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Abstract: Failure Mode and Effects Analysis (FMEA) has been regarded as an effective analysis
approach to identify and rank the potential failure modes in many applications. However, how to
determine the weights of team members appropriately, with the impact factor of domain experts’
uncertainty in decision-making of FMEA, is still an open issue. In this paper, a new method to
determine the weights of team members, which combines evidence theory, intuitionistic fuzzy sets
(IFSs) and belief entropy, is proposed to analyze the failure modes. One of the advantages of the
presented model is that the uncertainty of experts in the decision-making process is taken into
consideration. The proposed method is data driven with objective and reasonable properties, which
considers the risk of weights more completely. A numerical example is shown to illustrate the
feasibility and availability of the proposed method.

Keywords: failure mode and effects analysis; evidence theory; belief entropy; intuitionistic fuzzy set;
evidence distance; weight

1. Introduction

Failure Mode and Effects Analysis (FMEA) has received attention from many researchers [1–7],
and it can evaluate and analyze various risks in order to reduce these risks to acceptable levels
or directly eliminate them. Moreover, FMEA is a very complex system so that information fusion
technology is used in evaluation processes, such as evidence theory [8,9] and D number [10]. Since
the uncertainty information is inevitable in FMEA, some methods have been widely used, such as
Dempster–Shafer evidence theory and so on [11–13].

Though FMEA has been used in practice for many years, how to determine the weights of risk
factors and team members is still an open issue. In order to define the weights more reasonably,
some scholars have proposed many methods. The intuitionistic fuzzy entropy is introduced by Lei
and Wang [14] to determine the weights of risk factors, while, in [15], the weights of risk factors
are calculated by the objective weights. While Boran et al. [16] determined the subjective weights
of risk factors. In the method proposed in [17], the weights of risk factors are simply determined
by the weights calculation proposed by Boran et al. [16], although the intuitionistic fuzzy set (IFS)
model is efficient to deal with FMEA [18]. However, existing methods do not take the uncertainty into
consideration for the relative importance of team members.

In recent years, the relative concept of intelligence has been paid great attention due to the
simulation of human intelligence [19,20]. As a result, it is reasonable to model experts’ uncertainty
in the process of decision-making in FMEA, which is important to improve the intelligent degree of
the evaluation system. Thus, the measurement of uncertainty should also be regarded as content
worth exploring. The related research of uncertainty metrics has been heavily discussed [21–24].
For probability distributions, Shannon entropy is efficient to handle the uncertainty [25]. However,
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it can not deal with the uncertainty of basic probability assignment (BPA) in Dempster–Shafer evidence
theory [26]. To address this issue, a new belief entropy, named Deng entropy, is presented [26]. In recent
years, the belief entropy has been widely used in many fields [27,28].

In this paper, a hybrid weights determination of team members in the FMEA model is proposed
based on the evidence distance [29] and the belief entropy [26]. The evidence distance is to measure
the degree of conflict for all team members, and the belief entropy is used to model the domain experts’
uncertainty in FMEA. With the combination of evidence distance, the new weights of team members
are obtained, which makes the final rank of failure modes be more effective and reasonable.

The rest of this paper is organized as follows. In Section 2, some basic definitions about the
evidence theory, IFS, and belief entropy are briefly introduced. In Section 3, the new method to
determine the weights of team members is proposed. In Section 4, a numerical example and the
computational process are illustrated. Furthermore, the comparisons and discussion have been also
mentioned. In Section 5, some conclusions of the proposed method are drawn.

2. Preliminaries

In this section, some basic concepts which include evidence theory, intuitionistic fuzzy sets and
belief entropy will be introduced.

2.1. Evidence Theory

Evidence theory was developed by Shafer and was firstly proposed by Dempster [30], thus it is
also called D–S evidence theory. Recently, theoretical research on evidence theory has played a very
important role in many applications such as decision-making [31–34], complex networks [35,36], fault
diagnosis [37–41], classification [42,43] and so on [44–47].

In evidence theory [30], there is a fixed set of N mutually exclusive and exhaustive elements,
called the frame of discernment, which is symbolized by Ω = {H1, H2, H3 · · ·HN}. P(Ω) is denoted
as the power set composed of 2N elements of Ω. Each element of 2N represents a proposition [48].

Definition 1. A basic probability assignment (BPA) is a function. The range is from P(Ω) to [0,1], which is
defined by [30]

m : P(Ω)→ [0, 1], A 7→ m(A) (1)

and it must satisfy the following conditions:

∑
A∈P(Ω)

m(A) = 1, m(∅) = 0. (2)

The mass m(A) indicates the strength of the evidence’s support for A, while m(Ω) is represented as the
uncertainty of evidence. If m(Ω) = 1, no useful information from the evidence exists.

The basic probability assignment (BPA) function, plausibility function (PF), belief function (BF)
and other trust quantization functions are described as follows. Each function has a clear definition
with physical meaning and there are some corresponding relationships.

Definition 2. Given a BPA m, for a proposition A ⊆ Ω, the belief function Bel: 2Ω → [0,1] is defined as [30]

Bel(A) = ∑
B⊆A

m(B). (3)

The plausibility function Pl: 2Ω → [0,1] is defined as

Pl(A) = 1− Bel(Ā) = ∑
B
⋂

A 6=∅
m(B), (4)
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where Ā = Ω − A. The quantity of Bel(A) can be seen as a measure of people’s belief that the hypothesis A is
true and can be viewed as a lower limit function on the probability of A. The plausibility Pl(A) can be interpreted
as the degree that we absolutely believe in A and can be seen as an upper limit function on the probability of A.

Based on the classical evidence theory, the combination rules to aggregate the multiple sources
are defined as follows.

Definition 3. Assume that there are two bodies of evidence m1 and m2 defined on Ω, respectively, m1 and m2

can be combined with Dempster’s orthogonal rule as follows [48,49]:

m1 ⊕m2 = m(A) =
∑B

⋂
C=A m1(B)m2(C)

1− K
, (5)

where
K = ∑

B
⋂

C=∅
m1(B)m2(C), (6)

where K (conflict coefficient) is called the degree of conflict which measures the degree of conflict between m1 and
m2. If K = 0, it means that there is no conflict between m1 and m2, and if K = 1, it means that m1 and m2 is a
complete contradiction. In recent years, more and more scholars have paid attention to improve the method of
combination rules [50,51].

2.2. Evidence Distance

Evidence distance is regarded as an effective method to measure the conflict of evidence. Here
are some of the basic concepts:

Definition 4. Assume that m1 and m2 are two BPAs defined on the same frame of discernment Ω, which
contains N mutually exclusive and exhaustive hypotheses. Namely, it can be expressed as Ω = {H1, H2, ..., HN}.
The basic definition can be defined as follows [29]:

dBPA(m1, m2) =

√
1
2
(
→
m1−

→
m2)

T
D
=
(
→
m1−

→
m2), (7)

where
→
m1 and

→
m2 are the BPAs and D

=
is an 2N × 2N matrix where the elements are D(A, B) = |A∩B|

|A∪B| , and

A, B ⊆ U. Another way to represent dBPA is

dBPA(m1, m2) =

√
1
2
(||−→m1||2 + ||−→m2||2 − 2 < −→m1,−→m2 >), (8)

where ||−→m1||2 = < −→m ,−→m >, and < −→m1,−→m2 > is the scalar product defined by

< −→m1,−→m2 >=
2n

∑
i=1

2n

∑
j=1

m1(Ai)m2(Aj)
|Ai ∩ Aj|
|Ai ∪ Aj|

(9)

with Ai, Aj ∈ P(Ω), i,j=1,2,...,2N .

To combine the multiple source of evaluation and better solve the combination issues of highly
conflicting evidence, the weighted average method is proposed by Deng et al. [52].

2.3. Intuitionistic Fuzzy Set

Since the intuitionistic fuzzy set (IFS) is proposed by Atanassov as a generalization of fuzzy sets
in 1986, the aggregation of fuzzy sets and IFS theory have received a lot of attention in the past few
years [53,54]. In a classical fuzzy sets theory, the relationship between each set is only Belong to or Not
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Belong to. The central idea of the traditional fuzzy set is to expand the characteristic function to the
closed interval [0, 1]. Based on it, the intuitionistic fuzzy sets were introduced to express the uncertain
information better. Here are some of the basic definitions:

Definition 5. An intuitionistic fuzzy set (IFS) A on the space X is defined by two functions, A =< A+, A− >,
A+(x) can be represented by the degree of membership of x in A and A−(x) can be represented by the degree of
nonmembership of x in A. Furthermore, it satisfies the condition that [55]

0 ≤ A+(x) + A−(x) ≤ 1, (10)

where A+(x) ∈ [0, 1] and A−(x) ∈ [0, 1].
The degree of hesitancy of x is defined as

Hes(x) = 1− (A+(x) + A−(x)). (11)

Thus, the membership grade of x in the IFS A can be expressed by the tuple A(x) =< A+(x), A−(x) >.

With the development of IFS and evidence, the relationship between these two mathematical
models has been investigated more and more. Here is a brief introduction.

Assume that there exists an IFS A = {< x, µA(x), νA(x) > |x ∈ X}. The three kinds of variables
are differentiated and denoted x ∈ A , x /∈ A, and the situation of hesitation when both the two
hypotheses can not be approved or rejected. In this case above, the relationship between IFS and
evidence theory by mathematical modelling can be found, which can be expressed that [56]

m(Yes) = µA(x), (12)

m(No) = νA(x), (13)

m(Yes, No) = πA(x). (14)

Recalling the evidence theory, the IFS A can also be expressed as another form [56]

A = {< x, BIA(x) > |x ∈ X}, (15)

where
BelA(x) = m(Yes) = µA(x), (16)

PlA(x) = m(Yes) + m(Yes, No)
= µA(x) + πA(x)
= 1− υA(x).

(17)

Thus, the belief interval of proposition A is defined as follows:

BIA(x) = [BelA(x), PlA(x)]. (18)

Definition 6. Assume that there exist two alternatives xi and xj. Based on the conversion process, the belief
interval for those two alternatives can be defined as follows [57]:

P(xi > xj) =
max{0,Pl(xi)−Bel(xj)}−max{0,Bel(xi)−Pl(xj)}

[Pl(xi)−Bel(xi)]+[Pl(xj)−Bel(xj)]
, (19)

where P(xi > xj) expressed the degree of possibility of xi >xj.
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2.4. Belief Entropy

In the classical information science, Shannon entropy has been used in many applications [58].
Here are some of the basic definitions:

Definition 7. Shannon entropy is defined as [25]

H = −
N

∑
i=1

pilogb pi, (20)

where N is the number of basic states, pi denotes the probability of state i, and pi satisfies

N

∑
i=1

pi = 1. (21)

If the unit information is bit, then b = 2 , Shannon entropy is expressed as

H = −
N

∑
i=1

pilog2 pi. (22)

However, since Dempster–Shafer evidence theory has been widely used in many fields, the
method to measure the uncertainty in evidence theory is still an issue worth exploring. To measure
the uncertain information better, a belief entropy, named as Deng entropy, is presented to deal with
uncertainty measure of BPA based on Shannon entropy [25]. Here are some of the basic definitions:

Definition 8. In frame of discernment X, the belief entropy is defined as [26]

Ed(m) = − ∑
A⊆X

m(A)log2
m(A)

2|A| − 1
, (23)

where |A| is the cardinality of the proposition A and Ed(m) expresses the belief entropy for basic possibility
assignments. In particular, the belief entropy can definitely degenerate to the Shannon entropy if the belief is
only assigned to single elements. With the development of evidence theory, the belief entropy has been more and
more researched [59,60].

3. The Proposed Method

In this section, a new method to determine the weights of team members based on the evidence
theory, intuitionistic fuzzy sets and belief entropy is proposed to rank the failure modes. The function
of Failure Mode and Effects Analysis (FMEA) team members is to assess the risk factors with linguistic
variables, such as very low, low, medium, high, very high and so on. Assume that there are k
cross-functional team members TMk(k = 1, ..., p) in an FMEA team; after discussing them, the experts
prioritize i potential failure modes FMi(i = 1, ..., m). Each failure mode is evaluated on the j risk factor
RFi(j = 1, 2, 3). λk

ij is the weight of decision makers which reflects the relative importance of the kth
decision maker with respect to the jth risk factors for the ith potential failure modes. In addition,
intuitionistic fuzzy numbers [61], which are represented by the ordered pairs of membership degrees
and non-memberships corresponding to the intuitionistic fuzzy sets, is used to simply express the
relevant conversion process.

Assume that the IFN αk
ij = (µk

ij, υk
ij) is provided by TMk on the assessment of FMi for RFj.

The proposed method consists of eleven steps. In addition, the flowchart of the proposed approach is
shown in Figure 1.
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Figure 1. The flow chart of our proposed method.

Step 1: Determine the linguistic terms for each failure mode and transform them into IFNs. The specific
judgement levels are divided into ten linguistic parts (see in Tables 1–3), which contains Very very low
(VVL), Very Low (VL), Low (L), Medium low (ML), Medium (M), Medium high (MH), High (H), Very
high (VH), Very very high (VVH) and Extremely high (EH).

Table 1. The conversion and interpretation of the the relative importance evaluation under risk factor S.

The Linguistic Variables IFNs Severity (S)

Very very low (VVL) (0.10,0.90) Almost no casualties
Very low (VL) (0.10,0.75) Very low level of injuries of people and amount of property damage
Low (L) (0.25,0.60) Low level of injuries of people and amount of property damage
Medium low (ML) (0.40,0.50) medium level of injuries of people and amount of property damage
Medium (M) (0.50,0.40) moderate level of injuries of people and amount of property damage
Medium high (MH) (0.60,0.30) moderately high level of injuries of people and amount of property damage
High (H) (0.70,0.20) high level of injuries of people and amount of property damage
Very high (VH) (0.80,0.10) Very high level of injuries of people and amount of property damage
Very very high (VVH) (0.90,0.10) Very very high level of injuries of people and amount of property damage
Extremely high (EH) (1.00,0.00) Severe level of injuries or death of people and amount of property damage
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Table 2. The conversion and interpretation of the the relative importance evaluation under risk factor O.

The Linguistic Variables IFNs Occurrence (O)

Very very low (VVL) (0.10,0.90) A failure almost unlikely to occur
Very low (VL) (0.10,0.75) A failure is likely to occur once , but unlikely to occur more frequently
Low (L) (0.25,0.60) A failure occurs in low probabilities
Medium low (ML) (0.40,0.50) A failure occurs in moderately low probabilities
Medium (M) (0.50,0.40) A failure occurs in moderate probability
Medium high (MH) (0.60,0.30) A failure occurs in moderately high probabilities
High (H) (0.70,0.20) A failure occurs in high probabilities
Very high (VH) (0.80,0.10) A failure occurs in very high probabilities
Very very high (VVH) (0.90,0.10) A failure occurs in very very high probabilities
Extremely high (EH) (1.00,0.00) A failure occurs in extremely high probabilities

Table 3. The conversion and interpretation of the the relative importance evaluation under risk factor D.

The Linguistic Variables IFNs Detection (D)

Very very low (VVL) (0.10,0.90) The detection of failure occurrence is completely certain
Very low (VL) (0.10,0.75) The detection of failure occurrence is almost certain
Low (L) (0.25,0.60) The failure occurrence is very likely to be detected
Medium low (ML) (0.40,0.50) The failure occurrence is likely to be detected
Medium (M) (0.50,0.40) A moderate likelihood to detect the failure occurrence
Medium high (MH) (0.60,0.30) A moderately small likelihood to detect the failure occurrence
High (H) (0.70,0.20) A small probability of detecting the failure occurrence
Very high (VH) (0.80,0.10) A low likelihood to detect the failure occurrence
Very very high (VVH) (0.90,0.10) A very low likelihood to detect the failure occurrence
Extremely high (EH) (1.00,0.00) Almost impossible to detect failure occurrence

Step 2: Evaluate the linguistic terms of relative importance for each risk factor and transform them
into IFNs. Similarly, the specific judgement levels are divided into five parts (see in Table 4), which
contains Very important, Important, Medium, Unimportant and Very unimportant.

Table 4. The linguistic variables for the importance of risk factors.

The Linguistic Variables IFNs

Very important (0.90,0.10,0.00)
Important (0.75,0.20,0.05)
Medium (0.50,0.45,0.05)
Unimportant (0.35,0.60,0.05)
Very unimportant (0.10,0.90,0.00)

Step 3: Convert all IFNs into BPAs for all failure modes. In addition, the concrete form can be defined
as follows:

mk
ij(Yes) = µk

ij, (24)

mk
ij(No) = υk

ij, (25)

mk
ij(Yes, No) = 1− µk

ij − υk
ij. (26)

Step 4: Determine the weights of risk factors. For the three judgement model S, O and D, each model
can be transformed into an IFS to represent the information value. Based on the weight calculation,
which is proposed by Boran et al. [16], the weight wj can be obtained. The computational equations
are defined as follows:
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wj =
(µj + πj(µj/(µj+υj)))

n
∑

j=1
(µj + πj(µj/(µj+υj)))

, (27)

which satisfy the condition that
n

∑
j=1

wj = 1. (28)

Step 5: Determine the weights of team members λk
ij by using evidence distance which is introduced by

Jousselme et al. [29].
Assume two groups of BPAs mq

ij(Yes), mq
ij(No), mq

ij(Yes, No) and mt
ij(Yes), mt

ij(No), mt
ij(Yes, No),

(q, t = 1, 2, ..., p) are two bodies of evidence (BOE) , obtained by two different team members. In this
paper, the similarity function, using the evidence distance to define the distance d(mq

ij, mt
ij) between

mq
ij and mt

ij, is proposed as follows:

s(mq
ij, mt

ij) = 1− d(mq
ij, mt

ij). (29)

The Sup(mk
ij) is used to represent the degree of mk

ij supported by other bodies of evidence.

In addition, the reliability degree Crd(mk
ij) are defined as follows:

Crd(mk
ij) =

Sup(mk
ij)

p
∑

t=1
Sup(mt

ij)

, (30)

Sup(mk
ij) =

p

∑
t=1,t 6=k

s(mk
ij, mt

ij). (31)

The Crd(mk
ij) is to define the λk

ij

λk
ij = Crd(mk

ij) =
Sup(mk

ij)

p
∑

t=1
Sup(mt

ij)

. (32)

Step 6: Determine the weights of team members Ed
k
ij by using belief entropy [26]. Based on the fellow

steps, for all team members, their information value has been transformed into IFSs. Then, another
weight Ed

k
ij is calculated, which expresses the amount of uncertainty for all propositions. The specific

equation is defined as follows:

Ed
k
ij =

−mk
ij(Y)log2

mk
ij(Y)

2|Y|−1
−mk

ij(N)log2
mk

ij(N)

2|N|−1
−mk

ij(Y, N)log2
mk

ij(Y,N)

2|Y,N|−1
.

(33)

Step 7: Calculate the total weights of team members wk
ij by combing λk

ij and Ed
k
ij. After obtaining the

two weights, the total weights of FMEA team members can be calculated as the form of multiplication,
which is defined as follows:

wk
ij =

λk
ijEd

k
ij

p
∑

n=1
λk

ijEd
k
ij

, (34)

p

∑
k=1

wk
ij = 1, (35)
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where p is the total number of failure modes for each risk factor.

Step 8: Calculate the weighted average of evidence considering the team members’ effect of FMEA
model. For each failure mode FMi , there exists a group of basic probability assignment functions to
express the degree of importance, which can be denoted as m(Yes) m(No) and m(Yes, No). Thus, after
obtaining the wk

ij weights, the weighted average can be obtained as follows:

m′′ij(Yes) =
p

∑
k=1

wk
ijm

k
ij(Yes), (36)

m′′ij(No) =
p

∑
k=1

wk
ijm

k
ij(No), (37)

m′′ij(Yes, No) = 1−
p

∑
k=1

wk
ijm

k
ij(Yes)−

p

∑
k=1

wk
ijm

k
ij(No). (38)

Step 9: Calculate the weighted average of evidence considering the risk factors with team members.
To consider the impact of different risk factors (S, O, D), the weighted average of evidence which can
be denoted as m′i(Yes) , m′i(No) and m′i(Yes, No) is expressed as follows:

m′i(Yes) =
n

∑
j=1

wjm′′ij(Yes), (39)

m′i(No) =
n

∑
j=1

wjm′′ij(No), (40)

m′i(Yes, No) = 1−
n

∑
j=1

wjm′′ij(Yes)−
n

∑
j=1

wjm′′ij(No). (41)

Step 10: Calculate the belief intervals. After obtaining the weighted average of evidence in Step 9, the
belief interval [Bel(FMi), Pl(FMi)] which is used to show the degree of support and opposition can be
determined as:

Bel(FMi) = m′i(Yes), (42)

Pl(FMi) = m′i(Yes) + m′i(Yes, No). (43)

Step 11: Rank all kinds of failure modes. Based on the belief intervals, the risk of different failure
model can be compared with others by using Equation (19) . After the process of comparison, the list
of ranking in FMEA can be obtained.

4. Application

In this section, an example is used to illustrate the complete procedures of the proposed method.
The risk evaluation process has a great impact in many fields, such as multi-criteria

decision-making (MCDM) [62–65] and other works [66,67]. In most situations, the weights for each
risk factor may change the final result and lead the decision maker to make the undeserved judgement.
To modify the process of products production as an easier and lower-cost method, the Failure mode
and Effects Analysis play a growing important role in modern society.

Thus, an FMEA team consisting of five functional team members identifies potential failure modes
in the electronics manufacturing project and wants to prioritize them in terms of their risk factors such
as S (Severity), O (Occurrence) and D (Detection). In addition, twelve failure modes are identified. For
the difficulty of evaluating the risk factors, the FMEA team members in this numerical example are
supposed to assess them employing the linguistic terms. The specific transforming process is shown in
Tables 1–3.
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Step 1: The assessment information of the twelve failure modes on each risk factor, which was provided
by the five team members, can be illustrated in Table 5. Each team member comes from different
department, such as manufacturing, engineering, design and technique. Considering their deferent
specialities and functions, the weights are determined by their degree of importance.

Table 5. The linguistic evaluation for each failure mode.

Failure Mode S O D

TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5

FM1 VH VVH L H VH M MH ML H MH ML ML MH M M
FM2 VVH VH VH VVL VH M M MH VL M ML MH MH H M
FM3 H MH VH L H ML M L MH M ML M L L MH
FM4 M ML H M MH H M ML H M ML ML H L L
FM5 L M MH MH M H ML VVL ML L L L ML ML M
FM6 L ML M L M M MH L M MH MH ML M ML ML
FM7 M L H M MH M M L H M ML M MH M ML
FM8 M ML MH L H L MH MH L M H MH L MH VL
FM9 L M H L M M MH L VL L L M M ML L
FM10 L ML ML M M L L L ML M ML MH ML ML ML
FM11 L M MH M M L M M M M L M M M M
FM12 ML M ML L MH M VL VL VL VL ML L M VL L

Step 2: Evaluate the linguistic terms of relative importance for each risk factor and transform them
into IFNs (see in Table 6).

Table 6. The importance of risk factors.

Risk Factors Mode Abbreviation The Linguistic Variables

Severity S Very important
Occurrence O Important

Detection D Medium

Step 3: Convert those IFNs into BPAs for all failure modes. The specific transforming equation is
shown in Equations (12)–(14).

Step 4: Determine the weights of risk factors. In this paper, the weights calculation of risk factors in
this example is shown in Equations (27) and (28). In addition, the results are shown in Table 7.

Table 7. The weights of risk factors.

Risk Factors Weights

Severity 0.4009
Occurrence 0.3516
Detection 0.2475

Step 5: Determine the first weights of team members λk
ij by using evidence distance [29]. The specific

value of each mode is shown in Table 8.
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Table 8. The λk
ij weights for each failure mode.

Failure Mode Severity (S) Occurrence (O) Detection (D)

TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5

FM1 0.2118 0.2117 0.1463 0.2184 0.2118 0.2035 0.2093 0.1860 0.1919 0.2093 0.2000 0.2000 0.1889 0.2056 0.2056
FM2 0.2188 0.2356 0.2356 0.0800 0.2299 0.2157 0.2157 0.1906 0.1625 0.2157 0.1860 0.2093 0.2093 0.1919 0.2035
FM3 0.2172 0.2248 0.1939 0.1994 0.1646 0.2044 0.2105 0.1817 0.1929 0.2105 0.2089 0.2032 0.2013 0.2013 0.1851
FM4 0.2093 0.1919 0.1860 0.2093 0.2035 0.2000 0.2056 0.1889 0.2000 0.2056 0.2101 0.2101 0.1749 0.2025 0.2025
FM5 0.1700 0.2104 0.2046 0.2046 0.2104 0.1638 0.2268 0.1671 0.2268 0.2155 0.1989 0.1989 0.2063 0.2063 0.1896
FM6 0.1978 0.2051 0.1997 0.1978 0.1997 0.2104 0.2046 0.1700 0.2104 0.2046 0.1833 0.2056 0.2000 0.2056 0.2056
FM7 0.2146 0.1723 0.1900 0.2146 0.2085 0.1889 0.2056 0.2056 0.2000 0.2000 0.1889 0.2056 0.2056 0.2000 0.2000
FM8 0.2138 0.2057 0.2075 0.1829 0.1885 0.1940 0.2020 0.2020 0.1940 0.2081 0.1987 0.2199 0.1966 0.2199 0.1648
FM9 0.1989 0.2134 0.1753 0.1989 0.2134 0.2008 0.1813 0.2157 0.1864 0.2157 0.1978 0.1997 0.1997 0.2051 0.1978
FM10 0.1846 0.2066 0.2066 0.2011 0.2011 0.2099 0.2099 0.2099 0.1689 0.2016 0.2065 0.1739 0.2065 0.2065 0.2065
FM11 0.1718 0.2113 0.1941 0.2113 0.2113 0.1697 0.2076 0.2076 0.2076 0.2076 0.2092 0.2092 0.1952 0.2092 0.1772
FM12 0.2104 0.2047 0.2104 0.1874 0.1871 0.1466 0.2133 0.2133 0.2133 0.2133 0.2063 0.1989 0.1896 0.2063 0.1989

Step 6: Determine the second weights of team members Ed
k
ij by using belief entropy. In addition, the

results are shown in Table 9.

Table 9. The Ed
k
ij weights for each failure mode.

Failure Mode Severity (S) Occurrence (O) Detection (D)

TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5

FM1 1.0804 0.4690 1.5904 1.3153 1.0804 1.5195 1.4540 1.5195 1.3153 1.4540 1.5195 1.5195 1.4540 1.5195 1.5195
FM2 0.4690 1.0804 1.0804 0.4690 1.3153 1.5195 1.5195 1.4540 1.2918 1.5195 1.5195 1.4540 1.4540 1.3153 1.5195
FM3 1.3153 1.4540 1.0804 1.5905 1.3153 1.5195 1.5195 1.5905 1.4540 1.5195 1.5195 1.5195 1.5905 1.5905 1.4540
FM4 1.5195 1.5197 1.3153 1.5195 1.4510 1.3153 1.5195 1.5195 1.3153 1.5195 1.5195 1.5195 1.3153 1.5905 1.5905
FM5 1.5905 1.5195 1.4510 1.4540 1.5195 1.3153 1.5195 0.4690 1.5195 1.5905 1.5905 1.6483 1.5195 1.5195 1.5195
FM6 1.5905 1.5195 1.5195 1.5905 1.5195 1.5195 1.4540 0.9422 1.5195 1.4540 1.4540 1.5195 1.5195 1.5195 1.5195
FM7 1.5195 1.5905 1.3153 1.5195 1.4540 1.5195 1.5195 1.5905 1.3153 1.5195 1.5195 1.5195 1.4540 1.5195 1.5195
FM8 1.5195 1.5195 1.4510 1.5905 1.3153 1.5905 1.4540 1.4540 1.5905 1.5195 1.3153 1.4540 1.5905 1.4540 1.2918
FM9 1.5905 1.5195 1.3153 1.5905 1.5195 1.5195 1.4540 1.5905 1.2918 1.5905 1.5905 1.5195 1.5195 1.5195 1.5905
FM10 1.5905 1.5195 1.5195 1.5195 1.5195 1.5905 1.5905 1.5905 1.5195 1.5195 1.5195 1.4540 1.5195 1.5195 1.5195
FM11 1.5905 1.5195 1.4540 1.5195 1.5195 1.5905 1.5195 1.5195 1.5195 1.5195 1.5905 1.5905 1.5195 1.5905 1.4540
FM12 1.5195 1.5195 1.5195 1.5905 1.4540 1.5195 1.2918 1.2918 1.2918 1.2918 1.5195 1.5905 1.5195 1.2918 1.5905

Step 7: Calculate the total weights of team members wk
ij by combing λk

ij and Ed
k
ij. After the process of

normalization, the specific value of weights is shown in Table 10.

Table 10. The total weights wk
ij of team members for each failure mode.

Failure Mode Severity (S) Occurrence (O) Detection (D)

TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5 TM1 TM2 TM3 TM4 TM5

FM1 0.2125 0.0922 0.2161 0.2667 0.2125 0.2128 0.2095 0.1945 0.1737 0.2095 0.2016 0.2016 0.1822 0.2073 0.2073
FM2 0.1078 0.2675 0.2675 0.0394 0.3178 0.2229 0.2229 0.1885 0.1428 0.2229 0.1945 0.2095 0.2095 0.1737 0.2128
FM3 0.2107 0.2411 0.1545 0.2339 0.1597 0.2044 0.2105 0.1902 0.1846 0.2014 0.2067 0.2010 0.2085 0.2085 0.1753
FM4 0.2166 0.1986 0.1666 0.2166 0.2015 0.1829 0.2172 0.1776 0.1829 0.2173 0.2110 0.2110 0.1521 0.2129 0.2129
FM5 0.1797 0.2125 0.1977 0.1977 0.2125 0.1625 0.2599 0.0591 0.2599 0.2585 0.2029 0.2103 0.2010 0.2010 0.1848
FM6 0.2033 0.2014 0.1961 0.2033 0.1961 0.2293 0.2133 0.1149 0.2293 0.2133 0.1768 0.2072 0.2016 0.2072 0.2072
FM7 0.2204 0.1953 0.1689 0.2204 0.2049 0.1922 0.2092 0.2190 0.1761 0.2035 0.1922 0.2092 0.2190 0.1761 0.2035
FM8 0.2198 0.2115 0.2041 0.1968 0.1678 0.2030 0.1934 0.1931 0.2029 0.2079 0.1832 0.2242 0.2192 0.2242 0.1492
FM9 0.2093 0.2145 0.1525 0.2093 0.2145 0.2040 0.1762 0.2294 0.1610 0.2294 0.2033 0.1961 0.1961 0.2014 0.2033
FM10 0.1916 0.2048 0.2048 0.1993 0.1993 0.2134 0.2134 0.2134 0.1640 0.1958 0.2081 0.1677 0.2081 0.2081 0.2081
FM11 0.1799 0.2114 0.1858 0.2114 0.2114 0.1762 0.2059 0.2059 0.2059 0.2059 0.1762 0.2059 0.2059 0.2059 0.2059
FM12 0.2103 0.2046 0.2103 0.1960 0.1789 0.1681 0.2080 0.2080 0.2080 0.2080 0.2089 0.2108 0.1920 0.1776 0.2108

Step 8: Calculate the weighted average of evidence considering the team members’ effect of FMEA
model. The results are shown in Table 11.
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Table 11. The weighted average of team members.

Failure Mode Severity (S) Occurrence (O) Detection (D)

m′′
ij(Yes) m′′

ij(No) m′′
ij(Yes, No) m′′

ij(Yes) m′′
ij(No) m′′

ij(Yes, No) m′′
ij(Yes) m′′

ij(No) m′′
ij(Yes, No)

FM1 0.6637 0.2347 0.1015 0.5572 0.3428 0.1000 0.4779 0.4221 0.1000
FM2 0.7514 0.1633 0.0853 0.4806 0.4123 0.1071 0.5572 0.3428 0.1000
FM3 0.5867 0.3022 0.1116 0.4505 0.4400 0.1095 0.3926 0.4865 0.1208
FM4 0.5336 0.3663 0.0100 0.5532 0.3467 0.1000 0.3817 0.4970 0.1213
FM5 0.4946 0.3964 0.1090 0.3922 0.5007 0.1070 0.3565 0.5018 0.1417
FM6 0.3782 0.5014 0.1203 0.5139 0.3803 0.1057 0.4555 0.4444 0.1000
FM7 0.5080 0.3828 0.1093 0.4805 0.4086 0.1109 0.4779 0.4221 0.1000
FM8 0.4836 0.4065 0.1098 0.4372 0.4425 0.1203 0.4670 0.4146 0.1184
FM9 0.4259 0.4532 0.1209 0.3385 0.5305 0.1310 0.3782 0.5014 0.1203
FM10 0.4111 0.4793 0.1096 0.3236 0.5444 0.1320 0.4335 0.4665 0.1000
FM11 0.4736 0.4714 0.1090 0.4560 0.4352 0.1088 0.4560 0.4352 0.1088
FM12 0.4268 0.4634 0.1098 0.1672 0.6911 0.1416 0.3027 0.5673 0.1299

Step 9: Calculate the weighted average of evidence considering the risk factors with team members.
By introducing the consideration of risk factors, the weighted average of evidence is calculated.
In addition, the results are shown in Table 12.

Step 10: Calculate the belief intervals. With the Equations (41) and (42), the final results are also shown
in Table 12.

Table 12. The weighted average of evidence considering the risk factors with team members and the
belief intervals.

Failure Mode m′ij(Yes) m′ij(No) m′ij(Yes, No) Bel Pl Ranking

FM1 0.5932 0.3060 0.1007 0.5932 0.6939 2
FM2 0.6081 0.2953 0.0966 0.6081 0.7047 1
FM3 0.5037 0.3842 0.1121 0.5037 0.6158 4
FM4 0.5160 0.3804 0.1035 0.5160 0.6195 3
FM5 0.4335 0.4529 0.1136 0.4335 0.5471 9
FM6 0.4418 0.4466 0.1116 0.4418 0.5534 8
FM7 0.4927 0.3989 0.1083 0.4927 0.6010 5
FM8 0.4634 0.4213 0.1152 0.4634 0.5786 6
FM9 0.3853 0.4901 0.1246 0.3853 0.5099 10
FM10 0.3859 0.4990 0.1151 0.3859 0.5010 11
FM11 0.4476 0.4396 0.1127 0.4476 0.5603 7
FM12 0.3090 0.5659 0.1251 0.3090 0.4351 12

Step 11: Rank all kinds of failure modes. After the process of comparison, the final ranking can be
obtained (see in Table 13).

Table 13. The comparison of final ranking in different methods.

Failure Mode Method 1 Method 2 Method 3 Proposed Method

FM1 2 2 2 2
FM2 1 1 1 1
FM3 5 6 6 4
FM4 4 4 4 3
FM5 9 11 9 9
FM6 8 7 8 8
FM7 3 5 3 5
FM8 6 3 5 6
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Table 13. Cont.

Failure Mode Method 1 Method 2 Method 3 Proposed Method

FM9 10 9 11 10
FM10 11 10 10 11
FM11 7 8 7 7
FM12 12 12 12 12

Here, we present some discussion about the proposed method.
In the previous related research, many scholars have tried to enhance the effectiveness and

availability based on intuitionistic fuzzy sets, evidence theory and so on. The ranking comparisons of
all the related works are shown in Table 13. There are some ranking differences among those methods.
In general, the higher ranked models are FM1, FM2, and the lowest ranked model is FM12, which
is consistent with the previous three methods. For other failure modes, it can be seen that, in the
evaluation of the proposed method, the overall ordering of FM3 and FM4 is slightly higher than
the previous method, while the remaining rankings are generally consistent. The main reasons are
summarized as follows:

The relatively importance of team members are different. In the method proposed by Liu et al. [15],
the relative weights were supposed in advance, which are 0.10, 0.15, 0.20, 0.25 and 0.30. In addition,
in the intuitionistic fuzzy TOPSIS method, the impacts of team members are not considered. In addition,
the method proposed by Guo [17] has just considered the conflict of team members simply. In our
proposed method, the weights of team members are defined by using both the evidence distance [29]
and the belief entropy [26]. The evidence distance is to show the degree of conflict for all team members.
In addition, the belief entropy is used to reflect the uncertainty of the information of each team member.
The combination of them can express the evaluated information completely and effectively. To be
specific, since the uncertainty information contained in the results of the expert evaluations in FM1,
FM2 and FM12 is relatively low in this application, the weights obtained by considering the entropy
factor has little effect on the final evaluation. Moreover, in FM3 and FM4, the overall uncertainty of the
expert evaluation is relatively high, the second weights obtained by calculating the belief entropy have
a relatively large influence on the overall evaluation result, which leads to the final result as shown in
Table 13.

Thus, with the differences mentioned above, the aggregation approaches for all kinds of methods
are different. As a comparison, the process of our proposed method to determine the weights
of team members is particularly scientific and effective, with strong practical significance and
good performance.

5. Conclusions

FMEA has been regarded as an effective analysis approach to identify and rank the potential
failure modes in many applications. However, the uncertainty of the experts’ decision process is not
taken into consideration, which is regarded as an essential factor in decision-making. In this paper, the
impact of experts factor uncertainty is modelled. A hybrid method to determine the weights of team
members is proposed based on the belief entropy. The application in FMEA illustrates the efficiency of
the proposed method.
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