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Abstract: In this paper, we prove the Shannon entropy inequalities for the multivariate distributions
via the notion of convex ordering of two multivariate distributions. We further characterize the
multivariate totally positive of order 2 (MTP2) property of the distribution functions of eigenvalues
of both central Wishart and central MANOVA models, and of both noncentral Wishart and noncentral
MANOVA models under the general population covariance matrix set-up. These results can
be directly applied to both the comparisons of two Shannon entropy measures and the power
monotonicity problem for the MANOVA problem.

Keywords: central Wishart and central MANOVA models; MTP2; noncentral Wishart and noncentral
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1. Introduction

Let X1, X2, · · · be independent random vectors with a common continuous distribution function
F(x) which has density function f (x), x ∈ Rp with respect to Lebesgue measure. The Shannon entropy
for f (x) is denoted by

IS( f ) =
∫ ∞

−∞
{− log f (x)} f (x)dx. (1)

We further use F to denote all density functions whose Shannon entropies exist. That is

F = { f : IS( f ) < ∞}. (2)

Entropy inequality has been studied by several authors, such as Karlin and Rinott ([1,2],
and references therein), who used the notions of majorization and Schur functions to study the
Shannon (differential) entropy comparisons. Zografos and Nadarajah [3] pointed out that some
comparisons of Shannon entropies can be induced by the affine transformation, those results show
agreement on the concern that Shannon entropy is not scale invariant. Tsai [4] used the notion of convex
ordering to investigate the Shannon inequalities for the univariate distributions. The novel finding of
his approach is to adopt the difference of two Shannon entropy measures as a new measure, which is
essentially symmetric. This new measure has some advantages over the well-known Kullback-Leibler
divergence (relative entropy). The former one is designed for small or moderate deviation, however,
the latter one is quite often used for large deviation. The measure of the difference between two
Shannon entropies enjoys the finite sample property.
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The key point of this method is to transform the convex ordering into the Lorenz ordering,
which nicely depicts the stochastic ordering of two normalized distributions with the same starting
and ending points, respectively. The presentation of the difference between two Shannon entropy
measures can be represented in terms of a standard form of Kullback-Leibler divergence, however, it is
interesting to note that the original Kullback-Leibler divergence does not have such kind of symmetric
representation. Furthermore, the new measure is monotone likelihood ratio of two normalized density
functions. This new measure provides us with some advantages for statistical inference.

The ordering of Shannon entropies can naturally occur when two underline distributions have
the convex ordering or concave ordering relationship via the help of Lorenz ordering. In this paper,
one of the main goals is to extend the result of Tsai [4] to the multivariate case, which is studied in
Section 3. Please note that the notions of convex ordering of two distributions, monotone likelihood
ratio (MLR) and totally positive of order 2 (TP2) are essentially equivalent. We then adopt the notion
of multivariate totally positive of order 2 (MTP2) or multivariate reverse rule of order 2 (MRR2) to get
a more complete theory on Shannon entropy comparisons. Eigenvalues problem has become quite
a hot topic at present. We further study the MTP2 property of the distribution functions of eigenvalues
of both central Wishart and central MANOVA models, and of both noncentral Wishart and noncentral
MANOVA models under the general population covariance matrix set-up, respectively, in Section 4.
The results can be directly applied to the comparisons of two Shannon entropy measures as well as
the power monotonicity problem for the MANOVA problem, which has been open for a long time in
the literature (Perlman and Olkin [5]). For a high-dimensional Wishart matrix with unknown scale
times identity matrix as the population matrix, the TP2 property of limiting empirical density function
of eigenvalues is also studied in the Section 4.5. Mixture density functions, such as the noncentral
chi-square density function and those presented in Sections 4.3 and 4.4, play an important role in
statistical inference. We also connected this notion with that of well-known Fisher’s multivariate
analysis of variance in the final remark section.

2. The Univariate Distributions

Tsai [4] adopted the notion of convex ordering of distribution functions to study the orderings
of Shannon entropy measures. For two univariate distributions F, G ∈ F , it is said that F is c-ordered
(convex ordered) with respect to G (F ≤c G) if and only if G−1F is convex on the interval where
0 < F(x) < 1 (van Zwet [6]). The transformation of Barlow and Doksum [7] is to transform the convex
ordering of distributions F and G to the stochastic ordering of distributions, it essentially can be viewed
as a kind of Lorenz ordering (Gastwirth [8]).

Let CF(x) = G−1F(x), then note that dCF(x)/dx = f (x)/g(G−1F(x)), x ∈ (−∞, ∞). It can also
be rewritten as f (F−1(u))/g(G−1(u)), where u = F(x), u ∈ [0, 1]. We adopt the notion of Barlow

and Doksum [7] to denote that HF(u) =
∫ G−1(u)

0 f (F−1G(t))dt, u ∈ [0, 1], which can be viewed as the
inverse function of the transformation considered by Barlow and Doksum [1]. Please note that the
notation in Barlow and Doksum [7] is originally defined that F(0) = 0 and F−1(0) = 0, we use the
general notations that F(−∞) = 0 and F−1(0) = −∞ in this paper. Obviously, HG(u) = u, u ∈ [0, 1].
Under the assumption that F(x) ≤c G(y), Barlow and Doksum [7] pointed out that both HF(u)
and HG(u), u ∈ [0, 1] are two distribution functions. Let hF and hG be the corresponding density
functions of HF and HG, respectively, then we may see that hF(u) = f (F−1(u))/g(G−1(u)) and
hG(u) = 1, u ∈ [0, 1]. Then, it is easy to note that the difference of two Shannon entropies can be
represented as the Kullback-Leibler divergence of the uniform density function hG and the density
function hF.

Please note that if F(x) ≤c G(y), then hF(u) is nondecreasing in u ∈ [0, 1], namely, it enjoys the
property of monotone likelihood ratio. In addition, it gets across with the uniform density function
hG(u) = 1, u ∈ [0, 1] at most once, the sign of the difference (hF(u)− hG(u), u ∈ [0, 1]) of two density
functions is from negative to nonnegative. Also note that

∫ 1
0 (hF(v)− 1)dv = 0, thus we have that

HF(u) ≤ u = HG(u), u ∈ [0, 1]. Similarly, if F(x) ≤c G(y), then F(x) ≤ G(y), and CF(x) is a convex
function in x, x ∈ (−∞, ∞) (for the details see Shaked and Shanthikumar [9]). Namely, the convex
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ordering implies the stochastic ordering, however, the vice versa may not be true. We provide
a simple counterexample for this. For 0 ≤ x ≤ 1, let F(x) = x, G(x) = (3x − 2)3/9 + 8/9, then
F−1(u) = u, G−1(u) = (3√9u− 8 + 2)/3, u ∈ [0, 1]. Thus, f (F−1(u)) = 1, g(G−1(u)) = (9u− 8)2/3

and hF(u) = (9u− 8)2/3. It is easy to see that F(u) ≤ G(u). However, hF(u) is not nondecreasing in u,
u ∈ [0, 1], that means that F(x) ≤c G(y) will not hold in this example. As such, we may conclude that if
F(x) ≤c G(y), then F(x) ≤ G(y). However, if F(x) ≤ G(y), then F(x) ≤c G(y) may not hold generally.

Theorem 1 (Tsai [4]). If F(x) ≤c G(y), then IS( f ) ≥ IS(g).

With the convex ordering assumption, i.e., F(x) ≤c G(y), the corresponding Lorenz ordering
plays an important role for the proof of Theorem 1. To check whether the condition F(x) ≤c G(y)
holds or not, one should make simultaneously check whether the condition F(x) ≤ G(y) holds or not.
Similarly, define that F(x) ≤concave G(x) if and only if F−1G(x) is concave function in x, x ∈ (−∞, ∞),
then we have the following corollary.

Corollary 1. If F(x) ≤concave G(y), then IS( f ) ≤ IS(g).

Proof. It can be easily followed by Theorem 1 via changing the sign of loghF(u).

Proposition 1. Composition lemma (Karlin [10]). If K is TP2 and L is TP2 and ν is a σ-finite measure, then the
convolution M(x, y) =

∫
Z K(x, z)L(z, y)dν(z) is TP2.

It can be proved similarly. We also note that if K is TP2 and L is RR2, then M is RR2.

3. The Multivariate Distributions

By convex ordering transformation, we can neatly transform the difference of two Shannon
entropy measures into the Lorenz ordering. In this section, we intend to extend this result to the
multivariate case. It is natural to do so in the sense of conditional convex ordering for the multivariate
case. Let X = (X1, . . . , Xp)> and Y = (Y1, . . . , Yp)> be random vectors, and f and g be the density
function of X and Y, respectively. Please note that the MTP2 holds if and only if all the pairwise
TP2 hold (Fact 4.3.2 of Tong [11]), namely to examine the MTP2 is the same as to examine all the
pairwise TP2 for any fixed pair. Hence without loss of generality, we may take p = 2. Please note
that f (x1, x2) = f1(x1) f2|1(x2|x1), thus f (x1, x2) is TP2 if and only if f1(x1) f2|1(x2|x1) is TP2. By the
product property that the product function is TP2 if two functions are each TP2, respectively. Thus we
may conclude that f (x1, x2) is TP2 if and only if both f1(x1) and f2|1(x2|x1) are TP2. That is to say
that F(x1, x2) ≤c G(y1, y2) iff F1(x1) ≤c G1(y1) and F2|1(x2|x1) ≤c G2|1(y2|y1). Continue this process,
for the general p case, we have the following.

Proposition 2. Let c = (c1, . . . , cp)> ∈ Rp, then (i) P{Y1 > c1} ≤c P{X1 > c1}, and (ii) P{Yj > cj|Y1 =

y1, . . . , Yj−1 = yj−1} ≤c P{Xj > cj|X1 = x1, . . . , Xj−1 = xj−1} for all x1 ≤ y1, . . . , xj−1 ≤ yj−1 and for
all j = 2, . . . , p if and only if F(x) ≤c G(y).

From the results of Proposition 2, we are now in a position to use the convex ordering assumption
for which Fj|1,...,j−1(xj|x1, . . . , xj−1) ≤c Gj|1,...,j−1(yj|y1, . . . , yj−1) to get each corresponding Lorenz
ordering, ∀ j = 1, . . . , p, where j = 1 denotes that F1(x1) ≤c G1(y1). With some elementary arguments,
we then have the following.

Theorem 2. If F(x) ≤c G(y), then IS( f ) ≥ IS(g).

Proof. For simplicity we may consider the situation when p = 2 first. Let g12(y1, y2) be the
joint density function of random variables Y1 and Y2, g2|1(y2|y1) be the corresponding conditional
density function of Y2 given Y1 = y1 and G2|1(y2|y1) be the corresponding distribution function.
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Let f12(x1, x2), f2|1(x2|x1) and F2|1(x2|x1) be defined similarly for the variables X1 and X2. Also let
U1 = F1(x), U2|u1 = F2|1(x2|x1) (V1 = G1(y), V2|v1 = G2|1(y2|y1)). Please note that

IS( f12)− IS(g12) =
∫ ∞

−∞

∫ ∞

−∞
{− log f12(x1, x2)} f12(x1, x2)dx1dx2 (3)

−
∫ ∞

−∞

∫ ∞

−∞
{− log g12(y1, y2)}g12(y1, y2)dy1dy2

=
∫ 1

0

∫ 1

0
{− log[ f1(F−1

1 (u1)) f2|1(F−1
2|1 (u2|u1))]}du1du2

−
∫ 1

0

∫ 1

0
{− log[g1(G−1

1 (v1))g2|1(G
−1
2|1(v2|v1))]}dv1dv2

=
∫ 1

0

∫ 1

0
− log[

f1(F−1
1 (u1)) f2|1(F−1

2|1 (u2|u1))

g1(G−1
1 (u1))g2|1(G

−1
2|1(u2|u1))

]du1du2

=
∫ 1

0
− log hF1(u1)du1 +

∫ 1

0
[
∫ 1

0
− log hF2|1(u2|u1)du2]du1,

where hF1(u1) = f1(F−1
1 (u1))/g1(G−1

1 (u1)), hG1(u1) = 1 and hF2|1(u2|u1) = f2|1(F−1
2|1 (u2|u1))

/g2|1(G
−1
2|1(u2|u1)), hG2|1(u2|u1) = 1. Furthermore, by Proposition 2, we may note that F(x1) ≤c G(y1),

and thus via the arguments in Section 2, we have that hF1(u1), u1 ∈ [0, 1] is the density function.
Similarly, we also have that F2|1(x2|x1) ≤c G2|1(y2|y1), and then hF2|1(u2|u1), u2 ∈ [0, 1] is the density
function. Thus by the information inequality, the first term of the right hand side of Equation (3) is
non-negative and the second term insight bracket is non-negative too, and hence the second term of
the right hand side of Equation (3) is non-negative. Thus we may conclude that IS( f12) ≥ IS(g12).

Let Ui|u1, . . . , ui−1 = Fi|1,...,i−1(xi|x1, . . . , xi−1), Vi|v1, . . . , vi−1 = Gi|1,...,i−1(yi|y1, . . . , ip−1)

and hFi|1,...,i−1
(ui|u1, . . . , ui−1) = fi|1,...,i−1(F−1

i|1,...,i−1(ui|u1, . . . , ui−1))/gi|1,...,i−1(G
−1
i|1,...,i−1

(vi|v1, . . . , vi−1)), i = 2, . . . , p. Continuing the processes, finally for general p we have

IS( f )− IS(g) =
∫ ∞

−∞
{− log f (x)} f (x)dx−

∫ ∞

−∞
{− log g(y)}g(y)dy (4)

=
∫ 1

0
− log hF1(u1)du1 +

∫ 1

0
[
∫ 1

0
− log hF2|1(u2|u1)du2]du1

+ . . . +
∫ 1

0
. . .

∫ 1

0
[
∫ 1

0
− log hFp|1,...,p−1

(up|u1, . . . , up−1)dup]dup−1 . . . du1

≥ 0.

Hence, the theorem follows.

For two arbitrary densities fg, fh, the Kullback-Leibler information discrimination is defined
by K( fg, fh) =

∫ ∞
−∞ fg(x) log{ fg(x)/ fh(x)}dx. It is non-negative for all fg, fh, and is equal to zero if

fg = fh almost everywhere. Let E [X] denote the expectation of random variable X. If F(x) ≤c G(y),
from Equation (4) we have the following representation:

IS( f )− IS(g) = K(1, hF1) + EU1 [K(1, hF2|1)] + . . . + EU1,...,Up−1 [K(1, hFp|1,...,p−1
)], (5)

where EU1,...,Ui−1 denotes the expectation of independent uniform densities of (U1, . . . , Ui−1),
Ui ∈ [0, 1], i = 1, . . . , p− 1.

Corollary 2. If F(x) ≤concave G(y), then IS( f ) ≤ IS(g).

As we have seen, the proof of Theorem 2 is surprisingly easy. However, to characterize the
property of convex ordering for two multivariate distributions is sometimes much more complicated
via the conditional approach than to characterize the MTP2 property directly. The convex ordering
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of two multivariate distributions is essentially equivalent to the notion of MTP2, so does the concave
ordering to the MRR2. Karlin and Rinott ([12,13]) had studied several MTP2 and MRR2 distributions,
respectively. Some other often seen models related to Theorem 2 and Corollary 2 are exampled in
the following.

Example 1. Let y = Ax, where A is a nonsingular matrix. Then IS(g) = log|A|+ IS( f ), where |A| denotes
the determinant of matrix A (Zografos and Nadarajah [3]). Thus we have IS( f ) ≥ IS(g) iff |A| ≤ 1.

Example 2. Let Bp = {(x1, . . . , xp)> : xi > 0, i = 1, . . . , p, ∑
p
i=1 xi ≤ 1} be the p-dimensional simplex,

and let

f (x, a1, . . . , ap; b1, . . . , bp) = c
p

∏
i=1

xai−1
i (1−

i

∑
k=1

xk)
bi−1

be the generalized Dirichlet density function with parameters, ai > 0, bi > 0, i = 1, · · · , p and

c =
p

∏
i=1

Γ(∑
p
k=i(ak + bk − 1) + 1)

Γ(ai)Γ(bi + ∑
p
k=i(ak + bk − 1))

.

It is easy to note that xai−1
i is TP2 in (xi, ai), (1− ∑i

k=1 xk)
bi−1 is RR2 in (xi, bi) and (1− ∑i

k=1 xk)
bi−1

is pairwisely RR2 in (xi, xj) when bi ≥ 1. Then, by Proposition 2 , we have (i) ∏
p
i=1 xai−1

i is MTP2 and
(ii) ∏

p
i=1(1−∑i

k=1 xk)
bi−1 is MRR2 when bi ≥ 1, ∀i = 1, . . . , p. Thus, we may conclude that the generalized

Dirichlet density function is MRR2 when bi ≥ 1, ∀i = 1, . . . , p. In addition, Corollary 2 is applicable.

Example 3. Gupta and Richards [14] considered the multivariate Liouville distribution which the density
function is of the form

f (x, θ) = c(θ)g(
p

∑
i=1

xi)
p

∏
i=1

xθi
i ,

where g : R+ → R+ is continuous, and θ, x ∈ R+p and

c−1(θ) =
∏

p
i=1 Γ(θi)

Γ(∑
p
i=1 θi)

∫ ∞

0
t∑

p
i=1 θi−1g(t)dt.

Please note that ∏
p
i=1 xθi

i is MTP2. By Proposition 2, it is easy to see that f (x, θ) is MTP2 (MRR2) if and
only if g(x1 + x2) is TP2 (RR2) in (x1, x2) on R+2. The MRR2 property of some special cases of multivariate
Liouville distributions, such as Dirichlet distributions and inverted Dirichlet distributions, are studied by Karlin
and Rinott [13].

Example 4. In biostatistics, many studies are under the setup of well-known Cox proportional hazard
model (Cox [15]), and its basic model is assumed to be that Ḡ(x) = (F̄(x))λ, λ > 0, where Ḡ(x) =

1 − G(x). Without loss of generality, we may assume p = 2. Write Ḡ(x) = Ḡ1(x1)Ḡ2|1(x2|x1) and
F̄(x) = F̄1(x1)F̄2|1(x2|x1). Let G1(x) = u1, u1 ∈ [0, 1], then we have F1(G−1

1 (u1)) = 1− (1− u1)
1/λ,

thus we have dF1(G−1
1 (u1))/du1 = (1− u1)

(1/λ−1)/λ, which is nondecreasing in u1 if λ ≥ 1. As such,
we have G−1

1 (u1) ≤c F−1
1 (u1), u1 ∈ [0, 1] when λ ≥ 1. Namely, when λ ≥ 1 we have F1(x1) ≤c G1(x1).

Let G2|1(x2|x1) = u2, similar arguments as above, we may have that F2|1(x2|x1) ≤c G2|1(x2|x1) when
λ ≥ 1. Thus, by Proposition 2, we may have that F(x) ≤c G(x) when λ ≥ 1. This procedure can be directly
generalized to the general p case by mathematical induction. As such, for the positive disease gene case λ ≤ 1,
then by Theorem 2 we may conclude that IS( f ) ≤ IS(g). Similarly, for the negative disease gene case λ ≥ 1,
then IS( f ) ≥ IS(g).
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Example 5. The density function of eigenvalues for a multivariate beta matrix is of the form

f (x) = c
p

∏
i=1

x
1
2 (n1−p+1)−1
i (1− xi)

1
2 (n2−p+1)−1 ∏

1≤i<j≤p
|xi − xj|,

where 0 < xi < 1, i = 1, . . . , p, n1, n2 > p, and

c =
p

∏
i=1

Γ( 3
2 )Γ(

1
2 (n1 + n2 − p + i))

Γ(1 + i
2 )Γ(

1
2 (n1 − p + i))Γ( 1

2 (n1 − p + i))

(Dumitriu [16]; Peddada and Richards [17]). Please note that the Vandermonde determinant ∏1≤i<j≤p |xi − xj|
is MTP2, for the details see Dykstra and Hewett [18]. Using Proposition 2, it is easy to see that

∏
p
i=1 x(n1−p+1)/2−1

i is TP2 in (xi, n1 − p + 1), and ∏
p
i=1(1− xi)

(n2−p+1)/2−1 is RR2 in (xi, n2 − p + 1).

Thus, ∏
p
i=1 x(n1−p+1)/2−1

i (1− xi)
(n2−p+1)/2−1 is MRR2. Then, we may conclude that the density function,

which is the product of these functions, is MRR2. In addition, Corollary 2 is applicable.

4. The Central Wishart and Central MANOVA Models, and Noncentral Wishart and Noncentral
MANOVA Models

Theorem 2 states that if the density function has the MTP2 property, then the corresponding
ordering of Shannon entropies holds, namely the MTP2 (or MRR2) property of density function
ensures the ordering of Shannon entropies. The MTP2 also implies the power monotonicity property
of MANOVA tests, for which based on the monotone function of eigenvalues. Eigenvalues play
an important role in statistical inference. Example 5 deals with the density function of eigenvalues
of MANOVA models (or Jacobi ensembles) when the population covariance matrix is assumed to be
an identity matrix (Σ = I). Two other often seen models are (i) Gaussian (or Hermite) ensembles,

f (x) = (2π)−
p
2

p

∏
i=1

Γ( 3
2 )

Γ(1 + i
2 )

e−
1
2 ∑

p
1 x2

i ∏
1≤i<j≤p

|xi − xj|,

and (ii) Wishart models (or Laguerre ensembles),

f (x) = 2−
p(p+1)

2

p

∏
i=1

Γ( 3
2 )

Γ(1 + i
2 )Γ(

1
2 (n1 − p + 1))

p

∏
i=1

x
1
2 (n1−p+1)−1
i e−

1
2 ∑

p
1 xi ∏

1≤i<j≤p
|xi − xj|

(Dumitriu [16]). From similar arguments to Example 5, it is easy to see that the density function f (x) is
MTP2 either for (i) (the identity population covariance matrix is an M-matrix) or for (ii) (gamma type
density function), respectively, we omit the details.

For statistical inference, generally the population covariance matrix is unknown. In this section,
we further study the MTP2 property of the distribution functions of eigenvalues of central Wishart
and MANOVA models, and of noncentral Wishart and MANOVA models (James [19]; Muirhead [20])
under the general population covariance matrix set-up.

4.1. Type 0F0, Exponential: Eigenvalues of a Wishart Matrix

Suppose that the columns of a matrix p× n matrix X are independently normally distributed with
covariance matrix Σ and E(X) = 0. Let L = diag(l1, . . . , lp), where li be the ith largest eigenvalue of
XX>. Similarly, let ∆ = diag(δ1, . . . , δ1), where δi be the ith largest eigenvalue of Σ. Write Σ = Q∆Q>
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and XX> = ULU
′
, where Q, U ∈ O(p) with O(p) being the group of p × p orthogonal matrices.

Also denote (dU) the m-form of U with m = 1
2 p(p + 1) and tr denotes the trace operator, then

0F0(−
1
2

Σ−1, XX>) =
∫
O(p)

e−
1
2 tr(Q∆−1Q>ULU>)(dU) (6)

=
∫
O(p)

e−
1
2 tr(∆−1HLH>)(dH)

= 0F0(−
1
2

∆−1, L),

where H = Q>U ∈ O(p) and noting that (dU) = (dH). Due to the invariant property, the density
function of L depends only upon ∆, which is of the form

φδ(l1, . . . , lp) = |∆|−
1
2 n

0F0(−
1
2

∆−1, L)φ0(l1, . . . , lp), (7)

where

φ0(l1, . . . , lp) =
π

1
2 p2

2
1
2 pnΓp(

1
2 n)Γp(

1
2 p)
|L|

1
2 (n−p−1) ∏

i<j
(li − lj) (8)

with Γp(a) = π
1
4 p(p−1) ∑

p
i=1 Γ(a− 1

2 (i− 1)).

Theorem 3. 0F0(− 1
2 ∆−1, L) is MTP2.

Proof. Please note that

∂log0F0(− 1
2 ∆−1, L)

∂L
=

∫
O(p) e−

1
2 tr(∆−1HLH>)(− 1

2 ∆−1HH>)(dH)∫
O(p) e−

1
2 tr(∆−1HLH>)(dH)

=

∫
O(p) e−

1
2 tr(∆−1HLH>)(− 1

2 ∆−1)(dH)∫
O(p) e−

1
2 tr(∆−1HLH>)(dH)

= −1
2

∆−1.

Thus, it is easy to see that

∂2log0F0(− 1
2 ∆−1, L)

∂L′∂L
= 0

and

∂2log0F0(− 1
2 ∆−1, L)

∂∆∂L
=

1
2

∆−2,

respectively. Please note that ∆ is a positive diagonal matrix, which is clearly positive definite. Hence
the theorem follows.

By the result of Dykstra and Hewett [18], it is easy to note that φ0(l1, . . . , lp) enjoys the MTP2
property. Hence, by Theorem 3 we may conclude that the density function φδ(l1, . . . , lp) of eigenvalues
of XX>, which is the product of two MTP2 functions (Karlin and Rinott [12]), is MTP2.
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4.2. Type 1F0, Binomial Series: Eigenvalues When Σ1 6= Σ2

Suppose that the p× n1 matrix variate X with n1 independent columns distributed as N(0, Σ1)

and p × n2 matrix variate Y with n2 independent columns distributed as N(0, Σ2). Also let F =

diag( f1, . . . , fp) and Ω = diag(ω1, . . . , ωp), where fi is the ith largest eigenvalue of

|XX> − f YY>| = 0, (9)

and

|Σ1 −ωΣ2| = 0. (10)

Let

1F0(a;−S, T) =
∫
O(p)
|I + SHTH>|−a(dH), (11)

the equation is well defined for all S and T being positive definite. Without loss of generality, we may
take both S and T are positive diagonal matrices. Then the joint density function of eigenvalues
f1, . . . , fp is of the form

φω( f1, · · · , fp) = |Ω|−
1
2 n1 1F0(

1
2
(n1 + n2);−Ω−1, F)φ∗( f1, . . . , fp), (12)

where

φ∗( f1, . . . , fp) =
π

1
2 p2

Γp(
1
2 (n1 + n2))

Γp(
1
2 n1)Γp(

1
2 n2)Γp(

1
2 p)
|F|

1
2 (n1−p−1) ∏

i<j
( fi − f j). (13)

Theorem 4. 1F0(
1
2 n;−Ω−1, F) is MTP2, where n = n1 + n2.

Proof. Please note that 1F0(
1
2 n;−Ω−1, F) =

∫
O(p) |I + Ω−1HFH>|−n/2(dH) = |Ω|n/2

∫
O(p) |Ω +

HFH>|−n/2(dH), thus

∂log1F0(
1
2 n;−Ω−1, F)
∂F

=

∫
O(p)−

1
2 n|Ω + HFH>|− 1

2 n(Ω + HFH>)−1(dH)∫
O(p) |Ω + HFH>|− 1

2 n(dH)
.

Write B(Ω, F) =
∫
O(p) |Ω + HFH>|−n/2(dH) > 0, then after some calculations

∂2log1F0(
1
2 n;−Ω−1, F)

∂Ω∂F
= {1

4
n2

∫
O(p)
|Ω + HFH>|−

1
2 n(Ω + HFH>)−2(dH)× B(Ω, F)

− 1
4

n2[
∫
O(p)
|Ω + HFH>|−

1
2 n(Ω + HFH>)−1(dH)]2

+
1
2

n
∫
O(p)
|Ω + HFH>|−

1
2 n(Ω + HFH>)−2(dH)× B(Ω, F)}/B2(Ω.F)

By Schwartz inequality, we then have

∂2log1F0(
1
2 n;−Ω−1, F)

∂Ω∂F
≥

1
2 n

∫
O(p)|Ω + HFH>|− 1

2 n(Ω + HFH>)−2(dH)

B(Ω, F)

=
1
2

nE f [(Ω + HFH>)−2|F; Ω]

≥ 0
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with probability one, where f (H|F; Ω) = |Ω + HFH>|−n/2/B(Ω, F) can be viewed as the conditional
density function of H given F. Please note that the matrix HFH> is positive definite with probability
one, thus the conditional expectation E f [(Ω + HFH>)−2|F; Ω] is positive definite with probability one.
Hence, the theorem follows.

Please note that φ∗( f1, . . . , fp) is MTP2. Thus, by Theorem 4 we have that the density function
φω( f1, . . . , fp) is MTP2.

4.3. Type 0F1, Bessel: Noncentral Means with Known Covariance

Suppose that the columns of a matrix p× n matrix X are independently normally distributed
with covariance matrix Σ and E(X) = M. Let wi be the eigenvalues of |XX> − wΣ| = 0 and W =

diag(w1, . . . , wp), then its density function depends only upon Ω = diag(ω1, . . . , ωp), where ωi are
the eigenvalues of |MM> −ωΣ| = 0, and is

ψω(w1, . . . , wp; Ω) = e−
1
2 trΩ

0F1(
1
2

n;
1
4

Ω, W)ψ0(w1, . . . , wp), (14)

where

ψ0(w1, · · · , wp) =
π

1
2 p2

2
1
2 pnΓp(

1
2 n)Γp(

1
2 p)

e−
1
2 trW|W|

1
2 (n−p−1) ∏

i<j
(wi − wj). (15)

Furthermore, from Equation (32) of James [19], we have the inverse Laplace transform

0F1(
1
2

n; Ω, W) =
2

1
2 p(p−1)Γp(

1
2 n)

(2πi)
1
2 p(p+1)

∫
R(T)>0

etrT|T|−
1
2 n

0F0(T−1Ω, W)(dT). (16)

Without loss of generality, we may assume that T = diag(t1, . . . , tp) and also let T−1Ω = U−1, then the
Equation (16) becomes

0F1(b; Ω, W) (17)

=
2

1
2 p(p−1)Γp(

1
2 n)

(2πi)
1
2 p(p+1)

∫
R(U)>0

etr(ΩU)|ΩU|−
1
2 n

0F0(U−1, W)|Ω|p(dU)

=
2

1
2 p(p−1)Γp(

1
2 n)

(2πi)
1
2 p(p+1)

∫
R(U)>0

g(u1, . . . , up; Ω)0F0(U−1, W)(dU),

where

g(u1, . . . , up; Ω) = e∑
p
i=1 ωiui

p

∏
i=1

ω
− 1

2 n+p
i

p

∏
i=1

u−
1
2 n

i . (18)

Theorem 5. 0F1(
1
2 n; Ω, W) is MTP2.

Proof. By Equation (18), after some straightforward calculations, we have

∂2logg(u1, . . . , up; Ω)

∂ωi∂ui
= 1 > 0, ∀i = 1, . . . , p.

Thus, g(u1, . . . , up; Ω) is TP2 pairwise in (ui, δi). Namely, g(u1, . . . , up; Ω) is MTP2. By the composition
lemma (Proposition 1) of Karlin [10], thus the theorem follows.

Please note that ψ0(w1, . . . , wp) is MTP2, thus by Theorem 5, we may conclude that the density
function ψω(w1, . . . , wp; Ω) is MTP2.
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4.4. Type 1F1, Confluent Hypergeometric: Noncentral Eigenvalues

Suppose that the p× n1 matrix variate X with n1 independent columns distributed as N(M, Σ)

and p× n2 matrix variate Y with n2 independent columns distributed as N(0, Σ) for n1 ≥ p. Let ω∗i be
the eigenvalues of |MM> −ω∗Σ| = 0. Write Ω∗ = diag(ω∗1 , . . . , ω∗p), then the joint density function
of eigenvalues fi of |XX> − f YY>| = 0, (i) for n1 ≥ p, is of the form

φ∗ω∗( f1, . . . , fp; Ω∗) (19)

= e−
1
2 trΩ∗

1F1(
1
2
(n1 + n2);

1
2

n2;
1
2

Ω∗, (I + F−1)−1)φ∗( f1, . . . , fp),

where

φ∗( f1, . . . , fp) =
π

1
2 p2

Γp(
1
2 (n1 + n2))

Γp(
1
2 n1)Γp(

1
2 n2)Γp(

1
2 p)

|F| 12 (n1−p−1)

|I + F| 12 (n1+n2)
∏
i<j

( fi − f j). (20)

Theorem 6. 1F1(
1
2 n; 1

2 n2; 1
2 Ω∗, (I + F−1)−1) is MRR2, where n = n1 + n2.

Proof. Please note that

1F0(
1
2

n; Ω∗−1, (I + F−1)−1) =
∫
O(p)
|I−Ω∗−1H(I + F−1)−1H>|−

1
2 n(dH)

= |Ω∗|
1
2 n

∫
O(p)
|Ω∗ −H(I + F−1)−1H>|−

1
2 n(dH).

Let G = (I + F−1)−1 and C(Ω∗, G) =
∫
O(p) |Ω

∗ −HGH>|−n/2(dH) > 0, then

∂2log1F0(
1
2 n; Ω∗−1, G)

∂Ω∗∂G

= −{1
4

n2
∫
O(p)
|Ω∗ −HGH>|−

1
2 n(Ω∗ −HGH>)−2(dH)× C(Ω∗, G)

− 1
4

n2[
∫
O(p)
|Ω∗ −HGH>|−

1
2 n(Ω∗ −HGH>)−1(dH)]2

+
1
2

n
∫
O(p)
|Ω∗ −HGH>|−

1
2 n(Ω∗ −HH>)−2(dH)× C(Ω∗, G)}/C2(Ω∗, G).

By Schwartz inequality, then

∂2log1F0(
1
2 n; Ω∗−1, G)

∂Ω∗∂G

≤ −1
2

n
∫
O(p)
|Ω∗ −HGH>|−

1
2 n(Ω∗ −HGH>)−2(dH)/C(Ω∗, G)

= −1
2

nEg[(Ω
∗ + HGH>)−2|G; Ω∗]

≤ 0

with probability one, where g(H|G; Ω∗) = |Ω + HGH>|−n/2/C(Ω∗, G) can be viewed as the
conditional density function of H given G. Please note that the matrix HGH> is positive definite with
probability one, thus the conditional expectation Eg[(Ω

∗ + HGH>)−2|G; Ω∗] is positive definite with
probability one. Then, we have that 1F0(

1
2 n; Ω∗−1, G) is MRR2 in (Ω∗, G). Also, it is easy to note that

G is the monotone increasing function of F, thus, 1F0(
1
2 n; Ω∗−1, (I + F−1)−1) is MRR2 in (Ω∗, F).
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Next, consider

1F1(
1
2

n,
1
2

n2; Ω∗, (I + F−1)−1) (21)

=
2

1
2 p(p−1)Γp(

1
2 n2)

(2πi)
1
2 p(p+1)

∫
R(T)>0

etrT|T|−
1
2 n2 1F0(

1
2

n; T−1Ω∗, (I + F−1)−1)(dT).

Let T−1Ω∗ = U−1, then

1F1(
1
2

n,
1
2

n2; Ω∗, (I + F−1)−1)

=
2

1
2 p(p−1)Γp(

1
2 n2)

(2πi)
1
2 p(p+1)

∫
R(U)>0

etr(Ω∗U)|Ω∗U|−
1
2 n2 1F0(

1
2

n; U−1, W)|Ω∗|p(dU)

=
2

1
2 p(p−1)Γp(

1
2 n2)

(2πi)p(p+1)/2

∫
R(U)>0

g∗(u1, . . . , up; Ω∗)1F0(
1
2

n; U−1, W)(dU),

where

g∗(u1, . . . , up; Ω∗) = e∑
p
i=1 ω∗i ui

p

∏
i=1

ω∗
− 1

2 n2+p
i

p

∏
i=1

u−
1
2 n2

i . (22)

After some straightforward calculations, we have

∂2logg∗(u1, . . . , up; Ω∗)

∂ω∗i ∂ui
= 1 > 0, ui, ∀i = 1, . . . , p.

Thus, g∗(u1, . . . , up; Ω∗) is TP2 pairwise in (ui, ω∗i ). Namely, g∗(u1, . . . , up; Ω∗) is MTP2. By the
composition lemma (Proposition 1) of Karlin [10], then the theorem follows.

Similar to arguments in Example 5, we may have that φ∗( f1, . . . , fp) is MRR2. Thus by Theorem 6,
we may conclude that the density function φ∗ω∗( f1, . . . , fp; Ω∗), which is the product of two MRR2
functions (Karlin and Rinott [13]), is MRR2.

(ii) For p ≥ n1 the joint density function of eigenvalues f1, . . . , fp is of the form

φ∗2ω∗( f1, . . . , fp; Ω∗) (23)

= e−
1
2 trΩ∗

1F1(
1
2
(n1 + n2);

1
2

p;
1
2

Ω∗, (I + F−1)−1)φ∗2 ( f1, . . . , fp),

where

φ∗2 ( f1, . . . , fp) (24)

=
π

1
2 n2

1 Γn1(
1
2 (n1 + n2))

Γn1(
1
2 n1)Γn1(

1
2 (n1 + n2 − p))Γn1(

1
2 p)

|F| 12 (p−n1−1)

|I + F| 12 (n1+n2)
∏
i<j

( fi − f j).

Similar to arguments in Theorem 6, we may conclude that the density function φ∗2ω∗( f1, . . . , fp; Ω∗)
is MRR2.

4.5. High-Dimensional Wishart Matrices

Suppose that the columns of a matrix p× n matrix X are independently normally distributed with
covariance matrix Σ and E(X) = 0. Let L = diag(l1, . . . , lp), where li are the ith largest eigenvalue of
XX>. Let Σ = σ2I and c = limn→∞ p/n, c ∈ (0, 1). When dimension p is large, the limiting distribution
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of sample spectral eigenvalues has the well-known Marčenko-Pastur distribution Fc,σ2 (M-P law) with
index c and scale parameter σ, which the density function is of the form

fc,σ2(x) =
1

2πxcσ2

√
(bσ2 − x)(x− aσ2), aσ2 ≤ x ≤ bσ2,

where a = (1 −
√

c)2 and b = (1 +
√

c)2 (Marčenko and Paster [21]). After some algebraic
manipulations, we can show that

∂2log fc,σ2(x)
∂x∂σ2 =

1
4πc

(a + b)x2 − 4abxσ2 + (a + b)abσ4

(bσ2 − x)2(x− aσ2)2

≥ 0.

Thus, the Marčenko-Pastur density function is TP2 in (x, σ2), and hence Theorem 1 is applicable.

5. Remarks

We adopted the notion of convex ordering of two distributions to prove the ordering of Shannon
entropies in Theorem 2. Please note that the notions of convex ordering of two distributions,
the monotone likelihood ratio and totally positive of order 2 (MTP2) are essentially equivalent.
For many density functions such as those discussed in Sections 3 and 4, it seems easier to characterize
the MTP2 property of density functions than that of convex ordering of distribution functions.
In practice, we suggest use the notion of MTP2 for the comparisons of Shannon entropy measures.

The difference of two Shannon entropies is an intrinsic distribution measure as we emphasized in
this paper. As a result, the Shannon entropy measures can be ordered when two underline distributions
have the relationship of convex ordering (i.e., the MTP2) property. The monotonicity of power function,
which is discussed basically under the same distributions but with different ordered parameters set
up, comes out to be a special case of the results of the comparison of two Shannon entropies which can
be even discussed under two totally different distribution functions.

For the problem of hypothesis testing H0 : F(x) =c G(x) against H1 : F(x) ≤c G(x), test statistic
based on the sample version of the difference of two Shannon entropies enjoys the optimal property.
The above hypothesis testing problem is equivalent to the hypothesis problem of testing H0 : HF(u) =
u, u ∈ [0, 1] against H1 : HF(u) is convex on [0, 1]. Let U1:n < U2:n < . . . < Un:n be the order statistics
from HF, then the most powerful test is based on the statistics ∑n

i=1 log hF(Ui:n), which is the empirical
version of the difference of two Shannon entropies. Since hF(u) is monotone increasing in u, thus the
test has the property of power monotonicity.

Noncentral chi-square distributions play an important role for statistical inference. For the
univariate case, a noncentral chi-square or gamma density which are typically Poisson mixture of
central chi-square or gamma type densities. Beyond the monotonicity property, we may aware of
the following: let fα(x, β) denote the univariate gamma density function with the shape parameter
α and the scale parameter β, and its distribution function is denoted by Fα(x, β). For the fixed scale
parameter gamma densities, van Zwet [6] showed the result of convex ordering of gamma distributions,
i.e., if 0 < α1 ≤ α2 then Fα2(x, β) ≤c Fα1(x, β). Namely, fα(x, β) is TP2 in (x, α) when β is fixed. Thus,
by Theorem 1 if 0 < α1 ≤ α2 then IS( fα1) ≤ IS( fα2) when β is fixed. Similarly, when α is fixed fα(x, β) is
TP2 in (x, β). The above results tell us that the larger degrees of freedom is, the larger Shannon entropy
measure is when both noncentralities are kept the same. For any two test statistics (or estimators)
which are noncentral chi-square distributed with the same noncentrality, but with different degrees of
freedom, then the Pitman efficiency (based on the Kullback-Leibler divergence) makes no difference
of comparisons. However, our new measure of the difference of two Shannon entropies is nonzero,
which means that the new measure makes a difference of comparisons. For the MANOVA models,
the density functions of eigenvalues which are Bessel of multivariate gamma type density or confluent
hypergeometric of multivariate beta type density such as those discussed in Sections 4.3 and 4.4,
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respectively, our results can be directly applied to the tests with monotone acceptance regions to enjoy
the power monotonicity for those density functions with the MTP2 (MLR) property.

The conceived mixture model arises also for the finite case. A multi-sample model where for
some G (G > 1), there are G densities fg(x), g = 1, . . . , G and a sample of size ng is drawn from the
density fg(x), so that the pooled sample relates to the mixture density with wg = ng/ ∑G

g=1 ng. For the
finite mixture case, it is hard to find out the explicit form of Shannon entropy of mixture distribution,
even under the multinormal set-up. Suppose that there are G groups, the random vector X has the
mixture density function f ∗G(x) = ∑G

g=1 wg fg(x), where ∑G
g=1 wg = 1. Then the distribution function

is F∗G(x) = P{X ≤ x} =
∫ x
−∞ ∑G

g=1 wg fg(y)dy = ∑G
g=1 wg

∫ x
−∞ fg(y)dy = ∑G

g=1 wgFg(x). The wg are
nonnegative and they add up to 1, so the mixture density represents a convex combination of the
component densities. We find that the decomposability of Shannon entropy still holds in a different
way for the continuous random vectors.

Theorem 7. IS( f ∗G) = ∑G
g=1 wgIS( fg) + ∑G

g=1 wgK( fg, f ∗G).

Proof. Please note that

IS( f ∗G) =
∫ ∞

−∞
− log f ∗G(x)dF∗G(x)

= −
∫ ∞

−∞
log(

G

∑
g=1

wg fg(x))d[
G

∑
i=1

wiFi(x)]

= −
G

∑
g=1

wg

∫ ∞

−∞
fg(x) log(

G

∑
i=1

wi fi(x))dx

= −
G

∑
g=1

wg

∫ ∞

−∞
fg(x) log fg(x)dx +

G

∑
g=1

wg

∫ ∞

−∞
fg(x) log(

fg(x)

∑G
i=1 wi fi(x)

)dx

=
G

∑
g=1

wgIS( fg) +
G

∑
g=1

wgK( fg, f ∗G).

It follows from Theorem 7 that IS( f ∗G) ≥ ∑G
g=1 wgIS( fg). We further note that for a mixture model,

the Shannon entropy has the decomposability property similar to well-known Fisher’s MANOVA
model. Please note that the first term on the right hand side represents an average of the individual
entropies (i.e., analogous to the within group sum of squares) while the second term is nonnegative
and represents the between group distances.

For a high-dimensional Wishart matrix with an unknown scale times the identity matrix being the
population covariance matrix, the property of TP2 property (i.e., the MLR property) for the limiting
empirical density function of eigenvalues is studied in the Section 4.5. Although the Marčenko-Pastur
equation (Silverstein [22]) provides the link of limiting empirical spectral distribution, F, to the limiting
behavior of the population spectral distribution, H, one can expect to retrieve the information of H
from F. However, the difficulty lies within the fact that the relationship between H and F is entangled.
Whether the result studied in Section 4.5 can be extended to the general population covariance
matrix case or not remains to be clarified. Another focus of random matrices in the literature is
related to the Gaussian divisible ensembles. The Gaussian divisible ensembles are matrices of the
form Ht = e−t/2H0 + (1− e−t)1/2HG where t > 0 is a parameter, H0 is a Wigner matrix and HG is
an independent Gaussian orthogonal ensemble matrix. The eigenvalue distribution of the Gaussian
divisible ensembles are the same as that of the solution of a matrix valued Ornstein-Uhlenbeck process
Ht for any time t ≥ 0. The dynamics of the eigenvalues of Ht is given by the system of so-called
Dyson’s Brownian motion (Dyson [23]). The treatment of the sample covariance matrix is analogous,
but the formulas change slightly (see Erdős, L. et al. [24], for the details). It is interesting to further
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study that: under the general model, whether the corresponding limiting spectral density function
of eigenvalues, obtained via the convolution of the limiting density function of eigenvalues of initial
matrix with the Marčenko-Pastur density function, is TP2 or not. We pose those problems as a project
of future study.
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