
entropy

Article

A Novel Construction of Efficient Substitution-Boxes
Using Cubic Fractional Transformation

Amjad Hussain Zahid 1,2, Muhammad Junaid Arshad 2 and Musheer Ahmad 3,*
1 Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan;

amjad.zahid@umt.edu.pk
2 Department of Computer Science, University of Engineering and Technology, Lahore 54000, Pakistan;

junaidarshad@uet.edu.pk
3 Department of Computer Engineering, Jamia Millia Islamia, New Delhi 110025, India
* Correspondence: musheer.cse@gmail.com; Tel.: +91-112-698-0281

Received: 27 January 2019; Accepted: 28 February 2019; Published: 5 March 2019
����������
�������

Abstract: A symmetric block cipher employing a substitution–permutation duo is an effective
technique for the provision of information security. For substitution, modern block ciphers use
one or more substitution boxes (S-Boxes). Certain criteria and design principles are fulfilled and
followed for the construction of a good S-Box. In this paper, an innovative technique to construct
substitution-boxes using our cubic fractional transformation (CFT) is presented. The cryptographic
strength of the proposed S-box is critically evaluated against the state of the art performance criteria
of strong S-boxes, including bijection, nonlinearity, bit independence criterion, strict avalanche
effect, and linear and differential approximation probabilities. The performance results of the
proposed S-Box are compared with recently investigated S-Boxes to prove its cryptographic strength.
The simulation and comparison analyses validate that the proposed S-Box construction method has
adequate efficacy to generate efficient candidate S-Boxes for usage in block ciphers.
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1. Introduction

Cryptography helps individuals and organizations to protect their data. For this purpose, different
symmetric and asymmetric ciphers have been designed. Symmetric ciphers possess simplicity and
efficiency, and consume fewer computational resources as compared to asymmetric ciphers. Symmetric
ciphers have two major categories as stream and block ciphers [1]. A stream cipher encrypts the
plaintext in bit-by-bit fashion. On the other hand, a block cipher encrypts a plaintext block of a fixed
size consisting of many bits simultaneously. Mostly, block ciphers are used for internet communication
whereas stream ciphers are used in situations where computational resources are limited or efficiency
is not the main concern.

A block cipher is particularly useful to achieve data confidentiality, which is one of the
cryptography goals. It is considered as one of the most widely used tools for the provision of data
security [2]. The most modern and popular symmetric ciphers, like AES, DES, Blowfish, RC2, RC5, and
IDEA, are all block ciphers. Block ciphers are easily implemented, more general, and cryptographically
stronger as compared to the stream ciphers [3]. Most of the block ciphers use either the Feistel structure
or the substitution and permutation operations. Block ciphers based on the Feistel structure divide
the plaintext block into two or more parts and perform different operations on these parts. DES,
Blowfish, Camellia, Kasumi, RC5, TEA, 3DES, RC6, etc. are some example block ciphers that use
the Feistel structure. Another type of popular block cipher is termed the substitution-permutation
network (SPN) [4]. These ciphers convert plaintext blocks using sub-keys and different numbers of
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rounds into respective ciphertext blocks. In each round, along with other operations, substitutions
and permutations are performed on the input bits. A substitution operation substitutes a block of bits
with another block of bits using a substitution box (S-Box). A permutation operation changes the
positions of the bits or bytes in the given input block. AES, SHARK, PRESENT, SQUARE, etc. are
among the most popular block ciphers that use substitution and permutation operations. Among
these, AES cipher is most widely used in real life applications and many researchers have proposed
improvements and enhancements of it.

An S-Box is a crucial part of modern-day block ciphers and is used to create a muddled ciphertext
from the given plaintext. An S-Box is one of the fundamental techniques used to provide candid
confusion. Confusion is the complex relationship that must be established between the plaintext and
the ciphertext [5]. The strength of the cipher is directly proportional to the level of confusion produced
in the ciphertext. As a result, the cryptographic strength of a block cipher using an S-Box is dependent
on the cryptographic strength of that S-Box. Many scholars have investigated and explored ways to
propose quality S-Boxes and analyzed their strength against some standard criteria and benchmarks,
such as nonlinearity (NL), bijection, strict avalanche criterion (SAC), bit independence criterion (BIC),
linear probability (LP), and differential probability (DP) etc.

In [6], the authors proposed a mechanism to create repositories or a database of S-Boxes, which
possess robust and resilient cryptographic topographies. These repositories can be of a great help to
provide the security of data and information during the customization of the block ciphers. Mohamed
et al. [7] proposed 18 S-Box properties to be present to resist against different types of cryptanalytic
attacks. The presence of a greater number of properties in an S-Box makes it more secure. SAC,
nonlinearity, BIC, and resistance to linear cryptanalysis and differential cryptanalysis are a few of the
most needed S-Box criteria [8,9].

Generally, a block cipher consists of many parts. An S-Box, being the lone non-linear part of a
block cipher, is very useful for enhancing the security of the plaintext by creating confusion in the
ciphertext. The non-linearity provided by an S-Box offers defense against linear cryptanalysis [10].
Block ciphers use two types of S-Boxes: Static and dynamic. Ciphers employing static S-Boxes use the
same S-Box in each round. This type of S-Box permits the attackers to investigate S-Box properties,
find its weaknesses, and ultimately obtain the opportunity for cryptanalysis of the ciphertext [7,11,12].
For example, DES uses static S-Boxes. To overcome the problems of static S-Boxes and provide more
security against cryptanalysis, many researchers have investigated new and novel ways to design
S-Boxes, which are random, dynamic, and key-dependent. Dynamic S-Box generation based on the key
ensures improvements in the strength of the cipher. For example, Blowfish cipher uses dynamic S-Boxes.

AES is one of the popular block ciphers which use S-Boxes in the encryption and decryption
processes. Sahmoud et al. [13] proposed an enhancement to the security offered by AES. It uses
multiple sub-keys for the encryption of different plaintext blocks. However, the new cipher is more
complex and slow as compared to AES. Moh’d et al. [14] introduced AES-512, which is an enhancement
to the original AES-128. It uses a plaintext block and a key of the size of 512-bits each. It has an increase
of more than 200% in the throughput compared to the original AES-128. In [15], the authors proposed
key based dynamic S-Boxes and increased the number of steps performed in each round of AES.
The authors in [16,17] rectified and improved the AES cipher by optimizing the S-boxes. These
optimized S-Boxes are more efficient than the traditional AES S-Box. Niemiec et al. [18] introduced a
symmetric block cipher that uses key-dependent generic S-boxes. The authors described the way to
generate a huge number of S-Boxes, which all exhibit good security landscapes. Kazlauskas et al. [19]
proposed four algorithms to generate key-dependent S-Boxes and evaluated the worth of these boxes
using distance metrics. Results demonstrate that the generated S-Boxes are of a high quality.

The Feistel structure has been used as the main construct in many of the symmetric ciphers,
like DES, GOST, RC5, etc. DES and GOST each uses eight S-Boxes with sizes 6 × 4 and 4 × 4,
respectively. The authors in [10] used the Feistel structure to choose a dynamic S-Box depending
upon the plaintext/ciphertext. One of the 16 S-Boxes of the 4 × 4 size was chosen using 8-bits
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plaintext/ciphertext. The right 4-bits choose the S-Box and the left 4-bits act as the input to the
S-Box. The authors also suggested a variation by dividing the 8-bits of the plaintext/ciphertext in two
non-equal size parts and accordingly the size of the S-box and number of S-Boxes could be determined.
This design of dynamic S-Box achieves the non-linear confusion and hence the cryptanalysis of the
ciphertext becomes very difficult. Similarly, LiCi is a lightweight block cipher that uses the Feistel
structure and active S-Boxes and is suitable for both software and hardware platforms, especially when
energy is the main constraint [20]. It shows good resistance against many cryptanalytic attacks.

One of the desirable properties of modern block ciphers is the avalanche effect [21]. This property
requires that a 1-bit change in key or the plaintext should produce substantial changes in the ciphertext.
If the value of the avalanche effect is very small (at least 50% of the ciphertext bits are not changed),
the block cipher is weak and cryptanalysis of the ciphertext becomes easy. The proposed cipher in [22]
using a dynamic S-Box shows a good avalanche effect compared to the standard AES when a single
bit is changed in the plaintext or the key. Shi et al. [23] analyzed in detail the avalanche effect of the
AES S-Box and concluded that both S-Boxes of AES have a good avalanche effect. The authors in [21]
analyzed five symmetric ciphers and concluded that AES has the highest avalanche effect. Mahmoud
et al. [24] proposed a modification to generate an S-Box to be used for AES having a 128-bits key.
The authors compared the correlation factor, avalanche effect, and time efficiency of the standard
AES and the proposed one. The value of the correlation factor was between −0.3 and 0.3, which
shows that the standard AES and proposed cipher have no dependence. The avalanche effect of the
S-Box proposed in [24] has values between 0.41 and 0.61, which makes it resistant against linear and
differential cryptanalysis. However, the standard AES is more efficient. Mar et al. [25] proposed three
methods to evaluate and analyze the SAC of a given S-Box. These methods are very simple and check
whether the given S-Box has an avalanche effect, possesses completeness, and is strong enough against
cryptanalysis. Adams et al. [26] described an efficient process to generate S-Boxes, which possess
the cryptographic properties of bijection, SAC, BIC, NL, etc. The authors also proved that a small
change in the input guarantees nonlinearity and the inverse S-Boxes also fulfill the evaluation criteria.
The generated S-Boxes are prospective contenders for SPN block ciphers.

Chaotic cryptography is among the most interesting areas in the field of information security in the
recent era as the chaotic systems possess the property of randomness [27]. Many researchers have used
chaos to design ciphers with good cryptographic strength. Garg et al. [28] analyzed different techniques
to design an S-Box and concluded that S-Boxes designed using a chaotic approach demonstrate good
cryptographic strength. The authors in [29] proposed some chaotic map-based block ciphers using
a different approach and then showed that the proposed ciphers were resilient to different attacks.
Ahmad et al. [30] designed an efficient S-Box using the chaos and travelling salesman problem and
analyzed its performance against cryptographic standards. The results indicate that the proposed
S-Box is more effective when compared to its counterparts. The authors in [31–35] proposed strong
S-Boxes based on the combination of chaotic maps and other different algorithms. The evaluation of
the cryptographic performance of these S-Boxes against NL, SAC, BIC, etc. revealed that hyperchaotic
systems are stronger than chaotic ones. Peng et al. [36] and Solami et al. [37] devised methods to
generate an S-Box using a hyperchaotic system. The resultant S-Boxes demonstrate a good response
to cryptographic properties, like BIC, SAC, DP, etc. The suggested methods have the capability to
generate a huge number of S-Boxes.

Another popular area in cryptography is DNA computing, which is being considered as a possible
solution to the design of resilient ciphers. Kadhim et al. [38] and Al-Wattar et al. [39] proposed efficient
S-Boxes using DNA computing, analyzed the security of the proposed ciphers using different criteria,
and showed that the ciphers passed the test criteria. Many other researchers have used DNA computing
to design and propose block ciphers, such as [40–43].

Ciphers using S-Boxes highly depend on the security of the S-Boxes. Thus, the identification of a
tool to evaluate and find an S-Box with high security that can also assist in the design of efficient S-Boxes
is considered critical. Wang et al. [44] developed a software tool to analyze and test the performance of
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S-boxes. The software tool supports the design of good block ciphers. Albermany et al. [45] suggested
random block cipher (RBC). It uses a master key of a length of 128 bits and 64 bits plaintext. Eight
sub-keys are generated from the master key. The size of each sub-key is 16 bits. A bijective function,
a new S-box, and binary operations are employed in this cipher. Thirty-two S-boxes are used and
the length of the ciphertext is 128 bits. It is able to encrypt a large amount of plaintext data very
efficiently. Many other authors have contributed to the design of various S-Boxes using different
techniques. Tran et al. [46] proposed an S-Box using graph isomorphism and showed that their S-Box
exhibits the desired cryptographic properties. Coset diagrams are a special type of graph that has
real life applications. Razzaq et al. [47] used the coset diagram to propose a new S-Box, evaluated
its strength against cryptanalysis, and showed that the results were promising. Novel techniques of
cryptanalysis reveal that there are still some scarcities in the existing ciphers [48]. To provide better
security, the complexity of a cipher is increased and as a result the efficiency of the respective cipher
decreases. The authors proposed an efficient and more secure block cipher, which uses operations, like
linear and non-linear mixing, by employing S-Box, capsulation, etc. for confusion and diffusion effects.

Linear fractional transformation (LFT) is another area which helps in the generation of better
S-Boxes. Farwa et al. [49] proposed a modest and proficient algorithm to generate an S-Box based on
LFT. The authors analyzed the strength of their S-Box against cryptographic properties, like SAC, BIC,
NL, LP, DP, etc. The authors in [50–52] proposed efficient algorithms to design good S-Boxes based
on LFT and the projective general linear group on Galois field, respectively. The proposed S-Boxes
showed good performances when compared with other existing S-Boxes. Many researchers have
exposed the cellular automata field to propose S-Boxes [53,54]. Authors have shown that their S-Boxes
have good strength when critically analyzed.

The techniques and methods for the generation of S-Boxes presented in the literature are either
suitable for the creation of static S-boxes or are very complicated and time-consuming. Static S-Boxes
have their own limitations and weaknesses. These S-Boxes may help attackers in the cryptanalysis
of the captured ciphertext and hence they may reach the original plaintext. On the other hand,
the methods presented in the literature that generate dynamic and key-dependent S-boxes are very
complex and less efficient. Thus, the need for a simple and efficient method to generate dynamic
S-Boxes exists.

In this paper, a novel design method for the construction of efficient S-Boxes for block ciphers is
proposed. The following considerations were kept in mind while designing the proposed S-Box:

• An S-box that helps in the security enhancement of the block cipher and resists cryptanalysis;
• An S-Box that is simple to construct;
• An S-Box that is generated dynamically using sub-keys;
• An S-Box that fulfills the most needed S-Box criteria, like NL, SAC, BIC, LP, DP, etc.

The method proposed in this paper for the construction of an S-Box is an innovative one and is
quite different from the approaches presented in the literature. A cubic fractional transformation is
proposed for the construction of strong S-Boxes. After the S-Box was designed, a performance analysis
was performed to show its strength. The proposed S-Box demonstrated a very good cryptographic
strength when compared with other recently designed S-Boxes. The results indicated that the proposed
S-Box is a good choice for block ciphers.

The structure of the rest of the paper is as follows. Section 2 of this paper presents the design
architecture of the proposed S-Box. The performance evaluation of the proposed S-Box against its
cryptographic properties is discussed in Section 3 and a comparison is made with some S-boxes.
Section 4 concludes the research paper.

2. Proposed Substitution Box

Modern block ciphers employ byte substitution to replace a complete byte (one element) of
a matrix with another complete byte using the substitution box (S-Box). Generally, the design of
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an S-Box involves nonlinear mapping, which results in bijection. Many researchers have designed
S-Boxes that are cryptographically strong using such mappings. One such mapping is linear fractional
transformation (LFT), which was exhaustively explored for the construction of the S-boxes [49–52].
However, the process of generating these S-Boxes using LFT is very complicated and time consuming.

In this paper, we extend the idea of LFT and construct our new transformation to generate an
S-Box using another nonlinear mapping method in a simple and efficient way. We call this extended
transformation cubic fractional transformation (CFT). A cubic fractional transformation is a function of
the form:

C(z) =
1

α(z)3 + β
(MOD(2n + 1))α, β, z ∈ Z (1)

where, Z = {0, 1, . . . . . . , 2n − 1}, both α and β are not 0 at the same time, and α(z)3 + β 6= 0 is used
to construct the n × n S-box. The nonlinear nature of CFT stimulates its usage in byte substitution.
The procedure to generate the proposed S-Box for n = 8 is illustrated in Figure 1.
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To elaborate the construction of the proposed S-Box using Equation (1), let us have a specific
type of cubic fractional transformation as given in Equation (2). Let Z = {0, 1, . . . , 2n − 1} = {0, 1, . . . ,
28 − 1} = {0, 1, 2, . . . , 254, 255} for n = 8. Any values can be chosen for α and β (α, β ∈ Z) that gratify
the condition of α(z)3 + β 6= 0. For the sake of the calculations here, we have chosen α = 95 and β =
15. The CFT function, C(z), given in Equation (2) generates values of Z – {0, 106} when z ∈ Z – {176,
184}. When z = 176, C(z) evaluates to 256 /∈ Z. When z = 184, the denominator of Equation (2) evaluates
to 0. To keep the function, C(z), bijective, we explicitly define C(z) for z ∈ {176, 184} as conditioned
in Equation (2). An example S-Box of a size of 8 × 8 is generated using a CFT function, c: Z → Z ,
given as:

C(z) =


(

1
95(z)3+15

)
(MOD 257) if z ∈ Z− {176, 184}
0 if z = 176

106 if z = 184

(2)

This particular cubic fractional transformation of Equation (2) generates the elements of our
proposed S-Box, which are organized in a 16 × 16 matrix as shown in Table 1.
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Table 1. Proposed S-Box.

120 250 193 180 88 223 185 112 210 242 233 241 91 95 53 174
132 115 125 220 74 135 190 80 72 104 43 8 239 38 194 186
183 153 31 160 116 157 114 165 48 13 52 221 244 63 24 119
46 171 169 158 9 177 42 123 140 122 111 216 245 98 70 197
203 235 168 187 12 26 137 138 101 60 225 100 113 28 195 146
29 199 189 86 214 102 200 39 178 191 227 44 27 15 246 141
144 134 255 19 22 204 18 139 82 35 156 57 209 181 79 93
188 231 206 97 77 128 143 155 167 59 208 175 253 3 73 218
62 61 47 159 78 68 136 126 58 36 152 252 249 45 67 229
54 56 99 6 94 198 145 226 173 247 34 11 85 87 248 118
192 213 133 212 237 21 92 20 215 121 219 49 109 50 238 64

0 176 66 1 76 254 150 222 106 129 205 40 196 127 230 179
154 69 30 163 33 10 4 55 2 105 7 117 71 65 81 251
148 170 182 217 232 236 151 124 224 17 131 41 166 161 96 184
107 83 162 37 130 172 228 75 25 103 240 147 108 207 211 234
32 110 51 23 16 201 202 164 14 84 149 243 142 5 90 89

As mentioned above, any values for α and β (α, β ∈ Z) can be used in Equation (1) to
generate an S-Box. One can choose sub-keys as the values for α and β to generate dynamic and
key-dependent S-boxes.

3. Cryptographic Properties of the Proposed S-Box

In this section, we analyze our method and S-Box given in Table 1 against widely accepted
standard S-Box performance criteria to gauge its cryptographic strength.

3.1. Bijection

A function, f : X → Y , is bijective if and only if ∀y∈Y, ∃ a unique x ∈ X, such that f (x) = y. For n-bit
inputs, this property maps all possible 2n input values to distinct output values. In other words, when
x1 6= x2, then f (x1) 6= f (x2). All component Boolean functions (f 1 to f 8) of the proposed S-box are
balanced (number of 1’s = number of 0’s). Further, all 28 output values of the S-box are distinctive
where each output value ∈ Z = {0, 1, . . . ., 255}.

3.2. Nonlinearity

An S-Box operation should not be a linear mapping of an input to an output as it weakens the
strength of any cipher. A high value of non-linearity provides resistance against linear cryptanalysis.
The nonlinearity of an n-bit Boolean function, f, is calculated as [55,56]:

NL( f ) = 2n−1 − 1
2

(
max

z∈{0,1}n

∣∣∣W f (z)
∣∣∣) (3)

where, Wf(z) = Walsh spectrum of the coordinate Boolean function, f, which is measured as:

W f (z) = ∑
t∈{0,1}n

(−1) f (t)⊕t.z

Here, t.z is the dot product of t and z in bit-by-bit fashion and z ∈ {0, 1}n. The nonlinearity values,
NL(f ), of the Boolean functions of our S-Box are given in Table 2.

Table 2. Coordinate Boolean functions of the proposed S-box and their nonlinearity values.

f f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

NL(f) 106 106 106 108 108 108 108 106
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Table 3 and Figure 2 give a comparison between the nonlinearity values of the proposed S-box and
various other S-Boxes. It is obvious from Table 3 and Figure 2 that our S-Box has a greater capability
for diluting the linearity, making the linear cryptanalysis very challenging.

Table 3. Comparison of the nonlinearity values of different S-boxes.

S-Box method Minimum Maximum Average

[19] 98 108 102.5
[24] 96 110 104.3
[50] 98 108 104
[57] 98 108 104
[58] 102 106 104
[59] 102 108 105.3
[60] 100 110 105.5
[61] 104 106 105.3
[62] 100 108 105.7
[63] 100 108 104.8
[64] 94 104 99.5

Proposed 106 108 107
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3.3. Strict Avalanche Criterion (SAC)

Webster et al. [65] introduced strict avalanche criteria as the important property for strong S-boxes.
This property states that a single bit change in the input should change half of the output bits. An SAC
value nearer to 0.5 is considered adequate. An S-Box should exhibit a strict avalanche effect to have
good randomness. Table 4 provides the SAC values of our S-Box and it is obvious that the average
SAC value of the proposed S-Box is equal to 0.5. This result indicates that our S-Box satisfies the SAC
property very well.

Table 4. SAC (strict avalanche criterion) values of the proposed S-box.

0.484 0.468 0.453 0.515 0.546 0.468 0.468 0.484
0.484 0.515 0.578 0.468 0.453 0.468 0.468 0.515
0.437 0.531 0.531 0.515 0.500 0.578 0.468 0.453
0.531 0.531 0.578 0.531 0.531 0.515 0.468 0.453
0.546 0.578 0.484 0.531 0.468 0.531 0.468 0.484
0.484 0.484 0.468 0.421 0.453 0.515 0.437 0.531
0.531 0.421 0.437 0.468 0.453 0.562 0.531 0.531
0.453 0.515 0.531 0.515 0.453 0.468 0.515 0.515
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3.4. Bit Independence Criterion (BIC)

The authors in [65] introduced this criterion. According to this criterion, if an input bit, x,
is inverted; this changes the output bits, y and z, independently. For greater security, efforts are
made to decrease the dependence between output bits. If a given S-Box satisfies the BIC, all the
component Boolean functions possess high nonlinearity and meet the SAC [65]. Tables 5 and 6
demonstrate the possible values of nonlinearity and the SAC for the component Boolean functions of
the proposed S-Box.

Table 5. BIC (bit independence criterion) and nonlinearity.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

f 1 - 102 108 108 102 100 108 104
f 2 102 - 104 102 108 108 104 100
f 3 108 104 - 104 106 102 100 102
f 4 108 102 104 - 98 104 98 102
f 5 102 108 106 98 - 102 106 104
f 6 100 108 102 104 102 - 104 106
f 7 108 104 100 98 106 104 - 102
f 8 104 100 102 102 104 106 102 -

Table 6. BIC and SAC.

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8

f 1 - 0.521 0.521 0.519 0.507 0.501 0.484 0.523
f 2 0.521 - 0.490 0.500 0.501 0.503 0.505 0.472
f 3 0.521 0.490 - 0.509 0.505 0.517 0.472 0.500
f 4 0.519 0.500 0.509 - 0.500 0.511 0.480 0.500
f 5 0.507 0.501 0.505 0.500 - 0.517 0.507 0.509
f 6 0.501 0.503 0.517 0.511 0.517 - 0.513 0.496
f 7 0.484 0.505 0.472 0.480 0.507 0.513 - 0.513
f 8 0.523 0.472 0.500 0.500 0.509 0.496 0.513 -

Considering the nonlinearities and SAC, the average BIC values are 103.5 and 0.5, respectively.
If a given S-Box is non-linear and demonstrates the SAC, it fulfills BIC [26]. These values are an
indication of a very week linear relationship between the output bits and hence fully justify the BIC of
the proposed S-box.

3.5. Linear Probability

Modern block ciphers are designed to create as much diffusion and confusion of the bits as possible
for the security of data and provide a shield against different approaches that cryptanalysts adopt to
obtain the plaintext. Mostly, this is achieved by S-Boxes, which provide nonlinear transformations.
If an S-Box is designed with a low linear probability (LP), it is a very good cryptographic tool against
linear cryptanalysis.

The linear probability of an S-Box is calculated using the following equation [56]:

LP = max
Ax , Bx 6=0

∣∣∣∣#{x ∈ Z|x·Ax = S(x)·Bx}
2n − 1

2

∣∣∣∣ (4)

where, Ax and Bx represent the input and output masks, respectively and Z = {0, 1, . . . ., 255}.
The maximum value of LP of our S-box is only 0.156, and thus our S-Box provides good resistance

against linear cryptanalysis.
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3.6. Differential Uniformity

Differential cryptanalysis is one of the most commonly used methods to reach the plaintext.
Here, the differences in the original message (plaintext) and the differences in the ciphertext are
obtained. The pairing of these differences may help reach some of the key values. To defy differential
cryptanalysis, a small value of differential uniformity (DU) for a given S-Box is required. Differential
uniformity is calculated as [56]:

DU = max
Ax 6=0, Bx

[#{x ∈ Z|S(x)⊕ S(x ⊕ ∆x) = ∆y}] (5)

where, ∆x and ∆y are the input and output differentials, respectively. An S-box with smaller
differentials is better at repelling differential cryptanalysis. Table 7 shows the differential uniformity
values of the proposed S-box. The proposed S-box has a maximum value of DU as 10 and its count
is only 7. So, the differential probability (DP) is 0.039. These smaller values of DU and DP provide
evidence that the proposed S-Box has good resistance against differential cryptanalysis.

Table 7. Differential uniformity values of the proposed S-Box.

8 6 8 6 6 6 6 6 8 8 6 8 6 6 6 6
8 6 6 6 6 6 8 8 8 6 8 6 6 6 8 6
8 6 10 6 6 6 6 8 6 6 8 6 6 6 8 6
8 8 6 6 6 6 6 6 8 6 6 6 6 6 6 6
6 6 6 8 4 6 6 6 6 8 8 8 6 8 6 6
6 8 8 6 6 6 8 6 8 6 8 6 6 6 6 8
8 8 6 8 6 4 6 8 8 6 6 8 8 8 6 8
8 6 8 8 6 8 8 6 6 6 6 6 8 8 8 6
6 6 6 8 6 8 6 6 8 8 6 6 8 8 8 6
6 8 8 6 6 6 6 6 6 6 6 8 6 6 8 8
6 6 6 8 6 6 6 8 8 6 6 6 10 6 6 6
6 8 4 8 6 6 6 6 6 6 8 6 8 6 6 8
6 6 6 8 6 6 8 8 10 6 6 6 6 6 6 6
6 6 8 6 6 6 6 6 8 6 6 8 6 6 6 6
8 6 8 8 6 8 10 10 6 6 6 6 8 6 6 6
6 6 8 6 6 10 6 10 8 8 8 8 6 8 8 -

Figure 3 shows a graphical comparison of the DP values of the proposed and other S-Boxes.Entropy 2019, 21, x 10 of 14 
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Figure 3. Differential probability values of the proposed and other S-Boxes.
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3.7. Performance Comparison

Table 8 shows the performance comparison of our S-Box with other S-Boxes based on the
cryptographic properties. Our findings are:

• A high value of non-linearity provides resistance against linear cryptanalysis [55]. The average
nonlinearity of the proposed S-Box is superior to the rest of the S-Boxes in Table 8. This results in
decent confusion and makes the proposed S-box resilient against linear cryptanalysis.

• An SAC value near 0.5 (the perfect value for SAC) is the ultimate goal of every S-Box designer.
Table 8 demonstrates that our SAC value (0.497) is very close to this perfect value. We can say
that our S-Box satisfies the SAC.

• Similarly, the BIC value of our S-box is better than the BIC values of more than half of the other
S-boxes. Tables 5 and 6 demonstrate that the BIC values of our S-Box with respect to nonlinearity
and SAC are adequate, thus satisfying the BIC test.

• Any S-Box with a lesser value of differential probability is more resilient against differential
cryptanalysis. The DP value of our S-Box is 0.039, which is better than the DP values of nine other
S-Boxes and equal to the DP values of two other S-Boxes as shown in Table 8. This value of DP
reflects the strength of our S-Box.

• To defy linear cryptanalysis, a smaller value of LP for a given S-Box is desired by S-Box designers.
The LP value of our S-Box is 0.156. Due to this small value, we can say that our S-box is resistant
to linear cryptanalysis.

Table 8. Recital comparison of different S-Boxes. NL: nonlinearity; LP: linear probability; DP:
differential probability.

S-Box Method Average Nonlinearity SAC BIC-NL LP DP

[19] 102.5 0.492 103.3 0.141 0.062
[24] 104.3 0.497 103.4 0.133 0.047
[50] 104 0.505 103.4 0.133 0.250
[57] 104 0.507 102.9 0.086 0.047
[58] 104 0.498 102.9 0.148 0.039
[59] 105.3 0.502 103.7 0.125 0.047
[60] 105.5 0.499 106 0.133 0.125
[61] 105.3 0.504 104.6 0.133 0.039
[62] 105.7 0.498 104.3 0.109 0.047
[63] 104.8 0.501 105.1 0.125 0.125
[64] 99.5 0.516 101.7 0.132 0.281

Proposed 107 0.497 103.5 0.156 0.039

From the above comparison it is evident that our S-Box fulfills the most needed S-Box criteria and
benchmarks, like SAC, BIC, NL, LP, DP, etc., and hence possesses better cryptographic strength.

4. Conclusions

In this paper, we proposed a new transformation and suggested a novel method to construct
efficient S-Boxes using cubic fractional transformation. The security strength of the proposed S-Box
was studied using different standard criteria. The simulation results were in accordance with other
relevant S-Boxes, rationalizing the performance of our S-Box method. The performance of our S-Box
was good in most of the cases when compared with other recent S-Boxes. In particular, the scores
of the SAC, BIC, nonlinearity, LP, and DP of the proposed S-Box provide evidence for it as a new
alternative in the S-Box design domain. The promising results of the proposed S-Box analysis make it
a potential candidate for usage in modern-day block ciphers. It is worth mentioning that our method
is the first to explore the cubic fractional transformation for S-Box construction. Stronger S-boxes using
cubic fractional transformation, like the proposed S-Box, are expected to emerge for usage in practical
systems for secure communication.
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4. Lambić, D.; Živković, M. Comparison of Random S-Box Generation Methods. De L’institut Mathématique

2013, 93, 109–115.
5. Lauridsen, M.M.; Rechberger, C.; Knudsen, L.R. Design and Analysis of Symmetric Primitive; DTU Orbit:

Lyngby, Denmark, 2016.
6. Dragomir, I.R.; Lazăr, M. Generating and Testing the Components of a Block Cipher. In Proceedings of

the 18th International Conference on Electronics, Computers and Artificial Intelligence, Ploiesti, Romania,
30 June–2 July 2016.

7. Mohamed, K.; Nazran, M.; Pauzi, M.; Hani, F.; Ali, H.M.; Ariffin, S.; Huda, N.; Zulkipli, N. Study of S-box
Properties in Block Cipher. In Proceedings of the International Conference on Computer Communication
and Control Technology, Langkawi Island, Malaysia, 2–4 September 2014.

8. Manjula, G.; Mohan, H.S. Constructing Key Dependent Dynamic S-Box for AES Block Cipher System.
In Proceedings of the International Conference on Applied and Theoretical Computing and Communication
Technology, Bengaluru, India, 21–23 July 2016.

9. Radhakrishnan, S.V.; Subramanian, S. An Analytical Approach to S-box Generation. In Proceedings of the
International Conference on Communication and Signal Processing, Chennai, India, 4–5 April 2012.

10. Du, Z.; Xu, Q.; Zhang, J.; Li, M. Design and Analysis of Dynamic S-Box based on Feistel. In Proceedings of
the International Conference on Advanced Information Technology, Electronic and Automation Control,
Chongqing, China, 19–20 December 2015.

11. Katiyar, S.; Jeyanthi, N. Pure Dynamic S-box Construction. Int. J. Comput. 2016, 1, 42–46.
12. Alabaichi, A.; Salih, A.I. Enhance Security of Advance Encryption Standard Algorithm Based on

Key-dependent S-Box. In Proceedings of the International Conference on Digital Information Processing and
Communications, Sierre, Switzerland, 7–9 October 2015.

13. Sahmoud, S.; Elmasry, W.; Abudalfa, S. Enhancement the Security of AES against Modern Attacks by Using
Variable Key Block Cipher. Int. Arab J. e-Technol. 2013, 3, 17–26.

14. Moh’d, A.; Jararweh, Y.; Tawalbeh, L. AES-512: 512-Bit Advanced Encryption Standard Algorithm Design
and Evaluation. In Proceedings of the International Conference on Information Assurance and Security,
Melacca, Malaysia, 5–8 December 2011.

15. Juremi, J.; Mahmod, R.; Sulaiman, S. A Proposal for Improving AES S-box with Rotation and Key-Dependent.
In Proceedings of the International Conference on Digital Cyber Security, Cyber Warfare and Digital Forensic,
Kuala Lumpur, Malaysia, 26–28 June 2012.

16. Sahoo, O.B.; Kole, D.K.; Rahaman, H. An optimized S-box for Advanced Encryption Standard (AES) design.
In Proceedings of the International Conference on Advanced Computer Communication, Chennai, India,
3–5 August 2012.

17. Wang, H.; Zheng, H.; Hu, B.; Tang, H. Improved lightweight encryption algorithm based on optimized S-box.
In Proceedings of the International Conference on Computational and Information Sciences, Shiyan, China,
21–23 June 2013.

18. Niemiec, M.; Machowski, Ł. A new symmetric block cipher based on key-dependent S-boxes. In Proceedings
of the International Conference on ultra-Modern Telecommunications and Control Systems, St. Petersburg,
Russia, 3–5 October 2012.

http://dx.doi.org/10.14257/ijsia.2015.9.4.27


Entropy 2019, 21, 245 12 of 13

19. Kazlauskas, K.; Smaliukas, R.; Vaicekauskas, G. A Novel Method to Design S-Boxes Based on Key-Dependent
Permutation Schemes and its Quality Analysis. Int. J. Adv. Comput. Sci. Appl. 2016, 7, 93–99. [CrossRef]

20. Patil, J.; Bansod, G.; Kant, K.S. LiCi: A new ultra-lightweight block cipher. In Proceedings of the International
Conference on Emerging Trends and Innovation in ICT, Pune, India, 3–5 February 2017.

21. Agrawal, H.; Sharma, M. Implementation and analysis of various symmetric cryptosystems. Indian J.
Sci. Technol. 2010, 3, 1173–1176.

22. Nejad, F.H.; Sabah, S.; Jam, A.J. Analysis of Avalanche Effect on Advance Encryption Standard by using
Dynamic S-Box Depends on Rounds Keys. In Proceedings of the International Conference on Computational
Science and Technology, Sabah, Malaysia, 27–28 August 2014.

23. Shi, H.; Deng, Y.; Guan, Y. Analysis of the Avalanche Effect of the AES S Box. In Proceedings of the
International Conference on Artificial Intelligence, Management Science and Electronic Commerce, Deng
Feng, China, 8–10 August 2011.

24. Mahmoud, E.M.; Hafez, A.A.; Elgarf, T.A.; Zekry, A.H. Dynamic AES-128 with Key-Dependent S-box. Int. J.
Eng. Res. Appl. 2013, 3, 1662–1670.

25. Mar, P.P.; Latt, K.M. New Analysis Methods on Strict Avalanche Criterion of S-Boxes. Int. J. Math. Comput. Sci.
2008, 2, 899–903.

26. Adams, C.; Tavares, S. The Structured Design of Cryptographically Good S-Boxes. J. Cryptol. 1990, 3, 27–31.
[CrossRef]

27. Ou, C.M. Design of Block Ciphers by Simple Chaotic Functions. Comput. Intell. Mag. 2008, 3, 54–59. [CrossRef]
28. Garg, S.; Upadhyay, D. S-Box Design Approaches: Critical Analysis and Future Directions. Int. J. Adv. Res.

Comput. Sci. Electron. Eng. 2013, 2, 426–430.
29. Jakimoski, G.; Kocarev, L. Chaos and Cryptography: Block Encryption Ciphers Based on Chaotic Maps.

IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001, 48, 163–169. [CrossRef]
30. Ahmad, M.; Mittal, N.; Garg, P.; Khan, M.M. Efficient Cryptographic Substitution Box Design Using

Travelling Salesman Problem and Chaos. Perspect. Sci. 2016, 8, 465–468. [CrossRef]
31. Ahmad, M.; Haleem, H.; Khan, P.M. A New Chaotic Substitution Box Design for Block Ciphers.

In Proceedings of the International Conference on Signal Processing and Integrated Networks, Delhi,
India, 20–21 February 2014.

32. Ahmed, H.A.; Zolkipli, M.F.; Ahmad, M. A novel efficient substitution-box design based on firefly algorithm
and discrete chaotic map. Neural Comput. Appl. 2018. [CrossRef]

33. Ahmad, M.; Doja, M.N.; Beg, M.M.S. ABC Optimization Based Construction of Strong Substitution-Boxes.
Wirel. Pers. Commun. 2018, 101, 1715–1729. [CrossRef]

34. Alzaidi, A.A.; Ahmad, M.; Doja, M.N.; Solami, E.A.; Beg, M.M.S. A New 1D Chaotic Map and beta-Hill
Climbing for Generating Substitution-Boxes. IEEE Access 2018, 6, 55405–55418. [CrossRef]

35. Alzaidi, A.A.; Ahmad, M.; Ahmed, H.S.; Solami, E.A. Sine-Cosine Optimization-Based Bijective Substitution-
Boxes Construction Using Enhanced Dynamics of Chaotic Map. Complexity 2018, 2018, 9389065. [CrossRef]

36. Peng, J.; Jin, S.; Lei, L.; Jia, R. A Novel Method for Designing Dynamical Key-Dependent S-Boxes based on
Hyperchaotic System. Int. J. Adv. Comput. Technol. 2016, 4, 282–289.

37. Solami, E.A.; Ahmad, M.; Volos, C.; Doja, M.; Beg, M. A New Hyperchaotic System-Based Design for Efficient
Bijective Substitution-Boxes. Entropy 2018, 20, 525. [CrossRef]

38. Kadhim, A.; Majeed, G.H.A. Proposal New S-Box Depending on DNA computing and Mathematical
Operations. In Proceedings of the International Conference on Multidisciplinary in IT and Communication
Science and Applications, Baghdad, Iraq, 9–10 May 2016.

39. Al-Wattar, A.H.; Mahmod, R.; Zukarnain, Z.A.; Udzir, N.I. A New DNA-Based S-Box. Int. J. Eng. Technol.
2015, 15, 1–9.

40. Leier, A.; Richter, C.; Banzhaf, W.; Rauhe, H. Cryptography with DNA Binary Strands. BioSystems 2000, 57,
13–22. [CrossRef]

41. Rahman, N.H.U.; Balamurugan, C.; Mariappan, R. A Novel DNA Computing based Encryption and
Decryption Algorithm. Procedia Comput. Sci. 2016, 46, 463–475.

42. Raj, B.B.; Vijay, J.F.; Mahalakshmi, T. Secure Data Transfer through DNA Cryptography using Symmetric
Algorithm. Int. J. Comput. Appl. 2016, 133, 19–23.

43. Shaw, H. A Cryptographic System Based upon the Principles of Gene Expression. Cryptography 2017, 1, 21.
[CrossRef]

http://dx.doi.org/10.14569/IJACSA.2016.070412
http://dx.doi.org/10.1007/BF00203967
http://dx.doi.org/10.1109/MCI.2008.919074
http://dx.doi.org/10.1109/81.904880
http://dx.doi.org/10.1016/j.pisc.2016.06.001
http://dx.doi.org/10.1007/s00521-018-3557-3
http://dx.doi.org/10.1007/s11277-018-5787-1
http://dx.doi.org/10.1109/ACCESS.2018.2871557
http://dx.doi.org/10.1155/2018/9389065
http://dx.doi.org/10.3390/e20070525
http://dx.doi.org/10.1016/S0303-2647(00)00083-6
http://dx.doi.org/10.3390/cryptography1030021


Entropy 2019, 21, 245 13 of 13

44. Wang, Y.; Xie, Q.; Wu, Y.; Du, B. A Software for S-box Performance Analysis and Test. In Proceedings of the
International Conference on Electronic Commerce and Business Intelligence, Beijing, China, 6–7 June 2009.

45. Albermany, S.A.K.; Hamade, F.R.; Safdar, G.A. New Random Block Cipher Algorithm. In Proceedings of the
International Conference on Current Research in Computer Science and Information Technology, Sulaimani,
Iraq, 26–27 April 2017.

46. Tran, B.N.; Nguyen, T.D.; Tran, T.D. A New S-Box Structure Based on Graph Isomorphism. In Proceedings
of the International Conference on Computational Intelligence and Security, Beijing, China, 11–14
December 2009.

47. Razaq, A.; Yousaf, A.; Shuaib, U.; Siddiqui, N.; Ullah, A.; Waheed, A. A Novel Construction of Substitution
Box involving Coset Diagram and a Bijective Map. Secur. Comm. Netw. 2017, 2017, 5101934. [CrossRef]

48. Al-Hazaimeh, O.M.A. Design of a New Block Cipher Algorithm. Netw. Complex Syst. 2013, 3, 1–6.
49. Farwa, S.; Shah, T.; Idrees, L. A Highly Nonlinear S-Box based on a Fractional Linear Transformation.

SpringerPlus 2016, 5, 1658. [CrossRef] [PubMed]
50. Hussain, I.; Shah, T.; Gondal, M.A.; Khan, M.; Khan, W.A. Construction of New S-box using a Linear

Fractional Transformation. World Appl. Sci. J. 2011, 14, 1779–1785.
51. Altaleb, A.; Saeed, M.S.; Hussain, I.; Aslam, M. An Algorithm for the Construction of Substitution Box for

Block Ciphers based on Projective General Linear Group. AIP Adv. 2017, 7, 035116. [CrossRef]
52. Sarfraz, M.; Hussain, I.; Ali, F. Construction of S-Box Based on Mobius Transformation and Increasing its

Confusion Creating Ability through Invertible Function. Int. J. Comput. Sci. Inf. Secur. 2016, 14, 187–199.
53. Gangadari, B.R.; Ahamed, S.R. Design of cryptographically secure AES like S-Box using second-order

reversible cellular automata for wireless body area network applications. Healthc. Technol. Lett. 2016, 3,
177–183. [CrossRef] [PubMed]

54. Picek, S.; Mariot, L.; Yang, B.; Jakobovic, D.; Mentens, N. Design of S-boxes defined with Cellular Automata Rules.
In Proceedings of the ACM International Conference on Computing Frontiers, Siena, Italy, 15–17 May 2017.

55. Cusick, T.W.; Stanica, P. Cryptographic Boolean Functions and Applications; Academic Press: Amsterdam,
The Netherlands, 2009.

56. Biham, E.; Shamir, A. Differential Cryptanalysis of DES-like Cryptosystems. In Advances in
Cryptology-CRYPT0’ 90; Menezes, A.J., Vanstone, S.A., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany; Volume 537, pp. 2–21.

57. Alkhaldi, A.H.; Hussain, I.; Gondal, M.A. A novel design for the construction of safe S-boxes based on
TDERC sequence. Alex. Eng. J. 2015, 54, 65–69. [CrossRef]

58. Chen, G. A novel heuristic method for obtaining S-boxes. Chaos Solitons Fractals 2008, 36, 1028–1036. [CrossRef]
59. Belazi, A.; Rhouma, R.; Belghith, S. A novel approach to construct S-box based on Rossler system.

In Proceedings of the International Wireless Communications and Mobile Computing Conference,
Dubrovnik, Croatia, 24–28 August 2015.

60. Mahmood, S.; Farwa, S.; Rafiq, M.; Riaz, S.M.J.; Shah, T.; Jamal, S.S. To Study the Effect of the Generating
Polynomial on the Quality of Nonlinear Components in Block Ciphers. Secur. Commun. Netw. 2018, 2018,
5823230. [CrossRef]

61. Siddiqui, N.; Afsar, U.; Shah, T.; Qureshi, A. A Novel Construction of S16 AES S-boxes. Int. J. Comput. Sci.
Inf. Secur. 2016, 14, 811–818.

62. Hussain, I.; Shah, T.; Gondal, M.A.; Wang, Y. Analyses of SKIPJACK S-Box. World Appl. Sci. J. 2011, 13,
2385–2388.

63. Hussain, I.; Shah, T.; Gondal, M.A.; Khan, W.A.; Mahmood, H. A group theoretic approach to construct
cryptographically strong substitution boxes. Neural Comput. Appl. 2013, 23, 97–104. [CrossRef]

64. Hussain, I.; Shah, T.; Gondal, M.A.; Mahmood, H. Some analysis of S-box based on residue of prime number.
Proc. Pak. Acad. Sci. 2011, 48, 111–115.

65. Webster, A.F.; Tavares, S.E. On the Design of S-Boxes. In Proceedings of the Conference on Theory and
Application of Cryptographic Techniques, Santa Barbara, CA, USA, 18–22 August 1986.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2017/5101934
http://dx.doi.org/10.1186/s40064-016-3298-7
http://www.ncbi.nlm.nih.gov/pubmed/27730020
http://dx.doi.org/10.1063/1.4978264
http://dx.doi.org/10.1049/htl.2016.0033
http://www.ncbi.nlm.nih.gov/pubmed/27733924
http://dx.doi.org/10.1016/j.aej.2015.01.003
http://dx.doi.org/10.1016/j.chaos.2006.08.003
http://dx.doi.org/10.1155/2018/5823230
http://dx.doi.org/10.1007/s00521-012-0914-5
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Substitution Box 
	Cryptographic Properties of the Proposed S-Box 
	Bijection 
	Nonlinearity 
	Strict Avalanche Criterion (SAC) 
	Bit Independence Criterion (BIC) 
	Linear Probability 
	Differential Uniformity 
	Performance Comparison 

	Conclusions 
	References

