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Abstract: Although Shannon mutual information has been widely used, its effective calculation is
often difficult for many practical problems, including those in neural population coding. Asymptotic
formulas based on Fisher information sometimes provide accurate approximations to the mutual
information but this approach is restricted to continuous variables because the calculation of
Fisher information requires derivatives with respect to the encoded variables. In this paper,
we consider information-theoretic bounds and approximations of the mutual information based
on Kullback-Leibler divergence and Rényi divergence. We propose several information metrics to
approximate Shannon mutual information in the context of neural population coding. While our
asymptotic formulas all work for discrete variables, one of them has consistent performance and
high accuracy regardless of whether the encoded variables are discrete or continuous. We performed
numerical simulations and confirmed that our approximation formulas were highly accurate for
approximating the mutual information between the stimuli and the responses of a large neural
population. These approximation formulas may potentially bring convenience to the applications of
information theory to many practical and theoretical problems.

Keywords: neural population coding; mutual information; Kullback-Leibler divergence; Rényi
divergence; Chernoff divergence; approximation; discrete variables

1. Introduction

Information theory is a powerful tool widely used in many disciplines, including, for example,
neuroscience, machine learning, and communication technology [1–7]. As it is often notoriously
difficult to effectively calculate Shannon mutual information in many practical applications [8], various
approximation methods have been proposed to estimate the mutual information, such as those
based on asymptotic expansion [9–13], k-nearest neighbor [14], and minimal spanning trees [15].
Recently, Safaai et al. proposed a copula method for estimation of mutual information, which can be
nonparametric and potentially robust [16]. Another approach for estimating the mutual information is
to simplify the calculations by approximations based on information-theoretic bounds, such as the
Cramér–Rao lower bound [17] and the van Trees’ Bayesian Cramér–Rao bound [18].

In this paper, we focus on mutual information estimation based on asymptotic approximations [19–24].
For encoding of continuous variables, asymptotic relations between mutual information and Fisher
information have been presented by several researchers [19–22]. Recently, Huang and Zhang [24]
proposed an improved approximation formula, which remains accurate for high-dimensional variables.
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A significant advantage of this approach is that asymptotic approximations are sometimes very
useful in analytical studies. For instance, asymptotic approximations allow us to prove that the
optimal neural population distribution that maximizes the mutual information between stimulus
and response can be solved by convex optimization [24]. Unfortunately this approach does not
generalize to discrete variables since the calculation of Fisher information requires partial derivatives
of the likelihood function with respect to the encoded variables. For encoding of discrete variables,
Kang and Sompolinsky [23] represented an asymptotic relationship between mutual information and
Chernoff information for statistically independent neurons in a large population. However, Chernoff
information is still hard to calculate in many practical applications.

Discrete stimuli or variables occur naturally in sensory coding. While some stimuli are continuous
(e.g., the direction of movement, and the pitch of a tone), others are discrete (e.g., the identities of faces,
and the words in human speech). For definiteness, in this paper, we frame our questions in the context
of neural population coding; that is, we assume that the stimuli or the input variables are encoded by
the pattern of responses elicited from a large population of neurons. The concrete examples used in
our numerical simulations were based on Poisson spike model, where the response of each neuron is
taken as the spike count within a given time window. While this simple Poisson model allowed us
to consider a large neural population, it only captured the spike rate but not any temporal structure
of the spike trains [25–28]. Nonetheless, our mathematical results are quite general and should be
applicable to other input–output systems under suitable conditions to be discussed later.

In the following, we first derive several upper and lower bounds on Shannon mutual information
using Kullback-Leibler divergence and Rényi divergence. Next, we derive several new approximation
formulas for Shannon mutual information in the limit of large population size. These formulas are
more convenient to calculate than the mutual information in our examples. Finally, we confirm the
validity of our approximation formulas using the true mutual information as evaluated by Monte
Carlo simulations.

2. Theory and Methods

2.1. Notations and Definitions

Suppose the input x is a K-dimensional vector, x = (x1, · · · , xK)
T , which could be interpreted as

the parameters that specifies a stimulus for a sensory system, and the outputs is an N-dimensional
vector, r = (r1, · · · , rN)

T , which could be interpreted as the responses of N neurons. We assume N is
large, generally N � K. We denote random variables by upper case letters, e.g., random variables
X and R, in contrast to their vector values x and r. The mutual information between X and R is
defined by

I = I(X; R) =
〈

ln
p(r|x)
p(r)

〉
r,x

, (1)

where x ∈ X ⊆ RK, r ∈ R ⊆ RN , and 〈·〉r,x denotes the expectation with respect to the probability
density function p(r, x). Similarly, in the following, we use 〈·〉r|x and 〈·〉x to denote expectations with
respect to p(r|x) and p(x), respectively.

If p(x) and p(r|x) are twice continuously differentiable for almost every x ∈ X , then for large N
we can use an asymptotic formula to approximate the true value of I with high accuracy [24]:

I ' IG =
1
2

〈
ln
(

det
(

G(x)
2πe

))〉
x
+ H(X), (2)

which is sometimes reduced to

I ' IF =
1
2

〈
ln
(

det
(

J(x)
2πe

))〉
x
+ H(X), (3)
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where det (·) denotes the matrix determinant, H(X) = − 〈ln p(x)〉x is the stimulus entropy,

G(x) = J(x) + P (x) , (4)

P(x) = −∂2 ln p(x)
∂x∂xT , (5)

and

J(x) = −
〈

∂2 ln p(r|x)
∂x∂xT

〉
r|x

=

〈
∂ ln p(r|x)

∂x
∂ ln p(r|x)

∂xT

〉
r|x

(6)

is the Fisher information matrix.
We denote the Kullback-Leibler divergence as

D (x||x̂) =
〈

ln
p (r|x)
p (r|x̂)

〉
r|x

, (7)

and denote Rényi divergence [29] of order β + 1 as

Dβ (x||x̂) =
1
β

ln

〈(
p(r|x)
p (r|x̂)

)β
〉

r|x
. (8)

Here, βDβ (x||x̂) is equivalent to Chernoff divergence of order β + 1 [30]. It is well known that
Dβ (x||x̂)→ D (x||x̂) in the limit β→ 0.

We define

Iu = − 〈ln 〈exp (−D (x||x̂))〉x̂〉x , (9)

Ie = −
〈

ln
〈

exp
(
−e−1D (x||x̂)

)〉
x̂

〉
x

, (10)

Iβ,α = −
〈

ln
〈

exp
(
−βDβ (x||x̂) + (1− α) ln

p (x)
p (x̂)

)〉
x̂

〉
x

, (11)

where in Iβ,α we have β ∈ (0, 1) and α ∈ (0, ∞) and assume p (x) > 0 for all x ∈ X .
In the following, we suppose x takes M discrete values, xm, m ∈ M = {1, 2, · · · , M}, and

p(xm) > 0 for all m. Now, the definitions in Equations (9)–(11) become

Iu = −
M

∑
m=1

p (xm) ln

(
M

∑̂
m=1

p (xm̂)

p (xm)
exp (−D (xm||xm̂))

)
+ H(X), (12)

Ie = −
M

∑
m=1

p (xm) ln

(
M

∑̂
m=1

p (xm̂)

p (xm)
exp

(
−e−1D (xm||xm̂)

))
+ H(X), (13)

Iβ,α = −
M

∑
m=1

p (xm) ln

(
M

∑̂
m=1

(
p(xm̂)

p(xm)

)α

exp
(
−βDβ (xm||xm̂)

))
+ H(X). (14)
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Furthermore, we define

Id = −
M

∑
m=1

p(xm) ln

(
1 + ∑

m̂∈Mu
m

p(xm̂)

p(xm)
exp

(
−e−1D (xm||xm̂)

))
+ H (X) , (15)

Id
u = −

M

∑
m=1

p(xm) ln

(
1 + ∑

m̂∈Mu
m

p(xm̂)

p(xm)
exp (−D (xm||xm̂))

)
+ H (X) , (16)

Id
β,α = −

M

∑
m=1

p(xm) ln

1 + ∑
m̂∈Mβ

m

(
p(xm̂)

p(xm)

)α

exp
(
−βDβ (xm||xm̂)

)+ H (X) , (17)

ID = −
M

∑
m=1

p(xm) ln

(
1 + ∑

m̂∈Mu
m

exp
(
−e−1D (xm||xm̂)

))
+ H (X) , (18)

where

M̌β
m =

m̂ : m̂ = arg min
m̌∈M−M̂β

m

Dβ (xm||xm̌)

 , (19)

M̌u
m =

{
m̂ : m̂ = arg min

m̌∈M−M̂u
m

D (xm||xm̌)

}
, (20)

M̂β
m =

{
m̂ : Dβ (xm||xm̂) = 0

}
, (21)

M̂u
m = {m̂ : D (xm||xm̂) = 0} , (22)

Mβ
m = M̌β

m ∪ M̂
β
m − {m} , (23)

Mu
m = M̌u

m ∪ M̂u
m − {m} . (24)

Here, notice that, if x is uniformly distributed, then by definition Id and ID become identical.
The elements in set M̌β

m are those that make Dβ (xm||xm̌) take the minimum value, excluding any
element that satisfies the condition Dβ (xm||xm̂) = 0. Similarly, the elements in set M̌u

m are those that
minimize D (xm||xm̌) excluding the ones that satisfy the condition D (xm||xm̂) = 0.

2.2. Theorems

In the following, we state several conclusions as theorems and prove them in Appendix A.

Theorem 1. The mutual information I is bounded as follows:

Iβ,α ≤ I ≤ Iu. (25)

Theorem 2. The following inequalities are satisfied,

Iβ1,1 ≤ Ie ≤ Iu (26)

where Iβ1,1 is a special case of Iβ,α in Equation (11) with β1 = e−1 so that

Iβ1,1 = −
〈

ln
〈
exp

(
−β1Dβ1 (x||x̂)

)〉
x̂

〉
x

. (27)

Theorem 3. If there exist γ1 > 0 and γ2 > 0 such that

βDβ (xm||xm1) ≥ γ1 ln N, (28)

D (xm||xm2) ≥ γ2 ln N, (29)
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for discrete stimuli xm, where m ∈ M, m1 ∈ M−M
β
m and m2 ∈ M−Mu

m, then we have the following
asymptotic relationships:

Iβ,α = Id
β,α + O

(
N−γ1

)
≤ I ≤ Iu = Id

u + O
(

N−γ2
)

(30)

and
Ie = Id + O

(
N−γ2/e

)
. (31)

Theorem 4. Suppose p(x) and p(r|x) are twice continuously differentiable for x ∈ X , ‖q′(x)‖ < ∞,
‖q′′(x)‖ < ∞, where q(x) = ln p(x) and ′ and ′′ denote partial derivatives ∂/∂x and ∂2/∂x∂xT , and Gγ(x)

is positive definite with
∥∥∥NG−1

γ (x)
∥∥∥ = O (1), where ‖·‖ denotes matrix Frobenius norm,

Gγ(x) = γ (J(x) + P (x)) , (32)

γ = β (1− β) and β ∈ (0, 1). If there exist an ω = ω (x) > 0 such that

det (G(x))1/2
∫
X̄ε(x)

p(x̂) exp (−D (x||x̂)) dx̂ = O
(

N−1
)

, (33)

det (Gγ(x))
1/2

∫
X̄ε(x)

p(x̂) exp
(
−βDβ (x||x̂)

)
dx̂ = O

(
N−1

)
, (34)

for all x ∈ X and ε ∈ (0, ω), where X̄ω(x) = X − Xω(x) is the complementary set of Xω(x) ={
x̆ ∈ RK : (x̆− x)T G(x) (x̆− x) < Nω2

}
, then we have the following asymptotic relationships:

Iβ,α ≤ Iγ0 + O
(

N−1
)
≤ I ≤ Iu = IG + K/2 + O

(
N−1

)
, (35)

Ie = IG + O
(

N−1
)

, (36)

Iβ,α = Iγ + O
(

N−1
)

, (37)

where

Iγ =
1
2

∫
X

p(x) ln
(

det
(

Gγ(x)
2π

))
dx + H(X) (38)

and γ0 = β0 (1− β0) = 1/4 with β0 = 1/2.

Remark 1. We see from Theorems 1 and 2 that the true mutual information I and the approximation Ie both
lie between Iβ1,1 and Iu, which implies that their values may be close to each other. For discrete variable x,
Theorem 3 tells us that Ie and Id are asymptotically equivalent (i.e., their difference vanishes) in the limit of
large N. For continuous variable x, Theorem 4 tells us that Ie and IG are asymptotically equivalent in the limit
of large N, which means that Ie and I are also asymptotically equivalent because IG and I are known to be
asymptotically equivalent [24].

Remark 2. To see how the condition in Equation (33) could be satisfied, consider the case where D (x||x̂) has
only one extreme point at x̂ = x for x̂ ∈ Xω (x) and there exists an η > 0 such that N−1D (x|x̂) ≥ η for
x̂ ∈ X̄ω (x). Now, the condition in Equation (33) is satisfied because

det (G(x))1/2
∫
X̄ε(x)

p(x̂) exp (−D (x||x̂)) dx̂

≤ det (G(x))1/2
∫
X̄ε(x)

p(x̂) exp (−η̂ (ε) N) dx̂

= O
(

NK/2e−η̂(ε)N
)

, (39)
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where by assumption we can find an η̂ (ε) > 0 for any given ε ∈ (0, ω). The condition in Equation (34) can be
satisfied in a similar way. When β0 = 1/2, β0Dβ0 (x||x̂) is the Bhattacharyya distance [31]:

β0Dβ0 (x||x̂) = − ln
(∫
R

√
p(r|x)p(r|x̂)dr

)
, (40)

and we have

J (x) =
∂2 (D (x||x̂))

∂x̂∂x̂T

∣∣∣∣
x̂=x

=
∂2 (4β0Dβ0 (x||x̂)

)
∂x̂∂x̂T

∣∣∣∣∣
x̂=x

=
∂2 (8H2

l (x||x̂)
)

∂x̂∂x̂T

∣∣∣∣∣
x̂=x

, (41)

where Hl (x||x̂) is the Hellinger distance [32] between p(r|x) and p(r|x̂):

H2
l (x||x̂) =

1
2

∫
R

(√
p(r|x)−

√
p(r|x̂)

)2
dr. (42)

By Jensen’s inequality, for β ∈ (0, 1) we get

0 ≤ Dβ (x||x̂) ≤ D (x||x̂) . (43)

Denoting the Chernoff information [8] as

C (x||x̂) = max
β∈(0, 1)

(
βDβ (x||x̂)

)
= βmDβm (x||x̂) , (44)

where βDβ (x||x̂) achieves its maximum at βm, we have

Iβ,α − H(X)

≤ hc = −
M

∑
m=1

p (xm) ln

(
M

∑̂
m=1

p (xm̂)

p (xm)
exp (−C (xm||xm̂))

)
(45)

≤ hd = −
M

∑
m=1

p (xm) ln

(
M

∑̂
m=1

p (xm̂)

p (xm)
exp

(
−βmDβ (xm||xm̂)

))
. (46)

By Theorem 4,

max
β∈(0, 1)

Iβ,α = Iγ0 + O
(

N−1
)

, (47)

Iγ0 = IG −
K
2

ln
4
e

. (48)

If βm = 1/2, then, by Equations (46)–(48) and (50), we have

max
β∈(0, 1)

Iβ +
K
2

ln
4
e
+ O

(
N−1

)
≤ Ie = I + O

(
N−1

)
≤ hd + H(X) ≤ Iu. (49)

Therefore, from Equations (45), (46) and (49), we can see that Ie and I are close to hc + H(X).

2.3. Approximations for Mutual Information

In this section, we use the relationships described above to find effective approximations to
true mutual information I in the case of large but finite N. First, Theorems 1 and 2 tell us that the
true mutual information I and its approximation Ie lie between lower and upper bounds given by:
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Iβ,α ≤ I ≤ Iu and Iβ1,1 ≤ Ie ≤ Iu. As a special case, I is also bounded by Iβ1,1 ≤ I ≤ Iu. Furthermore,
from Equations (2) and (36) we can obtain the following asymptotic equality under suitable conditions:

I = Ie + O
(

N−1
)

. (50)

Hence, for continuous stimuli, we have the following approximate relationship for large N:

I ' Ie ' IG. (51)

For discrete stimuli, by Equation (31) for large but finite N, we have

I ' Ie ' Id = −
M

∑
m=1

p(xm) ln

(
1 + ∑

m̂∈Mu
m

p(xm̂)

p(xm)
exp

(
−e−1D (xm||xm̂)

))
+ H (X) . (52)

Consider the special case p(xm̂) ' p(xm) for m̂ ∈ Mu
m. With the help of Equation (18),

substitution of p(xm̂) ' p(xm) into Equation (52) yields

I ' ID = −
M

∑
m=1

p(xm) ln

(
1 + ∑

m̂∈Mu
m

exp
(
−e−1D (xm||xm̂)

))
+ H (X)

' −
M

∑
m=1

p(xm) ∑
m̂∈Mu

m

exp
(
−e−1D (xm||xm̂)

)
+ H (X)

= I0
D (53)

where I0
D ≤ ID and the second approximation follows from the first-order Taylor expansion assuming

that the term ∑
m̂∈Mu

m

exp
(
−e−1D (xm||xm̂)

)
is sufficiently small.

The theoretical discussion above suggests that Ie and Id are effective approximations to true mutual
information I in the limit of large N. Moreover, we find that they are often good approximations of
mutual information I even for relatively small N, as illustrated in the following section.

3. Results of Numerical Simulations

Consider Poisson model neuron whose responses (i.e., numbers of spikes within a given time
window) follow a Poisson distribution [24]. The mean response of neuron n, with n ∈ {1, 2, · · · , N},
is described by the tuning function f (x; θn), which takes the form of a Heaviside step function:

f (x; θn) =

{
A, if x ≥ θn,
0, if x < θn,

(54)

where the stimulus x ∈ [−T, T] with T = 10, A = 10, and the centers θ1, θ2, · · · , θN of
the N neurons are uniformly spaced in interval [−T, T], namely, θn = (n− 1) d − T with
d = 2T/(N − 1) for N ≥ 2, and θn = 0 for N = 1. We suppose that the discrete stimulus
x has M = 21 possible values that are evenly spaced from −T to T, namely, x ∈ X =

{xm : xm = 2 (m− 1) T/(M− 1)− T, m = 1, 2, · · · , M}. Now, the Kullback-Leibler divergence can
be written as

D (xm||xm̂) = f (xm; θn) log
(

f (xm; θn)

f (xm̂; θn)

)
+ f (xm̂; θn)− f (xm; θn) . (55)

Thus, we have exp
(
−e−1D (xm||xm̂)

)
= 1 when f (xm; θn) = f (xm̂; θn), exp

(
−e−1D (xm||xm̂)

)
=

exp
(
−e−1 A

)
when f (xm; θn) = 0 and f (xm̂; θn) = A, and exp

(
−e−1D (xm||xm̂)

)
= 0 when

f (xm; θn) = A and f (xm̂; θn) = 0. Therefore, in this case, we have
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Ie = Id. (56)

More generally, this equality holds true whenever the tuning function has binary values.
In the first example, as illustrated in Figure 1, we suppose the stimulus has a uniform distribution,

so that the probability is given by p(xm) = 1/M. Figure 1a shows graphs of the input distribution
p(x) and a representative tuning function f (x; θ) with the center θ = 0.

To assess the accuracy of the approximation formulas, we employed Monte Carlo (MC) simulation
to evaluate the mutual information I [24]. In our MC simulation, we first sampled an input xj ∈ X
from the uniform distribution p(xj) = 1/M, then generated the neural responses rj by the conditional
distribution p(rj|xj) based on the Poisson model, where j = 1, 2, · · · , jmax. The value of mutual
information by MC simulation was calculated by

I∗MC =
1

jmax

jmax

∑
j=1

ln

(
p(rj|xj)

p(rj)

)
, (57)

where

p(rj) =
M

∑
m=1

p(rj|xm)p(xm). (58)

To assess the precision of our MC simulation, we computed the standard deviation of repeated
trials by bootstrapping:

Istd =

√√√√ 1
imax

imax

∑
i=1

(
Ii
MC − IMC

)2, (59)

where

Ii
MC =

1
jmax

jmax

∑
j=1

ln

(
p(rΓj,i |xΓj,i )

p(rΓj,i )

)
, (60)

IMC =
1

imax

imax

∑
i=1

Ii
MC, (61)

and Γj,i ∈ {1, 2, · · · , jmax} is the (j, i)-th entry of the matrix Γ ∈ Njmax×imax with samples taken randomly
from the integer set {1, 2, · · · , jmax} by a uniform distribution. Here, we set jmax = 5× 105, imax = 100
and M = 103.

For different N ∈ {1, 2, 3, 4, 6, 10, 14, 20, 30, 50, 100, 200, 400, 700, 1000}, we compared IMC with
Ie, Id and ID, as illustrated in Figure 1b–d. Here, we define the relative error of approximation, e.g.,
for Ie, as

DIe =
Ie − IMC

IMC
, (62)

and the relative standard deviation
DIstd =

Istd
IMC

. (63)
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Figure 1. A comparison of approximations Ie, Id and ID against IMC obtained by Monte Carlo method
for one-dimensional discrete stimuli. (a) Discrete uniform distribution of the stimulus p(x) (black dots)
and the Heaviside step tuning function f (x; θ) with center θ = 0 (blue dashed lines); (b) The values of
IMC, Ie, Id and ID depend on the population size or total number of neurons N; (c) The relative errors
DIe, DId and DID for the results in (b); (d) The absolute values of the relative errors |DIe|, |DId| and
|DID| as in (c), with error bars showing standard deviations of repeated trials.

For the second example, we only changed the probability distribution of stimulus p(xm) while
keeping all other conditions unchanged. Now, p(xm) is a discrete sample from a Gaussian function:

p(xm) = Z−1 exp
(
− x2

m
2σ2

)
, m = 1, 2, · · · , M, (64)

where Z is the normalization constant and σ = T/2. The results are illustrated in Figure 2.
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Figure 2. A comparison of approximations Ie, Id and ID against IMC. The situation is identical to that in
Figure 1 except that the stimulus distribution p(x) is peaked rather flat (black dots in (a)). (a) Discrete
Gaussian-like distribution of the stimulus p(x) (black dots) and the Heaviside step tuning function
f (x; θ) with center θ = 0 (blue dashed lines); (b) The values of IMC, Ie, Id and ID depend on the
population size or total number of neurons N; (c) The relative errors DIe, DId and DID for the results
in (b); (d) The absolute values of the relative errors |DIe|, |DId| and |DID| as in (c), with error bars
showing standard deviations of repeated trials.

Next, we changed each tuning function f (x; θn) to a rectified linear function:

f (x; θn) = max (0, x− θn) , (65)

Figures 3 and 4 show the results under the same conditions of Figures 1 and 2 except for the shape
of the tuning functions.
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Figure 3. A comparison of approximations Ie, Id and ID against IMC. The situation is identical to that
in Figure 1 except for the shape of the tuning function (blue dashed lines in (a)). (a) Discrete uniform
distribution of the stimulus p(x) (black dots) and the rectified linear tuning function f (x; θ) with
center θ = 0 (blue dashed lines); (b) The values of IMC, Ie, Id and ID depend on the population size
or total number of neurons N; (c) The relative errors DIe, DId and DID for the results in (b); (d) The
absolute values of the relative errors |DIe|, |DId| and |DID| as in (c), with error bars showing standard
deviations of repeated trials.

Finally, we let the tuning function f (x; θn) have a random form:

f (x; θn) =

{
B, if x ∈ θn =

{
θ1

n, θ2
n, · · · , θK

n
}

,
0, otherwise,

(66)

where the stimulus x ∈ X = {1, 2, · · · , 999, 1000}, B = 10, the values of
{

θ1
n, θ2

n, · · · , θK
n
}

are distinct
and randomly selected from the set X with K = 10. In this example, we may regard X as a list of
natural objects (stimuli), and there are a total of N sensory neurons, each of which responds only to
K randomly selected objects. Figure 5 shows the results under the condition that p(x) is a uniform
distribution. In Figure 6, we assume that p(x) is not flat but a half Gaussian given by Equation (64)
with σ = 500.



Entropy 2019, 21, 243 12 of 21

-10 -5 0  5  10 

Input x

0  

0.1
p

(x
)

a

0 

5 

10

f(
x
; 

)

100 101 102 103

Population size N

0

1

2

3

4

In
fo

rm
a

ti
o

n
 (

b
it
s
)

b

IMC

Ie

Id

ID

100 101 102 103

Population size N

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
ti
v
e

 e
rr

o
r

c
DIe

DId

DID

100 101 102 103

Population size N

10-10

10-8

10-6

10-4

10-2

100
A

b
s
o

lu
te

 v
a

lu
e

 o
f 

re
la

ti
v
e

 e
rr

o
r

d

|DIe|

|DId |

|DID|

Figure 4. A comparison of approximations Ie, Id and ID against IMC. The situation is identical to that in
Figure 3 except that the stimulus distribution p(x) is peaked rather flat (black dots in (a)). (a) Discrete
Gaussian-like distribution of the stimulus p(x) (black dots) and the rectified linear tuning function
f (x; θ) with center θ = 0 (blue dashed lines); (b) The values of IMC, Ie, Id and ID depend on the
population size or total number of neurons N; (c) The relative errors DIe, DId and DID for the results
in (b); (d) The absolute values of the relative errors |DIe|, |DId| and |DID| as in (c), with error bars
showing standard deviations of repeated trials.

In all these examples, we found that the three formulas, namely, Ie, Id and ID, provided
excellent approximations to the true values of mutual information as evaluated by Monte Carlo
method. For example, in the examples in Figures 1 and 5, all three approximations were practically
indistinguishable. In general, all these approximations were extremely accurate when N > 100.

In all our simulations, the mutual information tended to increase with the population size N,
eventually reaching a plateau for large enough N. The saturation of information for large N is due to
the fact that it requires at most log2 M bits of information to completely distinguish all M stimuli. It is
impossible to gain more information than this maximum amount regardless of how many neurons are
used in the population. In Figure 1, for instance, this maximum is log2 21 = 4.39 bits, and in Figure 5,
this maximum is log2 1000 = 9.97 bits.
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Figure 5. A comparison of approximations Ie, Id and ID against IMC. The situation is similar to that
in Figure 1 except that the tuning function is random (blue dashed lines in (a)); see Equation (66).
(a) Discrete uniform distribution of the stimulus p(x) (black dots) and the random tuning function
f (x; θ); (b) The values of IMC, Ie, Id and ID depend on the population size or total number of neurons
N; (c) The relative errors DIe, DId and DID for the results in (b); (d) The absolute values of the relative
errors |DIe|, |DId| and |DID| as in (c), with error bars showing standard deviations of repeated trials.

For relatively small values of N, we found that ID tended to be less accurate than Ie or Id
(see Figures 5 and 6). Our simulations also confirmed two analytical results. The first one is that
Id = ID when the stimulus distribution is uniform; this result follows directly from the definitions of
Id and ID and is confirmed by the simulations in Figures 1, 3, and 5. The second result is that Id = Ie

(Equation (56)) when the tuning function is binary, as confirmed by the simulations in Figures 1, 2, 5,
and 6. When the tuning function allows many different values, Ie can be much more accurate than
Id and ID, as shown by the simulations in Figures 3 and 4. To summarize, our best approximation
formula is Ie because it is more accurate than Id and ID, and, unlike Id and ID, it applies to both discrete
and continuous stimuli (Equations (10) and (13)).
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Figure 6. A comparison of approximations Ie, Id and ID against IMC. The situation is identical to
that in Figure 5 except that the stimulus distribution p(x) is not flat (black dots in (a)). (a) Discrete
Gaussian-like distribution of the stimulus p(x) (black dots) and the random tuning function f (x; θ);
(b) The values of IMC, Ie, Id and ID depend on the population size or total number of neurons N; (c) The
relative errors DIe, DId and DID for the results in (b); (d) The absolute values of the relative errors
|DIe|, |DId| and |DID| as in (c), with error bars showing standard deviations of repeated trials.

4. Discussion

We have derived several asymptotic bounds and effective approximations of mutual information
for discrete variables and established several relationships among different approximations. Our final
approximation formulas involve only Kullback-Leibler divergence, which is often easier to evaluate
than Shannon mutual information in practical applications. Although in this paper our theory is
developed in the framework of neural population coding with concrete examples, our mathematical
results are generic and should hold true in many related situations beyond the original context.

We propose to approximate the mutual information with several asymptotic formulas, including
Ie in Equation (10) or Equation (13), Id in Equation (15) and ID in Equation (18). Our numerical
experimental results show that the three approximations Ie, Id and ID were very accurate for large
population size N, and sometimes even for relatively small N. Among the three approximations, ID
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tended to be the least accurate, although, as a special case of Id, it is slightly easier to evaluate than Id.
For a comparison of Ie and Id, we note that Ie is the universal formula, whereas Id is restricted only
to discrete variables. The two formulas Ie and Id become identical when the responses or the tuning
functions have only two values. For more general tuning functions, the performance of Ie was better
than Id in our simulations.

As mentioned before, an advantage of of Ie is that it works not only for discrete stimuli but also
for continuous stimuli. Theoretically speaking, the formula for Ie is well justified, and we have proven
that it approaches the true mutual information I in the limit of large population. In our numerical
simulations, the performance of Ie was excellent and better than that of Id and ID. Overall, Ie is our
most accurate and versatile approximation formula, although, in some cases, Id and ID are slightly
more convenient to calculate.

The numerical examples considered in this paper were based on an independent population of
neurons whose responses have Poisson statistics. Although such models are widely used, they are
appropriate only if the neural responses can be well characterized by the spike counts within a fixed
time window. To study the temporal patterns of spike trains, one has to consider more complicated
models. Estimation of mutual information from neural spike trains is a difficult computational
problem [25–28]. In future work, it would be interesting to apply the asymptotic formulas such as Ie to
spike trains with small time bins each containing either one spike or nothing. A potential advantage of
the asymptotic formula is that it might help reduce the bias caused by small samples in the calculation
of the response marginal distribution p(r) = ∑x p(r|x)p(x) or the response entropy H(R) because
here one only needs to calculate the Kullback-Leibler divergence D (x||x̂), which may have a smaller
estimation error.

Finding effective approximation methods for computing mutual information is a key step
for many practical applications of the information theory. Generally speaking, Kullback-Leibler
divergence (Equation (7)) is often easier to evaluate and approximate than either Chernoff information
(Equation (44)) or Shannon mutual information (Equation (1)). In situations where this is indeed the
case, our approximation formulas are potentially useful. Besides applications in numerical simulations,
the availability of a set of approximation formulas may also provide helpful theoretical tools in future
analytical studies of information coding and representations.

As mentioned in the Introduction, various methods have been proposed to approximate the
mutual information [9–16]. In future work, it would be useful to compare different methods rigorously
under identical conditions in order to asses their relative merits. The approximation formulas
developed in this paper are relatively easy to compute for practical problems. They are especially
suitable for analytical purposes; for example, they could be used explicitly as objective functions for
optimization or learning algorithms. Although the examples used in our simulations in this paper are
parametric, it should be possible to extend the formulas to nonparametric problem, possibly with help
of the copula method to take advantage of its robustness in nonparametric estimations [16].

Author Contributions: W.H. developed and proved the theorems, programmed the numerical experiments and
wrote the manuscript. K.Z. verified the proofs and revised the manuscript.

Funding: This research was supported by an NIH grant R01 DC013698.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. The Proofs

Appendix A.1. Proof of Theorem 1

By Jensen’s inequality, we have
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Iβ,α = −
〈

ln

(∫
X

〈
pβ(r|x̂)pα(x̂)
pβ (r|x) pα(x)

〉
r|x

dx̂

)〉
x

+ H(X)

≤ −
〈〈

ln
(∫
X

pβ(r|x̂)pα(x̂)
pβ (r|x) pα(x)

dx̂
)〉

r|x

〉
x

+ H(X) (A1)

and

−
〈〈

ln
(∫
X

pβ(r|x̂)pα(x̂)
pβ (r|x) pα(x)

dx̂
)〉

r|x

〉
x

+ H(X)− I

=

〈〈
ln
(∫
X

p(r, x̂)
p (r, x)

dx̂
)(∫

X

pβ(r|x̂)pα(x̂)
pβ (r|x) pα(x)

dx̂
)−1〉

r|x

〉
x

≤ ln
∫
R

p(r)

∫
X pβ (r|x) pα(x)dx∫
X pβ(r|x̂)pα(x̂)dx̂

dr

= 0. (A2)

Combining Equations (A1) and (A2), we immediately get the lower bound in Equation (25).
In this section, we use integral for variable x, although our argument is valid for both continuous

variables and discrete variables. For discrete variables, we just need to replace each integral by a
summation, and our argument remains valid without other modification. The same is true for the
response variable r.

To prove the upper bound, let

Φ [q(x̂)] =
∫
R

p (r|x)
∫
X

q(x̂) ln
(

p (r|x) q(x̂)
p (r|x̂) p(x̂)

)
dx̂dr, (A3)

where q(x̂) satisfies { ∫
X q(x̂)dx̂ = 1

q(x̂) ≥ 0
. (A4)

By Jensen’s inequality, we get

Φ [q(x̂)] ≥
∫
R

p (r|x) ln
(

p (r|x)
p (r)

)
dr. (A5)

To find a function q(x̂) that minimizes Φ [q(x̂)], we apply the variational principle as follows:

∂Φ̃ [q(x̂)]
∂q(x̂)

=
∫
R

p (r|x) ln
(

p (r|x) q(x̂)
p (r|x̂) p(x̂)

)
dr + 1 + λ, (A6)

where λ is the Lagrange multiplier and

Φ̃ [q(x̂)] = Φ [q(x̂)] + λ

(∫
X

q(x̂)dx̂− 1
)

. (A7)

Setting ∂Φ̃[q(x̂)]
∂q(x̂) = 0 and using the constraint in Equation (A4), we find the optimal solution

q∗(x̂) =
p(x̂) exp (−D (x||x̂))∫

X p(x̌) exp (−D (x||x̌)) dx̌
. (A8)
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Thus, the variational lower bound of Φ [q(x̂)] is given by

Φ [q∗(x̂)] = min
q(x̂)

Φ [q(x̂)] = − ln
(∫
X

p(x̂) exp (−D (x||x̂)) dx̂
)

dx. (A9)

Therefore, from Equations (1), (A5) and (A9), we get the upper bound in Equation (25).
This completes the proof of Theorem 1.

Appendix A.2. Proof of Theorem 2

It follows from Equation (43) that

Iβ1,α1 = −
〈

ln
〈

exp
(
−β1Dβ1 (x||x̂) + (1− α1) ln

p (x)
p (x̂)

)〉
x̂

〉
x

≤ −
〈

ln
〈

exp
(
−e−1D (x||x̂)

)〉
x̂

〉
x
= Ie

≤ − 〈ln 〈exp (−D (x||x̂))〉x̂〉x = Iu, (A10)

where β1 = e−1 and α1 = 1. We immediately get Equation (26). This completes the proof of Theorem 2.

Appendix A.3. Proof of Theorem 3

For the lower bound Iβ,α, we have

Iβ,α = −∑M
m=1 p(xm) ln

(
∑M

m̌=1

(
p (xm̌)

p (xm)

)α

exp
(
−βDβ (xm|xm̌)

))
= −∑M

m=1 p(xm) ln (1 + d (xm)) + H (X) , (A11)

where

d (xm) = ∑m̌∈M−{m}

(
p (xm̌)

p (xm)

)α

exp
(
−βDβ (xm|xm̌)

)
. (A12)

Now, consider

ln (1 + d (xm))

= ln (1 + a (xm) + b (xm))

= ln (1 + a (xm)) + ln
(

1 + b (xm) (1 + a (xm))
−1
)

= ln (1 + a (xm)) + O
(

N−γ
)

, (A13)

where

a (xm) = ∑m̂∈Mβ
m

(
p (xm̂)

p (xm)

)α

exp
(
−βDβ (xm||xm̂)

)
, (A14a)

b (xm) = ∑m̌∈M−Mβ
m

(
p (xm̌)

p (xm)

)α

exp
(
−βDβ (xm||xm̌)

)
≤ N−γ1 ∑m̌∈M−Mβ

m

(
p (xm̌)

p (xm)

)α

= O
(

N−γ1
)

. (A14b)

Combining Equations (A11) and (A13) and Theorem 1, we get the lower bound in Equation (30).
In a manner similar to the above, we can get the upper bound in Equations (30) and (31). This completes
the proof of Theorem 3.
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Appendix A.4. Proof of Theorem 4

The upper bound Iu for mutual information I in Equation (25) can be written as

Iu = −
∫
X

(
ln
∫
X

p (x̂) exp (−D (x|x̂)) dx̂
)

p (x) dx

= −
〈

ln
(∫
X

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂
)〉

x
+ H (X) . (A15)

where L (r|x̂) = ln (p (r|x̂) p (x̂)) and L (r|x) = ln (p (r|x) p (x)).
Consider the Taylor expansion for L(r|x̂) around x. Assuming that L(r|x̂) is twice continuously

differentiable for any x̂ ∈ Xω(x), we get

〈L(r|x̂)− L(r|x)〉r|x

= yTv1 −
1
2

yTy− 1
2

yTG−1/2 (x) (G(x̆)−G(x))G−1/2 (x) y (A16)

where
y = G1/2 (x) (x̂− x), (A17)

v1 = G−1/2 (x) q′(x) (A18)

and
x̆ = x + t (x̂− x) ∈ Xω(x), t ∈ (0, 1) . (A19)

For later use, we also define
v = G−1/2 (x) l′(r|x) (A20)

where
l (r|x) = ln p (r|x) . (A21)

Since G(x̆) is continuous and symmetric for x̆ ∈ X , for any ε ∈ (0, 1), there is a ε ∈ (0, ω)

such that ∣∣∣yTG−1/2 (x) (G(x̆)−G(x))G−1/2 (x) y
∣∣∣ < ε‖y‖2 (A22)

for all y ∈ Yε, where Yε =
{

y ∈ RK : ‖y‖ < ε
√

N
}

. Then, we get

ln
(∫
X

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂
)

≥ −1
2

ln (det (G(x))) + ln
∫
Yε

exp
(

yTv1 −
1
2
(1 + ε) yTy

)
dy (A23)

and with Jensen’s inequality,

ln
∫
Yε

exp
(

yTv1 −
1
2
(1 + ε) yTy

)
dy

≥ ln Ψε +
∫
Ŷε

yTv1φε (y) dy

=
K
2

ln
(

2π

1 + ε

)
+ O

(
N−K/2e−Nδ

)
, (A24)

where δ is a positive constant,
∫
Ŷε

yTv1φε (y) dy = 0,
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φε (y) = Ψ−1

ε exp
(
−1

2
(1 + ε) yTy

)
Ψε =

∫
Ŷε

exp
(
−1

2
(1 + ε) yTy

)
dy

(A25)

and
Ŷε =

{
y ∈ RK : |yk| < ε

√
N/K, k = 1, 2, · · · , K

}
⊆ Yε. (A26)

Now, we evaluate

Ψε =
∫
RK

exp
(
−1

2
(1 + ε) yTy

)
dy−

∫
RK−Ŷε

exp
(
−1

2
(1 + ε) yTy

)
dy

=

(
2π

1 + ε

)K/2
−
∫
RK−Ŷε

exp
(
−1

2
(1 + ε) yTy

)
dy. (A27)

Performing integration by parts with
∫ ∞

a e−t2/2dt = e−a2/2

a −
∫ ∞

a
e−t2/2

t2 dt, we find

∫
RK−Ŷε

exp
(
−1

2
(1 + ε) yTy

)
dy ≤

exp
(
−1

2
(1 + ε) ε2N

)
(
(1 + ε)2 ε2N/ (4K)

)K/2

= O
(

N−K/2e−Nδ
)

, (A28)

for some constant δ > 0.
Combining Equations (A15), (A23) and (A24), we get

Iu ≤
1
2

〈
ln
(

det
(
(1 + ε)

2π
G(x)

))〉
x
+ H (X) + O

(
N−K/2e−Nδ

)
. (A29)

On the other hand, from Equation (A22) and the condition in Equation (33), we obtain∫
Xε(x)

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂

≤ det (G(x))−1/2
∫
RK

exp
(

yTv1 −
1
2
(1− ε) yTy

)
dy

= det
(

1− ε

2π
G(x)

)−1/2
exp

(
1
2
(1− ε)−1 vTv1

)
(A30)

and ∫
X

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂

=
∫
Xε(x)

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂ +

∫
X−X ε(x)

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂

≤ det
(

1− ε

2π
G(x)

)−1/2 (
exp

(
vTv1

2 (1− ε)

)
+ O

(
N−1

))
. (A31)

It follows from Equations (A15) and (A31) that〈
ln
(∫
X

exp
(
〈L(r|x̂)− L(r|x)〉r|x

)
dx̂
)〉

x

≤ −1
2

〈
ln
(

det
(
(1− ε)

2π
G(x)

))〉
x
+

1
2
(1− ε)−1

〈
vTv1

〉
x
+ O

(
N−1

)
. (A32)
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Note that 〈
vTv1

〉
x
= O

(
N−1

)
. (A33)

Now, we have

Iu ≥
1
2

〈
ln
(

det
(
(1− ε)

2π
G(x)

))〉
x
+ H (X) + O

(
N−1

)
. (A34)

Since ε is arbitrary, we can let it go to zero. Therefore, from Equations (25), (A29) and (A34),
we obtain the upper bound in Equation (35).

The Taylor expansion of h (x̂, x) =
〈(

p(r|x̂)
p(r|x)

)β
〉

r|x
around x is

h (x̂, x) = 1 +
〈

β

p(r|x)
∂p(r|x)

∂x

〉
r|x

(x̂− x)+

(x̂− x)T
〈

β

2p(r|x)2

(
(β− 1)

∂p(r|x)
∂x

∂p(r|x)
∂xT + p(r|x)∂2 p(r|x)

∂x∂xT

)〉
r|x

(x̂− x) + · · ·

= 1− β (1− β)

2
(x̂− x)TJ(x)(x̂− x) + · · · . (A35)

In a similar manner as described above, we obtain the asymptotic relationship (37):

Iβ,α = Iγ + O
(

N−1
)

=
1
2

∫
X

p(x) ln
(

det
(

Gγ(x)
2π

))
dx + H(X). (A36)

Notice that 0 < γ = β (1− β) ≤ 1/4 and the equality holds when β = β0 = 1/2. Thus, we have

det (Gγ(x)) ≤ det (Gγ0(x)) . (A37)

Combining Equations (25), (A36) and (A37) yields the lower bound in Equation (35).
The proof of Equation (36) is similar. This completes the proof of Theorem 4.
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