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Abstract: The advancement of high-throughput RNA sequencing has uncovered the profound truth in
biology, ranging from the study of differential expressed genes to the identification of different genomic
phenotype across multiple conditions. However, lack of biological replicates and low expressed data are
still obstacles to measuring differentially expressed genes effectively. We present an algorithm based on
differential entropy-like function (DEF) to test for the differential expression across time-course data or
multi-sample data with few biological replicates. Compared with limma, edgeR, DESeq2, and baySeq,
DEF maintains equivalent or better performance on the real data of two conditions. Moreover, DEF is
well suited for predicting the genes that show the greatest differences across multiple conditions such as
time-course data and identifies various biologically relevant genes.

Keywords: differential entropy-like function; differential expressed genes; multiple condition data;
time-course data

1. Introduction

Next-generation sequencing (NGS) technology has rapidly become the tool for many genome-wide
transcription studies. Production of millions or billions of short sequences from individual RNA
molecules together with lower costs and higher budgets have enabled many methodologies, such as RNA
sequencing (RNA-Seq) [1]. RNA-Seq technology empowers thorough recognition of gene isoforms [2],
translocations [3], nucleotide variations [4], time-course gene expression analysis [5], and cap analysis of
gene expression (CAGE) [6]. One reason for the growing popularity of RNA-Seq technology is its ability
to detect differentially expressed genes between two or more conditions (e.g., different races of human
populations). However, the expression of most genes is intrinsically stochastic [7], so several methods have
been introduced for exploring it [8–10], despite the variability in RNA-Seq data, which poses challenges
for differential expression and other relative analysis [11].

The theoretical methods for the study of RNA-Seq data can be grouped into two major
categories. The first representative methods are limma [10], edgeR [12–14], DESeq2 [15], baySeq [16],
PoissonSeq [17,18], DSS [19] and DGEclust [20]. These methods rely on the accuracy of distribution
assumptions and parameters estimation. Once the reads are mapped at the gene, exon or transcript level,
the problem is naturally summarized into matrices where rows represent exons, genes or transcripts and
columns represent samples or replicates. Therefore, many of the earliest statistical methods are based
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on Poisson or negative binomial distribution to model read counts. Some of these methods represent
the current state-of-the-art of the field for the study of RNA-Seq data. However, the methods based on
the negative binomial and Poisson model either fail to perform multiple conditions comparison or are
excessively conservative [21,22]. It is noteworthy that assessing differential low expressed count features
and biological experiments with few replicates is a challenge for the estimation of model parameters.
The methods in the second category such as NOIseq [23,24], rSeqNP [25] and SAMseq [26] attempt to
make use of non-parametric approaches. These methods rely less on the probability distribution of exon,
gene and transcript counts. An advantage is that this class of methods aims to be data-adaptive and is
suitable for differential expression analysis without prior information. Whereas when we teased apart this
kind of methods, we found that they may tend to overestimate differentially expressed genes with high
variability among replicates.

In this paper, we introduce an approach based on the differential entropy-like function (DEF),
an algorithm for discovering the differentially expressed genes across multiple conditions. From the
theoretical point of view, the importance of the proposed method derives from its information-theoretic
background. On the one hand, DEF allows the recognition of differentially expressed genes on multiple
conditions such as time-course data and multiple tissues data. Compared with the popular alternative
methods, DEF obtains a wider application. On the other hand, DEF is effective in detecting the differentially
expressed genes with the characteristic that it does not rely on the probability distribution. Another
characteristic of DEF is its adaptability on zero expressed gene counts, which could give rise to the other
troubling aspect that many hypothesis test methods fail. The paper is organized into the following sections.
Section 2 presents the performance of DEF compared with the other methods on the datasets of two
conditions. Section 3 presents the evaluation of DEF on the two-condition data. Section 4 presents the
performance of the DEF on the time-course RNA-Seq data. Section 5 presents the effective analysis of DEF
on the datasets of multiple conditions.

2. Results

2.1. DEF Shares Many Genes with Limma, DESeq2, baySeq and edgeR

We started by analyzing the actual RNA-Seq datasets with limma, DESeq2, baySeq, edgeR and DEF.
Details of the datasets are described in Table 8 of the “Materials and Methods” Section. In all cases
with “Sultan” and “Katz” datasets from R package “recount” [27], there were two-condition data with
two technical replicates per condition. The Venn diagram for each of the cases is shown in Figures 1
and 2. All compared methods ranked each gene by providing P values (limma, DESeq2 and edgeR),
FDR (baySeq) or an entropy-like value (DEF). P Value or FDR less than 0.05 was considered to indicate
statistical significance. The cut-off values of DEF were 0.05 (Figures 1a and 2a) and 0.01 (Figures 1b and 2b).
As indicated by the Venn diagrams constructed from differentially expressed genes, sharing 792 genes
in the “Sultan” case demonstrated a significant overlap by the five methods (Figure 1a). In this figure,
we note that the differentially expressed genes found by DEF were to a large extent also found by limma,
edgeR, baySeq and DESeq2. Simultaneously, our DEF method found a fair amount of unique differentially
expressed genes, which were not shared with the other methods (Figure 1b). We further investigated two
possibilities for the additional differentially expressed genes in Figure 1b. Tables 1 and 2 list the raw read
counts of ten unique differentially expressed genes detected by DEF (Figure 1b). The top five and last five
genes were with the largest and smallest DEF values among the 1907 additional genes. As can be seen in
Table 1, all five genes had only one non-zero expressed value across four replicates. These genes were true
positives, which DEF detected better than the other methods. As shown in Table 2, the differences between
these replicates were not so clear. Some gene such as “ENSG00000065357” had extreme read counts
(10), while some genes had moderate read counts. These genes could be false positives detect by DEF,
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which was why the other methods did not identify them. In “Katz” case, 41 and 100 overlapping genes
were found by each method with different cut-off values of DEF (Figure 2). Figure 2b displays that DEF
detected 1134 additional differentially expressed genes. Tables 3 and 4 demonstrate the raw read counts
of “Katz” dataset, which further confirms the effectiveness of DEF method. The two tables list the top
five and last five unique differentially expressed detected by DEF from 1134 genes (Figure 2b). In Table 3,
five genes with largest DEF values expressed in Condition B. However, they all had zero expressed
values in Condition A. These genes should be different genes and DEF successfully detected these genes,
which failed to be identified by the other methods. In Table 4, the gene “ENSMUSG00000036977” was
highly expressed in Condition A and the genes “ENSMUSG00000057924” and “ENSMUSG00000067203”
had higher expression in Replicate 1 of Condition B. These genes were true positives detected by DEF.
The difference performance of the other genes was not clear. These genes could be false positives.

The reasons for better performance of DEF compared to other methods in all datasets stem from
its adaptability for zero expressed gene counts. Low replicates in each sample cause inaccuracy on the
distribution-dependent methods and zero expressed gene counts give rise to the other troubling aspect
that many hypothesis test methods failed.

Figure 1. Venn diagram of differentially expressed genes obtained from limma, baySeq, DESeq2, edgeR and
DEF: (a) read counts from “Sultan” dataset with the threshold for DEF entropy-like value of 0.05; and (b)
read counts from “Sultan” dataset with the threshold for DEF entropy-like value of 0.01.

Table 1. Read counts of top five unique differentially expressed genes detected by DEF in “Sultan” dataset.

Ensembl ID Condition A Replicate 2 Condition B Replicate 2 DEF ValueReplicate 1 Replicate 1

ENSG00000164002 5 0 0 0 0.0617
ENSG00000104833 0 0 7 0 0.0608
ENSG00000124920 0 0 7 0 0.0608
ENSG00000182310 0 0 7 0 0.0608
ENSG00000197608 0 0 0 6 0.0581
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Figure 2. Venn diagram of differentially expressed genes obtained from limma, baySeq, DESeq2, edgeR and
DEF: (a) read counts from “Katz” dataset with the threshold for DEF value of 0.05; and (b) read counts from
“Katz” dataset with the threshold for DEF value of 0.01.

Table 2. Read counts of last five unique differentially expressed genes detected by DEF in “Sultan” dataset.

Ensembl ID Condition A Replicate 2 Condition B Replicate 2 DEF ValueReplicate 1 Replicate 1

ENSG00000111325 4 8 6 2 0.0101
ENSG00000141431 1 1 5 4 0.0100
ENSG00000065357 4 10 3 4 0.0100
ENSG00000179021 2 6 6 2 0.0100
ENSG00000215301 2 6 6 2 00100

Table 3. Read counts of top five unique differentially expressed genes detected by DEF in “Katz” dataset.

Ensembl ID Condition A Replicate 2 Condition B Replicate 2 DEF ValueReplicate 1 Replicate 1

ENSMUSG00000051920 0 0 5 0 0.0437
ENSMUSG00000029683 0 0 0 4 0.0436
ENSMUSG00000069301 0 0 0 4 0.0436
ENSMUSG00000070691 0 0 1 4 0.0432
ENSMUSG00000079332 0 0 3 2 0.0412

Table 4. Read counts of last five unique differentially expressed genes detected by DEF in “Katz” dataset.

Ensembl ID Condition A Replicate 2 Condition B Replicate 2 DEF ValueReplicate 1 Replicate 1

ENSMUSG00000038593 6 3 4 0 0.0101
ENSMUSG00000036977 5 11 0 1 0.0101
ENSMUSG00000057924 2 2 5 1 0.0101
ENSMUSG00000067203 2 2 5 1 0.0101
ENSMUSG00000002205 2 13 10 3 0.0100
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2.2. DEF Successfully Identified the Differentially Expressed Genes under the Real Dataset

In differential expression analysis, an important task is to identify the genes that are differentially
expressed at higher variability between experimental conditions without prior information. We compared
the performance of DEF to identify differentially expressed genes under the experimental conditions
encapsulated by the actual dataset. Details of the dataset are in the “Materials and Methods” Section.
We analyzed the 100 top-ranking genes with box plots, as shown in Figure 3a for “Sultan” dataset and
Figure 3b for “Katz” dataset. These box plots show the variance across different samples. Medians
of the box plots varied widely across samples. Hence, DEF is an approach for the identification of
differentially expressed genes from count data. Essentially, our method creates a measurement for
gene-wise counts by DEF and evaluates the absolute expression differences for the genes in all the
samples. We also utilized the method generalized log-cpm to obtain the normalized matrix of counts,
which can remove potentially library variation and prevent bias and mean squared error in downstream
analyses. We evaluated various methods for differential expression analysis and found that our method
performed equivalent to the classical methods. The main difference between DEF method and other
methods based on statistics is the ability to handle low expression counts, especially zero counts, an issue
of great importance when investigating differential expression in the context of RNA-Seq. When both
samples have zero reads, clearly nothing can be said about differential expression and we have already
filtered these genes. Presumably, this represents an interesting biological phenomenon, where a gene in
all samples is completely non-expressed according to sequencing. For genes with zero counts in either
sample, many methods failed, except DEF method (Tables 1 and 3). Because many methods cannot handle
zero-count genes, their methods failed to detect many easy cases of differentially expressed genes (i.e.,
genes with zero-count in one condition while non-zero-count in the other condition). Because the use of
parameters in the normalization step of our model successfully handled zero counts, the larger DEF value
was particularly pronounced for genes expressed at a more obvious difference across samples (Tables 1–4).

2.3. DEF Is Applicable for the Real Time-Course Data

With the development of sequencing technology, researchers pay more attention to timeliness.
More and more time-course data come from the advanced experiment and more methods are needed
for analyzing these data. DEF also works effectively on the time-course data. “Trappnell” dataset was
obtained from online resources of “recount”. The mouse samples of the dataset were from four time points
following differentiation. We applied DEF on the time-course data and took the top five differentially
expressed genes with the largest DEF values for further analysis. Figure 4a displays dramatic changes
over the four time points of the top five differentially expressed genes. The genes decreased rapidly in the
first two time courses and increased in the last time course. These genes could be used for further analysis
in the biological progress. Table 5 lists the gene symbols and gene functions of these five genes. The most
differentially expressed gene, Kart9, plays an essential role in the correct development of sperm [28].
The Lce1g is one of the differentiation-related genes [29]. All these findings were consistent with the
characteristic of the time-course data. Particularly, our results predicted that Avpr1a, Pcdh20 and Npas4
may play an important role in the shaping of the samples from time-course data. Figure 4b shows the box
plot of the top 100 differentially expressed genes of the four time points separately. Comparison of the four
box plots clearly indicates the expression variation across four time points, which proved the effectiveness
of DEF.
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Figure 3. The performance of DEF on the two-group data: (a) box plots of the top 100 differentially
expressed genes from “Sultan” dataset; and (b) box plots of the top 100 differentially expressed genes from
“Katz” dataset.

Figure 4. The performance of DEF on time-course data: (a) normalized read counts of the top five
differentially expressed genes over four time points; and (b) box plots of the top 100 differentially expressed
genes on the first time point compared with every time point.
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Table 5. Top five differentially expressed genes obtained from DEF.

Ensembl ID Gene Symbol Gene Function

ENSMUSG00000051617 Krt9 An important special function in the mature palmar
Plays an essential role in the correct development of sperm

ENSMUSG00000020123 Avpr1a Receptor for arginine vasopressin

ENSMUSG00000050505 Pcdh20 Potential calcium-dependent cell-adhesion protein.

ENSMUSG00000027919 Lce1g keratinocyte differentiation

ENSMUSG00000045903 Npas4 A key role in the structural and functional plasticity of neurons
Transcription factor expressed in neurons of the brain

2.4. DEF Is Applicable for the Real Multiple Condition Data

Most existing methods deal with a two-condition comparison, while DEF was designed to be an
effective tool for the quantification of differentially expressed genes across multiple conditions. We show
that our method is applicable in terms of differential expression analysis on multiple condition data.
A multiple condition dataset was considered as an example to test the feasibility of our method. We chose
the “Cheung” dataset, which contains samples of 41 CEPH HapMap (CEU) samples [30], and applied
DEF method for differential expression analysis across the 41 samples. DEF identified several genes
that are differentially expressed across these samples (Table 6). We searched for some testified findings
and these findings were consistent with our results. Our observation about the differentially expressed
genes implicated that DEF is well suited for predicting which genes show the greatest differences in
expression between biological samples. One of the differentially expressed genes is ZFP57, which is
confirmed as highly variably expressed gene from 1000 Genomes CEU phase 1 [31]. The “Cheng” dataset
consists of 17 female samples and 24 male samples. Another gene RPS4Y1 is also a differentially expressed
gene detected by DEF. The gene RPS4Y1 is located in chromosome Y. In particular, our results predict
that PRSS21, MKRN and GTSF1 may play an important role in the shaping of specificity of the CEU
from HapMap (Table 6). Figure 5a shows the box plot of the top 100 differentially expressed genes
across all the samples separately. Figure 5b displays 100 genes that DEF identified as non-differentially
expressed genes. Clearly, medians change greatly in Figure 5a while the medians in Figure 5b are robust.
Comparison of 41 box plots in Figure 5a,b clearly indicates the expression variation across samples, which
proved the effectiveness of DEF. We also took additional multi-tissue data as an example to test the
feasibility of our method. We chose the data “Wang” from online resources “recount” of RNA sequencing
on human cell line with diverse tissues. The tissues included in the dataset are cerebellum, breast,
brain, adipose, T47D, MCF7, MB435, HME and BT474. We compared the dataset from these tissues and
applied DEF method for differential expression analysis between those samples. As there are limited
“gold-standard” data with which to evaluate the accuracy of RNA-Seq quantification methods, and because
real differentially expressed genes are difficult to confirm, we connected some gene functions of our
analyzed DE genes with the real biological differential traits between different tissues. TCL1A [32,33] ,
POU2AF1, ARHGDIB [34–36], LRMP and IRS4 [37–39] were the most variable genes (Table 7).We also
took the top 100 differentially expressed genes of every sample for further analysis. The result presented
in Figure 6 show that our method found the obvious differences across the different samples. We found
that there is limited “gold-standard” data with which to evaluate the accuracy of RNA-Seq quantification
methods, calling into question how to thoroughly evaluate the DEF method. However some published
findings ar e consistent with our results.
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Figure 5. Box plot of the top 100 differentially expressed genes and last 100 non DE genes of
41 samples separately.

Table 6. Top five differentially expressed genes obtained from DEF in the “Cheung” dataset.

Ensembl ID Gene Symbol Gene Function

ENSG00000204644 ZFP57 May serve an important special function either in the mature palmar
Plays an essential role in the correct development of sperm

ENSG00000007038 PRSS21 Receptor for arginine vasopressin

ENSG00000179455 MKRN Potential calcium-dependent cell-adhesion protein.

ENSG00000170627 GTSF1 Protein coding

ENSG00000129824 RPS4Y1 multicellular organism development
nuclear-transcribed mRNA catabolic process, nonsense-mediated decay
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Figure 6. Box plot of the top 100 differentially expressed of nine tissues separately.

Table 7. Top five differentially expressed genes obtained from DEF in the “Wang” dataset.

Ensembl ID Gene Symbol Gene Function

ENSG00000100721 TCL1A
Enhances cell proliferation, stabilizes mitochondrial membrane potential
and promotes cell survival
Enhances the phosphorylation and activation of AKT1, AKT2 and AKT3.

ENSG00000110777 POU2AF1 It is essential for the response of B-cells to antigens and required for the
formation of germinal centers

ENSG00000111348 ARHGDIB Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting
the dissociation of GDP from them, and the subsequent binding of GTP to them

ENSG00000118308 LRMP
Plays a role in the delivery of peptides to major histocompatibility complex (MHC)
class I molecules
May play a role during fertilization in pronucleus congression and fusion

ENSG00000133124 IRS4

Acts as an interface between multiple growth factor receptors possessing tyrosine
kinase activity
Plays a pivotal role in the proliferation/differentiation of hepatoblastoma cell
Plays a role in growth, reproduction and glucose homeostasis

3. Discussion

In this study, we performed a detailed comparative analysis of DEF method with several other
methods for differential expression analysis by RNA-Seq data. For these methods, we focused on the
specialty of generalized log-cpm normalization, especially conditions on low expression read counts.
Small sample statistical analysis is still a tough task, while our proposed method could avoid the bias
to some extent. Low biological or technical replicates in each sample could cause inaccuracy on the
distribution-dependent methods. In contrast to other approaches, our model implies that the numbers of
read counts are not entirely distinct, but they are connected between samples of replicates. This is a form
of information sharing between genes and between samples, which are made possible by calculating the
differential entropy-like function of the proposed model. The important contribution of this study is the
solution of zero counts when performing differential expression analysis. Zero expressed gene counts give
rise to the further troubling aspect that many hypothesis test methods fail. However, our model successfully
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handles the two dilemmas. We emphasize that the difference does exist when one sample has zero read
counts while the other does not. DEF not only shares many differentially expressed genes but also detects
additional differentially expressed genes. Additionally, we studied the effect of the standard deviation
on the gene-wise mean expression level. DEF is also faster and more convenient, and converts RNA-Seq
data into a form that can be analyzed using a single value of a gene. It is demonstrated that combining
generalized log-cpm normalization with provided DEF function can lead to a more powerful analysis
to other alternatives, such as either parameter-dependent method or some other distribution-dependent
method on their own. The last and the most meaningful contribution of our DEF method is its application
on variable biological conditions with multi-sample and time-course data. The biological basis for diversity
in gene expression between different conditions is likely to be complex. Analysis of multiple samples and
time-course data helps to expose the biological bases underlying tissue diversity. The analysis of data from
the same or different populations studies that each contained some population replicates showed us that
the differentially expressed genes made by our strategy were likely to be biologically meaningful, as their
phenotypes do have to distinguish among the gene set we test.

4. Conclusions

DEF performed as well as existing RNA-Seq methods, especially when the gene-wise expression was
low. Meanwhile, DEF performed effectively on multiple conditions such as multi-sample and time-course
RNA-Seq data. One characteristic of DEF is its independence of the statistical distribution of feature
counts. Most methods for gene expression differential analysis are based on the negative binomial
model, which seems unreasonable sometimes. Low replicates in each group cause inaccuracy in the
distribution-dependent methods and zero expressed gene counts give rise to the other troubling aspect
that many hypothesis test methods fail. However, DEF based on information theory successfully deals
with the two issues. Following the previous studies, in differential expression analysis, an important
task is to identify the genes that are expressed at higher variability across multiple samples without prior
information. Accumulations of comparative studies for multi-sample data are desired, which is what we
have always been focused on. DEF could work well with multiple conditions even with few replicates.
The different degree of genes could be ordered by their relative DEF values. Moreover, we expect our
work to inspire and support further theoretical research on modeling gene expression data and we believe
that our software, DEF, will prove to be a useful addition to the existing methods for the statistical analysis
of RNA-Seq and similar types of data. Some cell types will be more similar to each other, which will pose
more challenges for meta-data analysis. Nevertheless, we speculate that the current method can be applied
to single-cell data and comprehensive evaluations are the subsequent tasks.

5. Materials and Methods

5.1. Dataset

All datasets were obtained from the “recount” online resource http://bowtie-bio.sourceforge.net/
recount/. We used the R package “recount” to get each count table combined with sample phenotype data.
Table 8 lists the details of the four datasets analyzed in this article.

http://bowtie-bio.sourceforge.net/recount/
http://bowtie-bio.sourceforge.net/recount/
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Table 8. Five datasets information.

Abbreviate in the Article Number of Samples Note

Sultan (human) [40] 4 cell type comparison
Katz (mouse) [41] 4 case and control comparison

Trappnel l(mouse) [2] 4 time course comparison
Cheung (human) [30] 41 individual comparison
Wang (human) [42] 9 tissue comparison

5.2. Normalization

Normalization of the count data is a crucial step in the analysis of RNA-Seq data, which has a strong
impact on the detection of differentially expressed genes. A normalization strategy called generalized
log-cpm was used. The log-cpm method is a well-accepted normalization step of gene expression by
dividing the corresponding library size (in millions) of each read count shown in voom method [43].
Specifically, the entry point of the normalization algorithm is a set of n RNA samples whose sequence
reads have been summarized according to the number mapping to each gene. The raw matrix Y with
elements yij(i = 1, ..., m; j = 1, ..., n) indicates the number of sequencing reads that have been mapped to a
gene in a sample. Write Yj for the total number of mapped reads for sample j, Yj = ∑n

j=1 ỹij.

yij = log2(
yij + 0.5
Yj + 1

× 106) (1)

where yij is the number of reads mapped to gene i in sample j. However, log-cpm values could be negative,
which is a problem in some specific conditions. Besides, the normalization size 106 was fixed, which may
cause the log-cpm value to be too large or too small. To avoid these problems, a generalized log-cpm value
was given:

ỹij = log2(
yij + 1
Yj + 1

× 10k) (2)

where k = [log10(max
j

Yj)] + 1. Note that the positive ỹij was normalized by the maximal reads of each

row. It is worth noting that the denominator counts Yj was offset by one to avoid the meaningless
condition when Yj equals zero. At the same time, the numerator counts yij were augmented by a small
positive value (one read) to avoid taking the logarithm of zero. Such operation not only ensures no

missing generalized log-cpm values but also allows that
yij + 1
Yj + 1

is less than one as well as greater than

zero. To avoid the phenomenon that it is highly possible that ỹij is negative, the parameter k played

an important role to ensure that
yij + 1
Yj + 1

× 10k was strictly greater than one. As a result, ỹij was strictly

greater than zero. Moreover, the benefit of generalized log-cpm is not only dealing with zero expression
read counts but also decreasing the variance of the genes with larger RNA-Seq counts. In particular,
the generalized log-cpm ensures no missing values and reduces the variability at high expressed count
values. In summary, generalized log-cpm method for normalization is crucial in terms of differentiating
between gene expression changes with low expressed or extremely high expressed read counts.

5.3. DEF Function

Subsequently, a novel method based on the differentially entropy-like function was used for detecting
the differentially expressed genes across multiple samples in RNA-Seq data. Internally, DEF uses the
normalization method generalized log-counts per million, which is a simple and reasonable scale for
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normalization by providing scale factors to make counts comparable between different samples. For the
normalized read counts matrix Ỹ, the differential entropy-like function is defined as

H = 1 −
−∑n

j=1[(
ỹij

Yj
) · log(

ỹij

Yj
)]

logn
(3)

where Yj = ∑n
j=1 ỹij. Note that the value of DEF is a reasonable measurement of the differentially expressed

genes. For example, gene i is expressed across all samples with reads count 1 after normalization, that is
ỹi1 = ỹi2 = · · · = ỹin = 1, then

H = 1 −
−∑n

j=1[(
1
n
) · log(

1
n
)]

logn
= 1 −

−log(
1
n
)

logn
= 0 (4)

which shows gene i is not differentially expressed by the differential entropy-like function. This agrees
with the fact gene i is not differentially expressed across the samples. For another example, gene i is
expressed differentially with read counts 1, 2, 3 after normalization across three samples. Then,

H = 1 −
−1

6
× log

1
6
− 2

6
× log

2
6
− 3

6
× log

3
6

log3
= 0.079 (5)

which shows the difference exists across these three samples. The bigger the value H is, the greater the
expression difference among n samples is. For each gene, we calculated a differential entropy-like function
value, which permits the direct estimation of the degree of expression. For each gene, its difference degree
across multiple samples can be quantified by DEF value. This gene was defined as a differential expression
when H was larger than a reasonable threshold; otherwise, it was judged as non-differential expression
gene. We implemented the method presented in this article in the software package DEF, which was
written in R language. A software implementation is available from https://github.com/xiaoxiaoxier/DEF.
DEF expects a matrix of unnormalized count data as input and the output of the analysis is the IDs of the
differentially expressed genes. When using DESeq2, edgeR and bayseq for comparison, all parameters
were left at their default values. For baySeq, we took 5000 samples for estimating the priors with the
quasi-likelihood approach.
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