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Abstract: Self-adaptive methods are recognized as important tools in signal process and analysis.
A signal can be decomposed into a serious of new components with these mentioned methods,
thus the amount of information is also increased. In order to use these components effectively,
a feature set is used to describe them. With the development of pattern recognition, the analysis of
self-adaptive components is becoming more intelligent and depend on feature sets. Thus,
a new feature is proposed to express the signal based on the hidden property between extreme
values. In this investigation, the components are first simplified through a symbolization method.
The entropy analysis is incorporated into the establishment of the characteristics to describe those
self-adaptive decomposition components according to the relationship between extreme values.
Subsequently, Extreme Interval Entropy is proposed and used to realize the pattern recognition,
with two typical self-adaptive methods, based on both Empirical Mode Decomposition (EMD) and
Empirical Wavelet Transform (EWT). Later, extreme interval entropy is applied in two fault diagnosis
experiments. One experiment is the fault diagnosis for rolling bearings with both different faults and
damage degrees, the other experiment is about rolling bearing in a printing press. The effectiveness of
the proposed method is evaluated in both experiments with K-means cluster. The accuracy rate of the
fault diagnosis in rolling bearing is in the range of 75% through 100% using EMD, 95% through 100%
using EWT. In the printing press experiment, the proposed method can reach 100% using EWT to
distinguish the normal bearing (but cannot distinguish normal samples at different speeds), with fault
bearing in 4 r/s and in 8 r/s. The fault samples are identified only according to a single proposed
feature with EMD and EWT. Therefore, the extreme interval entropy is proved to be a reliable and
effective tool for fault diagnosis and other similar applications.

Keywords: empirical mode decomposition; empirical wavelet transform; intrinsic mode functions;
symbolization; extreme interval entropy

1. Introduction

Self-adaptive methods are recognized as important tools in signal analysis of biomedical, seismic,
geological and financial fields. Empirical mode decomposition (EMD) is a classical one self-adaptive
method EMD, a widely used signal analysis method, is based on the simple assumption that any data
consist of different simple intrinsic mode functions (IMF); therefore, a signal can be decomposed into
a series of IMFs without any prior knowledge. Each IMF inherits different local characteristic time
scales of a signal. After empirical mode decomposition, Hilbert Huang Transform (HHT) is always
used for instantaneous amplitude, phase and frequency measurements. With EMD and HHT, signal
analysis method has been enriched widely [1–3].
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Since EMD has a strong adaptability, EMD is nearly suitable for all kinds of non-linear and
non-stationary signals. According to IMFs from original signal, various signal analysis works can
be realized directly such as filtering, noise reduction, decoupling, feature extraction and pattern
recognition, etc. Currently, researchers and engineers have widely used EMD and its modified versions
to detect and diagnose faults in machinery [4–7]. It has also been used to identify structural parameter
changes and detect incipient faults [8]. In the analysis of biomedical and geological cases, EMD and
similar methods are also can be used effectively [9–12].

With the improvement of EMD, related derivative methods have been proposed. To rectify
and overcome the mode mixing effect in EMD, ensemble empirical mode decomposition (EEMD)
has been presented [13,14]. Considering that the frequency of the added noise is hard to select in
EEMD, an adaptive optimised EEMD (OEEMD) method, aiming to eliminate mode mixing better
than EEMD, is presented and used in fault diagnosis more effectively [15]. Then, local mean
decomposition (LMD), a new adaptive non-stationary signal processing method, is proposed. LMD
decomposes multicomponent signals into single AM-FM signals which are termed product function
(PF) components [16]. In addition, variational mode decomposition (VMD), developed to eliminate
the mode mixing problem in EMD, has also gained some popularity in recent years as a promising
technique for fault detection in various mechanical equipment [17,18].

Among these time-frequency methods, wavelet transform (WT), which can decompose a signal
into several low high-frequency components and high-frequency components, has a good ability to
show features of an abnormal signal. WT has more choices for a basis function to match a specific fault
symptom, which is beneficial to fault feature extraction. Due to the advantages, WT has shown its
tremendous usefulness in fault diagnosis of rotating machinery. In general, WT can be categorized
as continuous wavelet transform, discrete wavelet transform and wavelet packet transform [7,19].
Consider that WT has a stronger ability of local frequency domain analysis for signals, another
improved method, denoted as the empirical wavelet transform (EWT), was developed by Gilles [20].
In EWT, the frequency information of signal is extracted by the fast Fourier transform and a proper
wavelet filter bank is established according to segmentations of the Fourier spectrum to decompose
the pure vibration modes without mixture [21]. In many cases, the components obtained from EWT
always have more advantages in signal analysis.

All methods mentioned above are always denoted as self-adaptive decomposition methods.
A signal will be decomposed into a serious of new components with these mentioned methods; thus,
the amount of information is also increased. In order to use these components effectively, a feature set
is needed to describe them. With the development of artificial intelligence and pattern recognition,
signal analysis is becoming more intelligent and dependent on feature sets [22,23]. Therefore, it is
important to construct feature sets with low computational complexity with a strong representation
ability in self-adaptive decomposition methods [5,6,24].

A new feature, extreme interval entropy, is proposed to realize the characterization of components
obtained from self-adaptive decomposition in the research. This work is based on the symbolic
analysis of extrema values. Extreme interval entropy given here can reveal the regularity of the
relationship between positions of extreme values, thus it can describe the differences property in
signals. The extreme interval entropy is applied to mechanical fault diagnosis successfully. Considering
that EMD is a typical self-adaptive method and EWT has a better developing trend recently, they both
were taken as main research objects in this work [25].

This paper is organized into four sections including the present one. In Section 1, an overview of
the research purpose and content is given. Section 2 reviews the theory and principle involved in
the proposed method. Symbolization methods based on extremum analysis and extremum interval
entropy are also proposed. The technique is further validated using three series of experimental data
from bearing faults in Section 3. Subsequently, this research is concluded in Section 4.
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2. Symbolic Analysis for Components

2.1. Intrinsic Mode Functions

EMD is a powerful time-frequency domain analysis technique for decomposing a nonlinear and
nonstationary time series into a set of orthogonal components named s IMFs. If the signal to be
analyzed is x(t), the EMD process can be described as follows [1]:

(1) Find the positions and amplitudes of all local maxima and minima, then denote them as
and correspondingly.

(2) Create the upper and lower envelopes by cubic spline interpolation of the local maxima and the
local minima, respectively. Calculate the mean of both the upper and lower envelops;

(3) The envelope is then subtracted from the signal using. If satisfies the two conditions of IMF
conditions as follows, it can be obtained as an IMF. Otherwise, set and repeat processes (1)–(3)
until the residual satisfies the stopping criterion.

(4) Once IMF has been gotis obtained, should be replaced by the residual. The above process is
repeated and the signal would be separated into n IMFs and a residue signal as in Equation (1).
at last: Finally, the signal is decomposed into n number of IMFs and the residual signal.

x(t) =
n

∑
i=1

ci(t) + rn(t) (1)

An IMF is a function that satisfies the two following conditions: (i) in the whole data set,
the number of extremes and the number of zero-crossings must either be equal or differ at most
by one; (ii) at any point, the mean value of the envelope defined by local maxima and the envelope
defined by the local minima is zero.

After converting a signal into the sum of a group components, the high-frequency and
low-frequency components can be distinguished well. High frequency information is always contained
in the former IMFs, while noise and low frequency information are in the residue signal and back
IMFs. Therefore, the calculation and analysis are mainly focused on the first few components.

2.2. Symbolic Analysis for IMF

The symbolic analysis method is derived from nonlinear systems and it can simplify the signal to
a large degree. In the symbolic method, the main trend of the signal is highlighted while local details
are always ignored [26–28]. According to the definitions of EMD, the basic form of components is
decided by extremum envelopes, and this means that the calculation is dependent on the positions of
maximum and minimum values to a great extent.

In order to obtain a high efficiency feature of IMF and eliminate redundant information, a new
symbolic analysis method is proposed based on extrema values. The steps involved in the symbolic
analysis are as follows,

(1) After the IMF component is obtained, set maximum values as 1 and minimum values as −1,
and that means that the extremums are normalized.

(2) Set the values of non-extreme points as zero, and then there are only −1, 0 and 1 in the signals.
Thus, IMF is changed into an integer sequence.

(3) Record the number of zero points between all adjacent extreme points one by one. Then a new
sequence composed of these numbers can be obtained. This sequence can describe the relationship of
the positions between adjacent extreme values in components effectively and is named the extreme
interval sequence. One typical example is shown in Figure 1.
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Figure 1. Symbolic analysis for the extreme value of IMF. 
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To avoid the application of complex features, the research attempts to use features as little as
possible to realize the characterization of components. Among various signal features, entropy and
similar features are often chosen, relying on their advantages in describing the signal as a whole
system [29,30]. Thus, entropy is incorporated into the symbolic analysis and is named as Extreme
Interval Entropy in this work. It is presented as Equation (2)

E = −
k

∑
i=1

pi log pi (2)

where pi is the appearance probability of those numbers with a value i in the extreme interval sequence.
k is the maximum value in the extreme interval sequence and it represents the maximum distance
between adjacent extreme values. As for the high-order components, high frequency means a short
time interval; therefore, k in a high component is always smaller. On the contrary, k in lower component
is much larger and does not need to be used, since the lower components have nearly no significance
in analysis.

2.3. Symbolic Analysis of EWT

Symbolic analysis and extreme interval entropy can also be included in EWT, which has rapidly
developed in recent years. In EWT, the frequency information of the vibration signal is extracted by the
fast Fourier transform, and then a proper wavelet filter bank is also established due to segmentations of
the Fourier spectrum to decompose without mixture. EWT has better performance than EMD in
restraining the endpoint effect and model mixture. The properties of self-adaptive and wavelet
transform are integrated into EWT [20,21,31].

EWT extracts the components, similar to IMFs in EMD, with a wavelet filter bank. These
matched band pass filters are built around the peaks in the frequency spectrum. Take [0, π] as the
range of normalized signal spectrum in calculation. Assuming that the signal is composed of N single
components, then divide the spectrum into N continuous segments and there are (N + 1) boundary
lines determined. After the band division, a wavelet filter can be constructed to extract the band
information and obtain the independent mode components step by step. Each segment is recorded
as Λn = [ ωn−1 ωn ], where ωn−1 = 0 and ωn−1 = π. Then, ∪N

n=1Λn = [ 0 π ]. The empirical
wavelets are defined as band pass filters on each Λn. Meyer’s wavelet is employed as the construction

method in this work. For ∀n > 0, n ∈ Z, the empirical scale function
∧
ϕn(ω) and empirical wavelet

function
∧
ψn(ω) are defined according to the angular frequency ω and a function β(x) as follows.

∧
ϕn(ω) =


1 i f |ω| ≤ (1− γ)ωn

cos
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

i f (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise,

 (3)
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∧
ψn(ω) =



1 i f (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[

π
2 β
(

1
2γωn+1

(|ω| − (1− γ)ωn+1)
)]

i f (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

i f (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise,


(4)

where β(x) represents the related function in Equation (5)

β(x) = x4(35− 84x + 70x2 − 20x3) (5)

γ is a parameter. Parameter γ can ensure that there is no overlap between two consecutive
transition areas, so the parameter γ must meet the following condition in Equation (6).

γ ≤ minn

[
ωn+1 −ωn

ωn+1 + ωn

]
(6)

According to the method of constructing wavelet transform, the detail coefficients are obtained by
using the empirical wavelet function and the inner product of the original signal. The approximation
coefficients are obtained by using the scaling function and the inner product of the original signal;
respectively, the expression is as follows

ωε
f(n, t) = [ f , ψn] =

∫
f (τ)ψ(τ − t)dτ =

(
∧
f (ω)

∧
ψn(ω)

)
(7)

ωε
f(0, t) = [ f , ϕ1] =

∫
f (τ)ϕ1(τ − t)dτ =

(∧
f (ω)

∧
ϕ1(ω)

)
(8)

where ωε
f(n, t) represents the detail coefficients, and ωε

f(0, t) is the approximation coefficients.
The result of the reconstructed original signal f (t) are written as follows

f (t) = ωε
f(0, t) ∗ ϕ1(t) +

N
∑

n=1
ωε

f(n, t) ∗ ψn(t)

=

( ∧
ωε

f (0, ω)
∧
ϕ1(ω) +

N
∑

n=1

∧
ωε

f(n, ω) ∗
∧

ψn(ω)

) (9)

where
∧

ωε
f (0, ω) and

∧
ωε

f(n, ω) are Fourier transformations of ωε
f(0, t) and ωε

f(n, t), respectively.
Empirical modal functions fk are defined as follows

f0(t) = ωε
f(0, t)ϕ1(t) (10)

fk(t) = ωε
f(k, t)ψk(t) (11)

3. Experiment

In this part, extreme interval entropy is applied in two experiments of fault diagnosis with EMD
and EWT, and K-mean cluster is selected to evaluate the performance of given features. According to
Section 2, the experiment can be described as Figure 2. Firstly, the components from the self-adaptive
method should be obtained such as IMF. Subsequently, the components are normalized, and the signal
is restructured using −1, 0 and 1 only. Then, the extreme interval sequence is calculated for each
normalized component, and K-mean cluster is introduced with extreme interval entropy for realizing
the classification.
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3.1. Fault Diagnosis of Rolling Bearing with a Frequency of 12 kHz

To verify the capability of the above proposed method, it is applied in the fault diagnosis of
rolling bearings. The data of fault samples used for analysis came from the Case Western Reserve
University Bearing Data Center [10,32]. Rolling bearings were mounted in a motor-driven rotating
machinery system to support the motor shaft. Vibration data were collected using accelerometers,
which were attached to the motor housing with magnetic bases, with a sampling frequency of 12 kHz
and a rotating speed of 1797 r/min. The bearing type was a 6205-2RS-JEM SKF deep groove ball
bearing. Motor bearings were seeded with faults using electro-discharge machining (EDM). Faults,
0.178 mm, 0.356 mm and 0.533 mm in diameter, were introduced at the inner raceway, rolling element
and outer raceway separately. Samples with different faults were recorded in Table 1 named as A to J.
Each sample in Table 1 has 10 groups of data.

Table 1. Test samples of rolling bearing with different faults (12 kHz).

Sample Bearing Condition Diameter of Faults (mm)

A Normal —
B Inner fault 0.178
C Outer fault 0.178
D Rolling fault 0.178
E Inner fault 0.356
F Outer fault 0.356
G Rolling fault 0.356
H Inner fault 0.533
I Outer fault 0.533
J Rolling fault 0.533

The signal of normal bearing was selected as the standard signal. The first three components
from EMD and EWT are shown in Figures 3 and 4. It can be seen that although these two groups of
components are different, they still have a similar trend. The energy and frequency are decreasing
step by step.

According to the definition of entropy, extreme interval entropy also changes with the length of a
certain signal. If the signal is too short, the result will be insignificant because the information is not
sufficient to calculate entropy-class statistical characteristics. However, when the signal is long enough,
the value of extreme interval entropy will fluctuate in a small range and be treated as a fixed value
approximately. In Figure 5, it can be seen how the values of sample-A change with different lengths.
In order to obtain stable values in this experiment, a longer length is needed and 5000 points are used
for each sample. Figure 5 shows that when the length exceeds about 4000, the extreme interval entropy
will not fluctuate dramatically and will maintain a stable level. In order to be more stable, 5000 points
were chosen and composed into a group of data in this section.
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The extreme interval entropies of all samples in Table 1 are calculated based on both EMD and
EWT; then, their spatial distributions were drawn with the first three order extreme interval entropies
as three-dimensional coordinates, recorded in Figures 6 and 7. Compared with Figures 6a and 7a, it can
be seen clearly that the proposed feature has an ability to identify these four bearing faults obviously.
Compared to Figures 6b–d and 7b–d, it is found that the given method can identify faults with three
different degrees and the normal sample well.

A normal bearing may have a higher entropy value in higher order components, and it means
that normal bearing signals always have strong randomness but poor regularity, the same as many
biological signals [10,33]. It can be found that extreme interval entropy has a similar property of
general entropy-class features. Furthermore, the values decrease with the increase in the fault degree
and this phenomenon is more obvious with EWT. In Figure 7b–d, a sample with a larger fault degree
always concentrates in the lower value region more obviously than in Figure 6, and it is seen that
extreme interval entropy with EWT is more effective in the identification of fault degrees than EMD.
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According Figures 6 and 7, it is clear that those samples can be distinguished directly due to the
sensitivity of proposed features. The extreme interval entropies based on ETW and EMD are shown
in Table 2. In order to prove the effectiveness, K-mean clustering is used to realize the classification.
The K-mean clustering algorithm is one of the most popular data clustering approaches, which is
applied in many practical applications such as statistical analysis, speech recognition, and genome
data analysis. Since K-mean clustering, an unsupervised method, is a simple structure without strong
nonlinearity as neural network, it is more suitable to reveal the classification capacity of features
themselves. The accuracy rate is recorded in Table 3. Since the rate is nearly 100%, it can be concluded
that extreme interval entropy has a strong ability in fault diagnosis of rolling bearing, and components
from EWT are proved to be better in terms of recognition.

Table 2. Extreme interval entropy based on EMD and EWT (12 kHz).

Order Sample EMD EWT Sample EMD EWT

1st

A 2.404 1.310 F 1.227 1.013
B 1.258 1.015 G 0.986 0.965
C 1.174 0.972 H 0.807 0.736
D 0.921 1.058 I 1.231 1.001
E 1.215 1.054 J 1.130 1.158

2nd

A 2.725 1.564 F 1.942 0.966
B 1.849 0.444 G 2.129 0.783
C 1.343 0.825 H 1.924 0.283
D 2.039 0.817 I 1.702 0.590
E 1.609 0.878 J 1.928 0.785

3rd

A 3.619 1.539 F 2.787 0.817
B 2.388 0.669 G 2.867 1.999
C 2.018 0.721 H 3.328 0.402
D 2.945 0.754 I 2.302 1.043
E 2.387 0.602 J 2.740 0.730



Entropy 2019, 21, 238 11 of 18

Table 3. Accuracy rate of K-means cluster based on EMD and EWT (12 kHz).

Sample EMD EWT

A, H, I, J 100.00% 100.00%
A, D, G, J 82.50% 100.00%
A, B, E, H 100.00% 100.00%
A, C, F, I 100.00% 100.00%

3.2. Fault Diagnosis of Rolling Bearing with a Frequency of 48 kHz

In an engineering environment, different sampling frequencies are used based on specific testing
devices. In order to ensure the adaptability of the proposed method, the data with a sampling
frequency of 48 kHz are chosen from the CWRU Bearing Data Center [32]. In general, the data with
48 kHz are harder to classify [34]. Test samples are shown in Table 4. Bearing faults were the same as
in Section 3.1, thus still named A to J. Each sample has the same length and numbers as in Section 3.1.

Table 4. Test samples of rolling bearing with different faults (48 kHz).

Sample Bearing Condition Diameter of Faults (mm)

A Normal —
B Inner fault 0.178
C Outer fault 0.178
D Rolling fault 0.178
E Inner fault 0.356
F Outer fault 0.356
G Rolling fault 0.356
H Inner fault 0.533
I Outer fault 0.533
J Rolling fault 0.533

The results are shown in Figures 8 and 9 in the same form as in Figures 6 and 7. In Figure 8,
the result with 48 kHz is worse and more chaotic than samples with 12 kHz based on EMD. However,
the distribution in Figure 9 still keeps four obvious areas with extreme interval entropies from EWT,
and samples of various degrees and classes were all identified well. With K-means cluster, accuracy
rates based on EMD and EWT reach 75%–100% and 95% to 100%, respectively, in Table 5.
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Table 5. Accuracy rate of K-means cluster based on EMD and EWT (48 kHz).

Sample EMD EWT

A, H, I, J 100.00% 95.00%
A, D, G, J 75.00% 97.50%
A, B, E, H 95.00% 100.00%
A, C, F, I 75.00% 100.00%

Compared to Section 3.1 and Table 4, the result is worse, as expected, while the accuracy rate
still keeps a high level for given features. Four samples were identified to a 100% rate with K-means
cluster. Therefore, these two experiments both proposed methods that can be used in fault diagnosis of
rolling bearings under different frequencies effectively.

3.3. Fault Diagnosis of Rolling Bearing in Printing Press

The proposed method was applied to the fault diagnosis of rolling bearing in a printing press.
A printing press for offset, GUANGHUA 650, was used. The testing bearing was NSK 6001Z mounted
on the both ends of ink rollers and water rollers of the equipment. The bearing fault in a printing press
is normally easy to be damaged since the printing process involves a large number of chemical solvents
such as ink, alcohol, embossing liquid, etc. The printing pressure also shortens the service life during
the contact between rollers. As a result, the main fault of rolling bearings in this condition was the
roller misalignment caused by cage damage under chemical and pressure actions. This kind of fault is
different from the experiment in Sections 3.1 and 3.2 [35,36]. In this experiment, fault samples were
made artificially to simulate the working condition, and the cage fault of rolling bearing was caused
by an electro-discharge machining. The rolling bearings used in experiment are shown in Figure 10a;
the bearing with a damaged cage is on the left while a normal one is on the other side, and the typical
fault area has been marked with red color.
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The experimental rig is shown in Figure 10b. The vibration signals were obtained with acceleration
sensors. The acceleration used here is PCB 333B30 and serial number LW55675, with a sensitivity of
100 mV/g. In order to collect and calculate the data, LMS measurement system is used which contained
a SCM202 chassis, the LMS-SCM-V8-E data acquisition card and an industrial computer Dell-M4800.
In this experiment, the acceleration sensor was attached to the outer race of the bearing as shown in
Figure 11. The bearing is used for the ink roller and is mounted on both ends. The accelerometer
recorded the vibration in the normal direction of the outer ring. The sampling frequency is set to
50 kHz. The printing speed was set as 3600 per/hour and 7200 per/hour, and corresponding speeds of
bearings were 4 rad/s and 8 rad/s, respectively, according to the rotation ratio.

Entropy 2019, 21, x 14 of 17 

 

sensitivity of 100 mV/g. In order to collect and calculate the data, LMS measurement system is used 
which contained a SCM202 chassis, the LMS-SCM-V8-E data acquisition card and an industrial 
computer Dell-M4800. In this experiment, the acceleration sensor was attached to the outer race of 
the bearing as shown in Figure 11. The bearing is used for the ink roller and is mounted on both ends. 
The accelerometer recorded the vibration in the normal direction of the outer ring. The sampling 
frequency is set to 50 kHz. The printing speed was set as 3600 per/hour and 7200 per/hour, and 
corresponding speeds of bearings were 4 rad/s and 8 rad/s, respectively, according to the rotation 
ratio. 

Acceleration 
sensor attached to 
the outer race of 
rolling bearing

Ink roller in 
printing machine

 
Figure 11. The position of the acceleration sensor and rolling bearing. 

A printing press is a highly integrated piece of equipment, and its noise interference in testing 
is much stronger than during a regular bearing failure experiment. Extreme interval entropies based 
on both EMD and EWT were used under two speeds. The results are shown in Figure 12. From these 
two figures, the features with EMD cannot be identified directly, while EWT can identify not only the 
fault but also the fault under different speeds correctly. The normal states under different speed 
cannot be identified, since there is nearly no impact or vibration in them. 

(a) (b) 

Figure 12. The extreme interval entropies based on (a) EMD and (b) EWT. 

The result with K-means cluster is recorded in Table 6. In sample B, the accuracy rate is only 
72.5% and 77.5%, and this is because it is hard to distinguish the normal samples under different 
speeds. In Sample A of Table 6, the normal samples under both 4 r/s and 8 r/s were treated as a whole 
sample; therefore, the accuracy rate can reach 95% and 100% with EMD and EWT. The cluster results 
are shown in Figure 13. Labels on the Y axis represent different samples and the Number axis 

Figure 11. The position of the acceleration sensor and rolling bearing.

A printing press is a highly integrated piece of equipment, and its noise interference in testing is
much stronger than during a regular bearing failure experiment. Extreme interval entropies based on
both EMD and EWT were used under two speeds. The results are shown in Figure 12. From these two
figures, the features with EMD cannot be identified directly, while EWT can identify not only the fault
but also the fault under different speeds correctly. The normal states under different speed cannot be
identified, since there is nearly no impact or vibration in them.
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The result with K-means cluster is recorded in Table 6. In sample B, the accuracy rate is only 72.5%
and 77.5%, and this is because it is hard to distinguish the normal samples under different speeds.
In Sample A of Table 6, the normal samples under both 4 r/s and 8 r/s were treated as a whole sample;
therefore, the accuracy rate can reach 95% and 100% with EMD and EWT. The cluster results are shown
in Figure 13. Labels on the Y axis represent different samples and the Number axis represents the
number of samples. No.1–No.10 are fault bearings in 4 r/s and No.11–No.20 is 8 r/s. No.21–No.30 are
normal bearings in 4 r/s and No.31–No.40 is 8 r/s. EWT still shows a better result.

Table 6. Accuracy rate of the K-means cluster in the printing press.

Sample EMD EWT

A
Fault 4 r/s
Fault 8 r/s

Normal
95.00% 100.00%

B

Fault 4 r/s
Fault 8 r/s

Normal 4 r/s
Normal 8 r/s

72.50% 77.50%
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4. Conclusions

In this paper, extreme interval entropy was proposed to describe the components, from
self-adaptive method, based on their hidden property. The given method was incorporated using EMD
and EWT, and then applied in fault diagnosis for rolling bearing. Two different experiments were used,
and various faults of rolling bearing were identified successfully using 1st–3rd high order components.
The k-means cluster was used to evaluate the features. The main conclusions are as follows:

(1) A symbolized method was given to normalize the components from a self-adaptive perspective
according to the positions of extreme values. With the symbolization, the components were
simplified toin a large degree (only contains 1, −1, 0). Then, an improved feature for these
simplified components, extreme interval entropy, was proposed and calculated for to similar
self-adaptive components.
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(2) According to the identified result of three group experiments, the extreme interval entropies of
high order components can be distinguished in a 3D figure. Both different fault kinds and degrees
were distinguished well in Sections 3.1 and 3.2 by the given method under sample frequencies of
12 kHz and 48 kHz. Extreme interval entropy was proved to be an effectively feature in this fault
recognition. A cage fault in the rolling bearing of a printing press was also identified correctly in
Section 3.3. Extreme interval entropy with EWT always has a better effect.

(3) The effectiveness of the proposed method was evaluated with K-means cluster. The accuracy
rate of fault diagnosis in rolling bearing was between 75% to 100% with EMD while 95% to 100%
with EWT. In the experiment with thein printing press, the given method could reach to a 100%
accuracy rate with EWT in identification of the normal bearing, fault bearing in 4 r/s and in 8 r/s
(cannot distinguish normal samples atin different speeds). Extreme interval entropy was proved
to be a reliable and effective tool for fault diagnosis and other similar applications.

In our future research, extreme interval entropy will be applied to more complex conditions
such as complex mechanical failures. Since self-adaptive methods have developed quickly in recent
years, extreme interval entropy will be promoted to obtain effective features for those new improved
self-adaptive methods in signal processing. Moreover, the given method can be integrated into pattern
recognition as an input vector to realize the identity of specific signals.
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