x2
1 + x2

2 + y2
1 + y2

2)
1
2 .

Assumption 1. σ2
1 − 2d1 − 2p + 1 < 0, σ2

2 − 2d2 + 1 < 0, σ2
3 − 2d3 − 2h + 1 < 0 and σ2

4 − 2d4 + 1 < 0.

Theorem 2. Under Assumption 1, the solution of System (3) is stochastically ultimately bounded for any initial
data {x1(0), x2(0), y1(0), y2(0)} ∈ R4

+.

Proof of Theorem 2. For {x1(t), x2(t), y1(t), y2(t)} ∈ R4
+, define V(x1(t), x2(t), y1(t), y2(t)) as

the following

V(x1(t), x2(t), y1(t), y2(t)) =
2

∑
i=1

x2
i (t) +

2

∑
i=1

y2
i (t).

By Itô’s formula, we have

dV(x1, x2, y1, y2) = LV(x1, x2, y1, y2)dt + 2σ1x2
1dB1(t) + 2σ2x2

2dB2(t) + 2σ3y2
1dB3(t) + 2σ4y2

2dB4(t). (13)

Therefore, it is easy to derive

LV(x1, x2, y1, y2) = −2b1x3
2 − 2b2y3

2 + (σ2
1 − 2d1 − 2p)x2

1 + (σ2
2 − 2d2)x2

2 + (σ2
3 − 2d3 − 2h)y2

1

+ (σ2
4 − 2d4)y2

2 + 2(a + p)x1x2 + 2hy1y2 +
2ecx2y1y2

1 + αx2 + βy2 + αβx2y2

−
2cx2

2y2

1 + αx2 + βy2 + αβx2y2

≤ (σ2
1 − 2d1 − 2p + 1)x2

1 + (σ2
2 − 2d2 + 1)x2

2 + (σ2
3 − 2d3 − 2h + 1)y2

1

+ (σ2
4 − 2d4 + 1)y2

2 + 2(a + p)x1x2 + 2hy1y2 +
2ecy1

αβ
− x2

1 − x2
2 − y2

1 − y2
2.

(14)

Let

f (x1, x2, y1, y2) =(σ2
1 − 2d1 − 2p + 1)x2

1 + (σ2
2 − 2d2 + 1)x2

2 + (σ2
3 − 2d3 − 2h + 1)y2

1

+ (σ2
4 − 2d4 + 1)y2

2 + 2(a + p)x1x2 + 2hy1y2 +
2ecy1

αβ
.

(15)

Under Assumption 1, it is easy to find that function f (x1, x2, y1, y2) has an upper bound. We assume
that its upper bound is as follows

M = sup
(x1,x2,y1,y2)∈R4

+

{ f (x1, x2, y1, y2)}. (16)

Letting N = M + 1 and noticing f (0, 0, 0, 0) = 0, we have N > 0. According to Formula (14),
we can obtain

dV(x1, x2, y1, y2) ≤ [N − (x2
1 + x2

2 + y2
1 + y2

2)]dt + 2σ1x2
1dB1(t)

+ 2σ2x2
2dB2(t) + 2σ3y2

1dB3(t) + 2σ4y2
2dB4(t).

(17)
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By Itô’s formula, we have

d[etV(x1, x2, y1, y2)] = etV(x1, x2, y1, y2)dt + etdV(x1, x2, y1, y2)

≤ Netdt + 2σ1x2
1dB1(t) + 2σ2x2

2dB2(t) + 2σ3y2
1dB3(t) + 2σ4y2

2dB4(t).
(18)

Integrating both sides of Formula (18) from 0 to t and then taking expectations, we have

etE[V(x1, x2, y1, y2)] ≤ V(x1(0), x2(0), y1(0), y2(0)) + Net − N.

Hence, we have
lim sup

t→∞
E[V(X(t))] ≤ N,

where X(t) = (x1, x2, y1, y2). Then, we have

lim sup
t→∞

E[|X(t)|2] ≤ N.

For any ε > 0, let H =
√

N√
ε

. By Chebyshev’s inequality, we can obtain

P{|X(t)| > H} ≤ E(|X(t)|2)
H2 .

Then,

lim sup
t→∞

P{|X(t)| > H} ≤ N
H2 = ε.

The proof of Theorem 2 is completed.

5. Stochastic Extinction

In this section, we show that the population becomes extinct with probability one.

Theorem 3. Assume that {x1(t), x2(t), y1(t), y2(t)} is the solution of System (3) with initial data {x1(0),
x2(0), y1(0), y2(0)}. Then,
(i) all prey and predators die out exponentially with probability one, if (2d1 + σ2

1 )(2a − 2d2 − σ2
2 ) <

(a− d1 − d2)
2;

(ii) predators y1(t) and y2(t) die out exponentially with probability one, if (2d3 + σ2
3 )(

2ec
α − 2d4 − σ2

4 ) <

( ec
α − d3 − d4)

2.

Proof of Theorem 3. According to System (3), we get

d(x1 + x2) = dx1 + dx2 = L(x1 + x2)dt + σ1x1dB1(t) + σ2x2dB2(t),

where L(x1 + x2) = ax2− d1x1− b1x2
2 − d2x2− cx2y2

1+αx2+βy2+αβx2y2
. Let V(x1, x2) = ln(x1 + x2). By Itô’s

formula, we can obtain

dV(x1, x2) =
1

x1 + x2
(dx1 + dx2)−

1
2(x1 + x2)2 [(dx1)

2 + (dx2)
2],

= [
1

x1 + x2
(ax2 − d1x1 − d2x2 − b1x2

2 −
cx2y2

1 + αx2 + βy2 + αβx2y2
)

−
σ2

1 x2
1

2(x1 + x2)2 −
σ2

2 x2
2

2(x1 + x2)2 ]dt +
σ1x1

x1 + x2
dB1(t) +

σ2x2

x1 + x2
dB2(t).

(19)
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Then,

LV(x1, x2) =
1

2(x1 + x2)2 [2(x1 + x2)(ax2 − d1x1 − d2x2 − b1x2
2 −

cx2y2

1 + αx2 + βy2 + αβx2y2
)

− σ2
1 x2

1 − σ2
2 x2

2],

≤ 1
2(x1 + x2)2 [2(x1 + x2)(ax2 − d1x1 − d2x2)− σ2

1 x2
1 − σ2

2 x2
2].

(20)

We can write term
2(x1 + x2)(ax2 − d1x1 − d2x2)− σ2

1 x2
1 − σ2

2 x2
2,

in the following way:

(x1(t), x2(t))

[
−2d1 − σ2

1 a− d1 − d2

a− d1 − d2 2a− 2d2 − σ2
2

]
(x1(t), x2(t))T .

Letting the matrix

A1 =

[
−2d1 − σ2

1 a− d1 − d2

a− d1 − d2 2a− 2d2 − σ2
2

]
,

it is clear that matrix A1 is negative definite under the condition in (i). Define λmax as the maximum
eigenvalue of matrix A1. According to the condition in (i), we obtain

(x1(t), x2(t))

[
−2d1 − σ2

1 a− d1 − d2

a− d1 − d2 2a− 2d2 − σ2
2

]
(x1(t), x2(t))T ≤ −|λmax|(x2

1(t) + x2
2(t)).

Therefore, we have

dV(x1, x2) = d(ln(x1 + x2)) ≤ [
−|λmax|(x2

1 + x2
2)

2(x1 + x2)2 ]dt +
σ1x1

x1 + x2
dB1(t) +

σ2x2

x1 + x2
dB2(t),

≤ −1
4
|λmax|dt +

σ1x1

x1 + x2
dB1(t) +

σ2x2

x1 + x2
dB2(t).

(21)

Integrating both sides of Formula (19), it can be obtained that

ln(x1 + x2) ≤ ln(x1(0) + x2(0))−
1
4
|λmax|t +

∫ t

0

σ1x1

x1 + x2
dB1(t) +

∫ t

0

σ2x2

x1 + x2
dB2(t). (22)

Let Z1(t) =
∫ t

0
σ1x1

x1+x2
dB1(t) and Z2(t) =

∫ t
0

σ2x2
x1+x2

dB2(t), where Z1(t) and Z2(t) are local martingales.
By the strong law of large numbers for local martingales (see, e.g., Reference [26]), we can obtain the
following properties:

lim
t→∞

Zi(t)
t

= 0 a.s. i = 1, 2.

Therefore, we can get

lim sup
t→∞

ln(x1 + x2)

t
≤ −1

4
|λmax| < 0 a.s.

Then, we have
lim
t→∞

x1(t)→ 0, a.s. lim
t→∞

x2(t)→ 0. a.s.

Then, with the extinction of the prey, we find the predator dies out according to System (3).
The discussion of the predator population is similar. We have

L(ln(y1 + y2)) ≤
1

2(y1 + y2)2 [(y1(t), y2(t))A2(y1(t), y2(t))T ], (23)
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where

A2 =

[
−2d3 − σ2

3
ec
α − d3 − d4

ec
α − d3 − d4

2ec
α − 2d4 − σ2

4

]
.

Let λ̄max be the maximum eigenvalue of matrix A2. Under the condition in (ii), we have

ln(y1 + y2) ≤ ln(y1(0) + y2(0))−
1
4
|λ̄max|t +

∫ t

0

σ3y1

y1 + y2
dB3(t) +

∫ t

0

σ4y2

y1 + y2
dB4(t). (24)

Then, it can be obtained that

lim sup
t→∞

ln(y1 + y2)

t
≤ −1

4
|λ̄max| < 0 a.s.

which implies
lim
t→∞

y1(t)→ 0, a.s. lim
t→∞

y2(t)→ 0. a.s.

The proof of Theorem 3 is completed.

6. Numerical Simulations

In this section, we illustrate our theoretical results using the numerical simulations of System
(3). We randomly selected the initial condition in (0, 1). The initial state of the system is
(0.6324, 0.8147, 0.127, 0.2785). We used the Milstein method mentioned in Reference [29] to substantiate
the analytical findings. Consider the discretization transformation of System (3):

xj+1
1 = xj

1 + (axj
2 − d1xj

1 − f xj
1)∆t + σ1xj

1

√
∆tε1,j +

1
2 σ2

1 xj
1(ε

2
1,j∆t− ∆t),

xj+1
2 = xj

2 + ( f xj
1 − d2xj

2 − b1x2j
2 −

cxj
2yj

2

1+αxj
2+βyj

2+αβxj
2yj

2

)∆t + σ2xj
2

√
∆tε2,j +

1
2 σ2

2 xj
2(ε

2
2,j∆t− ∆t),

yj+1
1 = yj

1 + (
ecxj

2yj
2

1+αxj
2+βyj

2+αβxj
2yj

2

− d3yj
1 − hyj

1)∆t + σ3yj
1

√
∆tε3,j +

1
2 σ2

3 yj
1(ε

2
3,j∆t− ∆t),

yj+1
2 = yj

2 + (hyj
1 − d4yj

2 − b2y2j
2 )∆t + σ4yj

2

√
∆tε4,j +

1
2 σ2

4 yj
2(ε

2
4,j∆t− ∆t),

(25)

where time increment ∆t is positive and εi,j(i = 1, 2, 3, 4) are the Gaussian random variables that follow
distribution N(0, 1). For System (3), the parameters are selected as follows:

(i). a = 0.7, b1 = 0.9, b2 = 0.9, c = 0.8, e = 7
8 , p = 0.3, h = 0.5, α = 0.8, β = 0.5, d1 = 0.9, d2 = 0.5,

d3 = 0.5, d4 = 0.5, σ2
1 = 0.5, σ2

2 = 1, σ2
3 = 0.1, σ2

4 = 0.8.
(ii). a = 0.3, b1 = 0.2, b2 = 0.8, c = 0.7, e = 0.7, p = 0.6, h = 0.5, α = 0.8, β = 0.6, d1 = 0.2, d2 = 0.1,
d3 = 0.7, d4 = 0.7, σ2

1 = 0.01, σ2
2 = 0.01, σ2

3 = 0.2, σ2
4 = 0.5.

It is easy to verify that Parameters (i) satisfy the condition of the extinction of the prey population
in Theorem 3. The corresponding numerical results are shown in Figure 1.
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Figure 1. (a,c,e,g) Solutions of x1(t), x2(t), y1(t) and y2(t) for deterministic System (2), respectively;
(b,d,f,h) solutions of x1(t), x2(t), y1(t) and y2(t) for perturbation System (3), respectively.

As can be clearly seen from Figure 1, x1(t), x2(t), y1(t) and y2(t) tend to zero in both the
deterministic and stochastic models. Under Parameter (i), we have (2d1 + σ2

1 )(2a − 2d2 − σ2
2 ) <

(a − d1 − d2)
2. By Theorem 3, x1(t), x2(t), y1(t) and y2(t) tend to become extinct. Numerical

simulations clearly support this result (see Figure 1). Therefore, Figure 1 provides evidence for
the accuracy of Conclusion (i) in Theorem 3. Then, Under Parameter (ii), the corresponding numerical
simulation results are as follows.

As can be clearly seen from Figure 2, y1(t) and y2(t) tend to zero in both the deterministic
and stochastic models. By calculation, we can find that Parameter (ii) satisfies condition (2d3 +

σ2
3 )(

2ec
α − 2d4 − σ2

4 ) < ( ec
α − d3 − d4)

2. According to Theorem 3, y1(t) and y2(t) tend to become extinct.
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Numerical simulations clearly support this result (see Figure 2). Meanwhile, under Parameter (ii), we
give the trajectories of x1(t) and x2(t) over a long period of time (see Figure 3). Figure 3 shows that
the immature prey and mature prey are permanence for a long time.
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Figure 2. (a,c) Solutions of immature and mature predator population for deterministic System (2),
respectively; (b,d) solutions of immature and mature predator of perturbation System (3), respectively.
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Figure 3. (a,b) Solutions of x1(t) and x2(t) for perturbation System (3), respectively.

Under the condition of Parameter (ii), according to Figures 2 and 3, the predator tends to become
extinct and the prey survives for a long time. In nature, this situation is reasonable.

7. Conclusions

In this paper, we researched the predator–prey system with a Crowley–Martin functional
response function and environmental noise. In Reference [5], we found that the predator-dependent
functional response is more reasonable than the prey-dependent functional response. In particular,
the Crowley–Martin functional response is more suitable for the case that the predator feeding rate
is decreased by higher predator density. Compared with Holling Types I–III functional responses,
the Crowley–Martin functional response has more complex forms. From an analysis point of view,
the theoretical analysis of predator–prey system with a Crowley–Martin functional response is more
difficult, and the results are more complex. Meanwhile, we know that the system is inevitably affected
by environmental noise. Therefore, we researched the predator–prey model with a Crowley–Martin
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functional response function and environmental noise. On this basis, we first attempted to consider
the stage structure on both prey and predator. First, we proved the existence and uniqueness
of the global positive solution of System (3). Next, we pointed out that the positive solution is
stochastically bounded. Then, we gave sufficient conditions for the extinction of the predator and prey
populations in two cases. Some interesting questions deserve further investigation; we will research
the stability and stationary distribution of System (3) (see Reference [30]), and consider the impact
of sudden changes and time delays on population characteristics (see Reference [31]) in the future.
In addition, we will research the chaotic behavior of a predator–prey system and the Allee effect (see
References [32,33]).
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