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Abstract: For the 250th birthday of Joseph Fourier, born in 1768 at Auxerre in France, this MDPI
special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation.
Fourier analysis, named after Joseph Fourier, addresses classically commutative harmonic analysis.
The modern development of Fourier analysis during XXth century has explored the generalization of
Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally
compact non-Abelian groups. In parallel, the theory of coherent states and wavelets has been
generalized over Lie groups (by associating coherent states to group representations that are square
integrable over a homogeneous space). The name of Joseph Fourier is also inseparable from the
study of mathematics of heat. Modern research on Heat equation explores geometric extension of
classical diffusion equation on Riemannian, sub-Riemannian manifolds, and Lie groups. The heat
equation for a general volume form that not necessarily coincides with the Riemannian one is useful
in sub-Riemannian geometry, where a canonical volume only exists in certain cases. A new geometric
theory of heat is emerging by applying geometric mechanics tools extended for statistical mechanics,
for example, the Lie groups thermodynamics.

Keywords: harmonic analysis on abstract space; heat equation on manifolds and Lie Groups

“The differential equations of the propagation of heat express the most general conditions
and the physical questions as a result of the analysis of pure problems, which is properly the
object of the theory .... The different forms of body are varied to infinity, to the distribution
of heat and penetrations; but all the inequalities fade away quickly and disappear as time
goes by. The march of the phenomenon become more regular and simpler, is finally subject
to a specific law that is the same for all cases, and that it bears no more any sensible imprint
of the initial disposition ... The new theories, explained in our work, are united forever with
the mathematical sciences, and rest, like them, on invariable foundations; they will retain
all the elements they possess today, and they will acquire, continually, more extension”.
[Les équations différentielles de la propagation de la chaleur expriment les conditions les
plus générales, et ramènent les questions physiques à des problèmes d’analyse pure, ce
qui est proprement l’objet de la théorie .... Les formes des corps sont variées à l’infini,
la distribution de la chaleur qui les pénètre peut être arbitraire et confuse; mais toutes
les inégalités s’effacent rapidement et disparaissent à mesure que le temps s’écoule. La
marche du phénomène devenue plus régulière et plus simple, demeure enfin assujettie à
une loi déterminée qui est la même pour tous les cas, et qui ne porte plus aucune empreinte
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sensible de la disposition initiale ... . Les théories nouvelles, expliquées dans notre ouvrage
sont réunies pour toujours aux sciences mathématiques et reposent comme elles sur des
fondements invariables; elles conserveront tous les éléments qu’elles possèdent aujourd’hui,
et elles acquerront, continuellement plus d’étendue.]—Joseph Fourier (1768–1830), Discours
préliminaire à la théorie analytique de la chaleur [1].

For the 250th birthday of Joseph Fourier (Figure 1) [1–6], born in 1768 at Auxerre in France, this
MDPI special issue will explore modern topics related to Fourier analysis and Fourier Heat Equation.
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Fourier analysis, named after Joseph Fourier, who showed that representing a function as a sum 
of trigonometric functions greatly simplifies the study of heat transfer and addresses classically 
commutative harmonic analysis. Classical commutative harmonic analysis is restricted to functions 
defined on a topological locally compact and Abelian group G (Fourier series when G = Rn/Zn, 
Fourier transform when G = Rn, discrete Fourier transform when G is a finite Abelian group). The 
modern development of Fourier analysis during XXth century has explored the generalization of 
Fourier and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally 
compact non-Abelian groups. This has been solved by geometric approaches based on “orbits 
methods” (Fourier-Plancherel formula for G is given by coadjoint representation of G in dual vector 
space of its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold, Berezin, Kostant, 
Souriau, Duflo, Guichardet, Torasso, Vergne, Paradan, etc.) [7]. It was observed first by Souriau that 
the coadjoint orbits carry a natural symplectic structure and there is a closed non-degenerate 
G-invariant 2-form on each orbit, called the Kirillov-Kostant-Souriau symplectic form that plays a 
central role in geometric quantization and classification of the homogeneous symplectic manifolds. 
In parallel, theory of coherent states (Klauder, Perelomov, Gilmore, etc.) and wavelets (Grossmann, 
Daubechies, Meyer, etc.) has been generalized over Lie groups (by associating coherent states to 
group representations that are square integrable over a homogeneous space) [8]. One should add the 
developments, over the last 30 years, of the applications of harmonic analysis to the description of 
the fascinating world of aperiodic structures in condensed matter physics, e.g., quasicrystals and 
their diffraction spectra [9]. The notions of model set introduced by Y. Meyer, and of almost periodic 
functions, have revealed themselves as extremely fruitful in this domain of natural sciences.  

The name of Joseph Fourier is also inseparable from the study of mathematics of heat, but it 
took almost a century for the most brilliant scientists of the nineteenth century—Fourier, Biot, 
Poisson, Lamé, and Boussinesq [10]—to unravel complexity appearances of the propagation of heat 
in solids, to develop efficient physical concepts and related instruments of mathematics, and from 
confusion that constitutes the reality of the calorific phenomena, to clarify a new knowledge of 
diffusion equation in elastic and crystal domains. It is from the study of thermal energy that the very 
notion of diffusion related to the parabolic-type equation is born with Fourier and Biot. Fourier’s 
first memoir at the Academy of Sciences on this subject dates back to 1807, and completed in 1811 by 
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Fourier analysis, named after Joseph Fourier, who showed that representing a function as a
sum of trigonometric functions greatly simplifies the study of heat transfer and addresses classically
commutative harmonic analysis. Classical commutative harmonic analysis is restricted to functions
defined on a topological locally compact and Abelian group G (Fourier series when G = Rn/Zn, Fourier
transform when G = Rn, discrete Fourier transform when G is a finite Abelian group). The modern
development of Fourier analysis during XXth century has explored the generalization of Fourier
and Fourier-Plancherel formula for non-commutative harmonic analysis, applied to locally compact
non-Abelian groups. This has been solved by geometric approaches based on “orbits methods”
(Fourier-Plancherel formula for G is given by coadjoint representation of G in dual vector space of
its Lie algebra) with many contributors (Dixmier, Kirillov, Bernat, Arnold, Berezin, Kostant, Souriau,
Duflo, Guichardet, Torasso, Vergne, Paradan, etc.) [7]. It was observed first by Souriau that the
coadjoint orbits carry a natural symplectic structure and there is a closed non-degenerate G-invariant
2-form on each orbit, called the Kirillov-Kostant-Souriau symplectic form that plays a central role in
geometric quantization and classification of the homogeneous symplectic manifolds. In parallel, theory
of coherent states (Klauder, Perelomov, Gilmore, etc.) and wavelets (Grossmann, Daubechies, Meyer,
etc.) has been generalized over Lie groups (by associating coherent states to group representations
that are square integrable over a homogeneous space) [8]. One should add the developments, over the
last 30 years, of the applications of harmonic analysis to the description of the fascinating world of
aperiodic structures in condensed matter physics, e.g., quasicrystals and their diffraction spectra [9].
The notions of model set introduced by Y. Meyer, and of almost periodic functions, have revealed
themselves as extremely fruitful in this domain of natural sciences.

The name of Joseph Fourier is also inseparable from the study of mathematics of heat, but it took
almost a century for the most brilliant scientists of the nineteenth century—Fourier, Biot, Poisson,
Lamé, and Boussinesq [10]—to unravel complexity appearances of the propagation of heat in solids, to
develop efficient physical concepts and related instruments of mathematics, and from confusion that
constitutes the reality of the calorific phenomena, to clarify a new knowledge of diffusion equation in
elastic and crystal domains. It is from the study of thermal energy that the very notion of diffusion
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related to the parabolic-type equation is born with Fourier and Biot. Fourier’s first memoir at the
Academy of Sciences on this subject dates back to 1807, and completed in 1811 by extensive work
that was examined by Malus, Haüy, Laplace, Lagrange, and Legendre. Fourier never adhered to
reviewers comments and he reprinted his memoir without taking any account of the critics of these
censors. It was in 1822 that the “Analytical Theory of Heat” appeared. The Fourier manuscript must
be considered rightly as the foundation of mathematical physics. Modern research on heat equation
explores the extension of classical diffusion equation on Riemannian, sub-Riemannian manifolds, and
Lie groups (i.e., Hall). The heat equation for a general volume form that not necessarily coincides
with the Riemannian one is useful in sub-Riemannian geometry, where a canonical volume only
exists in certain cases. Jean-Michel Bismut [11] has introduced the concept of hypoelliptic Laplacian
(If X is a Riemannian manifold, the hypoelliptic Laplacian is a family of hypoelliptic operators that
interpolates between the ordinary Laplacian and the geodesic flow), with the probabilistic counterpart
that is an interpolation between Brownian motion and geodesics. Elliptic heat kernel has infinite
propagation speed compared to geodesic flow that has a finite propagation speed. On R3, Langevin
had introduced the Langevin equation to reconcile Brownian motion and classical mechanics. The
hypoelliptic diffusion on the total space of the tangent bundle of a Riemannian manifold is a geometric
Langevin process that interpolates between the geometric Brownian motion and the geodesic flow. In
parallel with Geometric Mechanics, Jean-Marie Souriau [12] has interpreted the temperature vector of
Planck as a space-time vector, obtaining, in this way, a phenomenological model of continuous media
that presents some interesting properties: The temperature vector and entropy flux are in duality; the
positive entropy production is a consequence of Einstein’s equations; the Onsager reciprocity relations
are generalized; and in the case of a fluid in the non-relativistic approximation, the model unifies heat
conduction and viscosity (equations of Fourier and Navier). This work has been extended by Claude
Vallée [13], by constructing a relativistic model of a dissipative continuum that complies with the laws
of both mechanics and thermodynamics.

A last comment concerns the fundamental contribution of Fourier analysis to quantum physics:
Quantum mechanics with the notion of representation based on spectral properties of basic observables,
like position, momentum, energy, and spin; the quantum field theory saw the first steps that emerged
from solutions of Maxwell equations viewed as assemblies of harmonic vibrations (“modes”).

The content of this special issue highlights papers exploring non-commutative Fourier harmonic
analysis, hypoelliptic heat equation, and relativistic heat equation in the context of Information Theory
and Geometric Science of Information.

“By scrutinizing the history of these two great thoughts, would we find that the foundation
of mathematical thermology by Fourier was less prepared than that of celestial mechanics by
Newton?” [En scrutant de près l’histoire de ces deux grandes pensées, trouverait-on que la
fondation de la thermologie mathématique par Fourier était moins préparée que celle de la
mécanique céleste par Newton].—Auguste Comte, Cours de philosophie positive, t. II, p.
308, published by Bachelier, 1835.

“ We lack this thermodynamics of shapes, needed according to Thom for a true theory of
information ” [Il nous manque cette thermodynamique des formes nécessaire selon Thom à
une véritable théorie de l’information]. Edgard Morin, La méthode, la nature de la nature;
points, ed. du seuil, 1977.

We will introduce to each paper the following, structuring the special issue in two main sessions:

• Four papers on modern Fourier Heat Theory;
• Five papers on extension of Fourier Harmonic Analysis.

1. Modern Fourier Heat Theory

The first paper [14], written by F. Barbaresco, deals with Geometric Theory of Heat based on
Jean-Marie Souriau Lie Groups Thermodynamics and its extension to define Maximum Entropy (Gibbs)
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density with higher order moments constraints. In this Souriau model, Planck temperature is described
as an element of Lie algebra for the Lie Group acting on the homogeneous Manifold. Souriau has
introduced, through the concept of Souriau, non-equivariant coadjoint action of Lie Group on moment
map and Souriau cocycle, an invariant metric that is an extension of classical Fisher metric coming
from Information Geometry, called, in the paper, Souriau-Fisher metric and vector-valued extension
through poly-symplectic model.

The second paper [15], written by Arjan Van der Schaft and Bernhard Maschke, develops a
Thermodynamic model initially proposed by Balian and Valentin for symplectization of contact
manifolds, and introduces the global geometric definition of a degenerate Riemannian metric on the
homogeneous Lagrangian sub-manifold describing the state properties. In the second part of this
paper, authors give a geometric formulation of non-equilibrium thermodynamic processes, and the
definition of port-thermodynamic systems and interconnection ports.

The third paper of François Gay-Balmaz and Hiroaki Yoshimura [16] presents new results on the
variational formulation of nonequilibrium thermodynamics for discrete or continuum systems, and its
extension for irreversible processes. These new models are illustrated in the finite dimensional cases,
and on the continuum side.

The fourth paper [17], by Tamás Fülöp, Róbert Kovács, Ádám Lovas, Ágnes Rieth, Tamás Fodor,
Mátyás Szücs, Péter Ván, and Gyula Gróf, analyzes the non-Fourier heat conduction phenomenon on
room temperature and proposes to use the Guyer-Krumhansl equation to replace classical Fourier’s
law for room-temperature phenomena in the modeling of heterogeneous materials. Then, generalized
heat conduction equations are introduced where Fourier heat conduction is coupled to elasticity
via thermal expansion, resulting in a particular generalized heat equation for the temperature field.
The last model is deduced from pseudo-temperature concept underlying heat conduction mechanics
behind non-Fourier phenomena.

2. Extension of Fourier Harmonic Analysis

In the first paper of the second part [18], Hervé Bergeron and Jean Pierre Gazeau implement
the so-called covariant integral quantization for Weyl-Heisenberg and affine group symmetries. Any
quantization maps linearly function on a phase space to symmetric operators in a Hilbert space,
and covariant integral quantization combines operator-valued measure with the symmetry group of
the phase space. Covariant means that the quantization map intertwines classical (geometric operation)
and quantum (unitary transformations) symmetries. Integral means that all resources of integral
calculus are employed when the procedure is applied to singular functions, or distributions, for which
the integral calculus is an essential ingredient. This quantization scheme is first reviewed before its
specification to the Weyl-Heisenberg and affine groups, and the fundamental role played by Fourier
transform in both cases is emphasized. Generalizations of the Wigner-Weyl transform are considered,
and many properties of the Weyl integral quantization, commonly viewed as optimal, are shown to
actually be shared by a large family of integral quantizations.

The content of the second paper [19], authored by Maurice de Gosson, lies in the continuation of
previous works where it was shown that the equivalence of the Heisenberg and Schrödinger pictures
of quantum mechanics requires the use of the Born and Jordan quantization rules. It gives further
evidence that the Born–Jordan rule is the correct quantization scheme for quantum mechanics. For this
purpose, correct short-time approximations to the action functional, initially due to Makri and Miller,
are used, and it is shown that they lead to the desired quantization of the classical Hamiltonian.

In the third paper [20], Remco Duits, Erik J. Bekkers, and Alexey Mashtakov consider the
Fokker–Planck PDEs (including diffusions) for stable Lévy processes (including Wiener processes)
on the joint space of positions and orientations, which play a major role in mechanics, robotics,
image analysis, directional statistics, and the probability theory. The exact analytic designs and
solutions are known in the 2D case, where they have been obtained using Fourier transform on SE(2).
The authors extend these approaches to 3D using Fourier transform on the Lie group SE(3) of rigid
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body motions. More precisely, they define the homogeneous space of 3D positions and orientations
R3
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equivalent if they are equal up to a rotation around the reference axis. On this quotient, the authors
design a specific Fourier transform and apply it to derive new exact solutions to Fokker–Planck PDEs
of α-stable Lévy processes on R3
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an explicit algebraic spectral decomposition of the solutions. The exact probability kernel for α

= 1 (the diffusion kernel) is compared to the kernel for α = 12 (the Poisson kernel). Stochastic
differential equations (SDEs), for the Lévy processes on the quotient, are set up and the corresponding
Monte-Carlo methods are derived. The exact probability kernels are shown to arise as the limit of the
Monte-Carlo approximations.

In the fourth paper [21], authored by Adam Brus, Jiří Hrivnák, and Lenka Motlochová, sixteen
types of the discrete multivariate transforms, induced by the multivariate antisymmetric and
symmetric sine functions, are explicitly developed. Provided by the discrete transforms, inherent
interpolation methods are formulated. The four generated classes of the corresponding orthogonal
polynomials generalize the formation of the Chebyshev polynomials of the second and fourth kinds.
Continuous orthogonality relations of the polynomials, together with the inherent weight functions,
are deduced. Sixteen cubature rules, including the four Gaussian, are produced by the related
discrete transforms. For the three-dimensional case, interpolation tests, unitary transform matrices,
and recursive algorithms for calculation of the polynomials are presented.

In the fifth paper [22], Enrico Celeghini, Manuel Gadella, and Mariano A. Del Olmo present
recent results in harmonic analysis in the real line R and in the half-line R+, which show a closed
relation between Hermite and Laguerre functions, respectively, their symmetry groups and Fourier
analysis. This can be done in terms of a unified framework based on the use of rigged Hilbert spaces.
A relation is established between the universal enveloping algebra of the symmetry groups with the
fractional Fourier transform. The results obtained are relevant to quantum mechanics as well as to
signal processing as Fourier analysis has a close relation with signal filters. In addition, some new
results concerning a discretized Fourier transform on the circle are presented. The authors introduce
new functions on the circle constructed with the use of Hermite functions with interesting properties
under Fourier transformations.
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