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Abstract: Gene regulation may be studied from an information-theoretic perspective. Gene regulatory
programs are representations of the complete regulatory phenomenon associated to each biological state.
In diseases such as cancer, these programs exhibit major alterations, which have been associated with
the spatial organization of the genome into chromosomes. In this work, we analyze intrachromosomal,
or cis-, and interchromosomal, or trans-gene regulatory programs in order to assess the differences that
arise in the context of breast cancer. We find that using information theoretic approaches, it is possible to
differentiate cis-and trans-regulatory programs in terms of the changes that they exhibit in the breast cancer
context, indicating that in breast cancer there is a loss of trans-regulation. Finally, we use these programs to
reconstruct a possible spatial relationship between chromosomes.

Keywords: gene regulatory program; mutual information; markov random field; spatial dependency
structures; cancer transcriptomics

1. Introduction

1.1. The Gene Regulatory Program

In order to respond to external stimuli, maintain the basal function, or adapt to new environments,
the cell triggers a sophisticated mechanism to produce the specific class and amount of elements responsible
for carrying out the particular tasks involved in a cellular context. Processes such as development,
cell differentiation and homeostasis are driven and controlled by a set of genes interacting in time and
space to respond to the changing environment. We will call said set of genes and the manner in which
they interact the gene regulatory program (GRP).

In a eukaryotic cell, DNA is packed in structural units called chromosomes. Human cells contain
23 chromosomes. Chromosomes are composed of DNA molecules (in which the genetic information is
encoded), and structural proteins called histones, which attach the DNA molecule to them. These elements
form the chromatin fiber, which in turn is coiled to generate the structure of a chromosome.

To initiate the gene transcription (production of an RNA molecule from DNA), and the consequent
gene regulatory program, the chromosome must be “open”, i.e., DNA should be visible to the proteins
which will carry out the transcriptional process. Opening of DNA is a highly coordinated event that
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allow the simultaneous production of RNA molecules in different sections of the chromosome, but also
in different chromosomes. This co-regulated production of genes is one of the most important factors to
generate a GRP. Fom now on, intra-chromosomal regulation will be termed cis-regulation whereas we
will refer to inter-chromosomal trans-regulation. In this, we are somewhat extending or borrowing the
classical concepts of cis- and trans- regulation [1] instead of the more verbose terms, intra-chromosomal
and inter-chromosomal, respectively.

1.2. Spatial Anomalies in Cancer-Associated GRPs

The whole GRP determine the phenotype. Since gene regulation is key for the correct functioning of
the living cell, abnormal performance of the way in which genes are co-regulated in time and space gives
place to aberrant phenotypes. A paradigmatic example of this is cancer.

During the rise and development of a cancerous phenotype, several abnormal signals of gene
regulation are triggered. This set of signals can produce faster cell growth, cell duplication and proliferation,
evasion of of the immune system, and other issues. The majority of said hallmarks of cancer [2] are
produced by genes in which mutations, different expression patterns or epigenetic signals appear.
This altered gene expression pattern can be studied by means of next generation sequencing (NGS)
techniques such as RNA-Seq, which can sequence the information from any RNA transcript from a given
sample (person) at the genome-wide level.

NGS opened the possibility to have the information regarding the gene expression of the whole
genome of several samples. The large data corpus allows for increases in the statistical power
used, and allows the observation of the general behavior of a cancerous phenotype as compared to
a non-cancerous one. Other approaches to this problem have been developed including 3C, 4C [3] and
Hi-C chromosome capture techniques [4] as well as ultra-microscopy [5], among others.

With the aforementioned in mind, a simple and direct point of investigation is the observation of
a GRP in cancer and the comparison with a normal (non-cancerous) program. This is, comparing at the
genome-wide level, the whole set of gene interactions between these two phenotypes (cancer and normal).

Previously [6–8], we observed that in breast cancer, trans-(inter-chromosome) gene interactions are
more scarce and weaker in cancer samples compared to the healthy phenotype. Furthermore, in breast
cancer, cis-interactions become stronger, however, this is strongest between physically close genes, and this
gene correlation strength decays with the distance. Said effect is not present in the normal phenotype.

In order to characterize in a quantitative manner the qualitative differences observed between the
two phenotypes, in this work we have implemented an information theoretical approach, by constructing
a series of indicators that, as it will be shown later, allow the classification for the distinctive patterns of
both GRPs.

1.3. An Information Theoretical Approach to Gene Regulatory Programs

A paradigmatic question in contemporary computational biology, is the probabilistic inference of the
best set of regulatory interactions between genes starting from a large—but incomplete—data corpus Ω.
This is, being able to found the maximum-likelihood or maximum-entropy solution to the deconvolution of
the GRP of the cells starting from data sampled in, say RNA sequencing experiments over whole genome
transcriptomes. Such deconvolution involves the inverse problem of large scale probabilistic inference
over an incomplete and noisy sample space.

A paramount solution to this extremely difficult task is founded on the tenets of information theory [9],
as we will show in what follows.
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Let Xi = {X1, X2, . . . , XN} be a set of N random variables, representing the expression levels of
N genes in a transcriptome. For each duplex Di,j = (i, j) (i.e., a pair of genes), the mutual information
function I(Xi, Xj) is given by [10]:

I(Xi, Xj) = ∑
i∈I

∑
j∈J

P(Xi, Xj) log
P(Xi, Xj)

P(Xi) P(Xj)
(1)

I and J are the complete gene expression sampling spaces for genes i and j respectively—i.e., the sets
of all possible values of the experimentally measured gene expression levels Xi, and Xj, within a large
experimental data corpus Ω. P(Xi, Xj) is the joint probability distribution of Xi and Xj and P(Xi) and
P(Xj) are the marginal probability distributions of Xi and Xj, respectively. As it is widely know, the mutual
information function I(Xi, Xj) quantifies the statistical dependence between two given random variables
Xi and Xj [10].

We can also define the off-diagonal mutual information , I† as follows :

I†(Xi, Xj) = I(Xi, Xj) ·
(
1− δij

)
(2)

δij is Kronecker’s delta. The purpose of I†(Xi, Xj) is to eliminate self-information from our calculations.
From now on, we will drop the † superscript and we will always refer to the off-diagonal mutual
information in all of our further calculations.

A GRP encompasses the full set of interactions among genes that gives rise to a transcriptional
phenotype. Within the context of the theoretical and experimental settings we have just described, let us
define what the solution of a GRP deconvolution problem is.

Following previous work [7], we define a gene regulatory program (GRP) as a graph G[I(Xi, Xj)] of all
the mutual information functions for a given empirical transcriptomics sampling space Ω. It can be shown
that G[I(Xi, Xj)] is indeed a Markov random field [11,12] considering mutual information distributions
under the pairwise sufficiency assumption [13].

We will consider both cis and trans GRPs Gk,l [I(Xi, Xj)], here k, l = {1, 2, . . . , 22, x} are indexes
working as the chromosome label. k = l implies associations between genes i and j located in the
same chromosome (cis-GRPs, G[I(Xi, Xj)]

cis), whereas k 6= l are statistical dependencies in different
chromosomes (trans-GRPs, G[I(Xi, Xj)]

trans). Partitions of the global GRP G[I(Xi, Xj)] into its cis- and
trans- constituents, are called subregulatory programs from now on.

2. Analysis

2.1. Data

The inference of the GRPs G[I(Xi, Xj)] is based the RNA sequencing of basal breast cancer
patients and healthy samples from The Cancer Genome Atlas (TCGA) collaboration [14] data acquired,
and pre-processed as described in [6]. Briefly, we used 142 basal-like subtype breast cancer samples, as
well as 101 solid-tissue normal samples. Each sample contains 15,642 annotated genes, after removal of
low-counts transcripts (<5 per sample). This set of un-paired data were pre-processed, normalized and
bias-reduced, to have a comparable set of expression data between cancer and normal samples.

2.2. GRP Inference

GRPs for tumors and controls were obtained by calculating mutual information function (MI)
values for every pair of genes i, j in the genome as measured in the aforementioned RNA sequencing
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data. These calculations were performed using an in-house [15] parallel implementation based on the
ARACNE [16] engine.

2.3. Measures of Change in MI between Health and Disease

In order to characterize in a quantitative manner the qualitative differences observed between the
mutual information distributions making up for the statistical dependence structure behind the different
conditions, we have implemented a series of indicators that, as it will be shown later allow the classification
for the distinctive patterns or features of the GRPs.

Consider two GRPs Gk,l
tumor and Gk,l

control representing the set of interactions among genes in a phenotype.
We may define a difference matrix Gk,l

∆ as follows:

∆Gk,l = Gk,l
tumor − G

k,l
control

∆Gk,l describes the changes in the interactions among genes, in terms of MI, between the
two phenotypes.

2.3.1. Gain Loss Score

The first indicator that we define is the gain loss score (GLS), an aggregated measure of the direction
of MI changes in a GRP.

GLSk,l =
|(∆[I(Xi, Xj)] ∈ Gk,l

∆ ) > 0| − (∆[I(Xi, Xj)] ∈ Gk,l
∆ ) < 0|

|(∆[I(Xi, Xj)] ∈ Gk,l
∆ )|

(3)

Basically, GLS is the difference between the number of gene pairs that exhibit a gain in MI values
minus the number of gene pairs that exhibit a loss in MI values between the two phenotypes, divided by
the total number of gene pairs. This indicator will be positive if there are more gains, and negative if there
are more losses.

2.3.2. Gain Loss Ratio

The second indicator we define is the gain loss ratio (GLR), which is an aggregated measure of the
magnitude of the losses and gains of MI. Basically, it is the ratio of the absolute mean value of MI gains
over the absolute mean value of MI losses.

GLRk,l =
absMean(∆Gk,l > 0)
absMean(∆Gk,l < 0)

(4)

The GLR indicator will be larger than 1 if the average value of MI gains is larger than the average
value of MI losses, and will be smaller than 1 otherwise.

2.4. Comparison of GRPs between Control and Cancer Conditions

To assess the changes in the overall behavior of GRPs between both conditions, we used the
Kolmogorov-Smirnov (KS) test. We performed the KS test between cancer GRPt

ij and control GRPc
ij

GRPs to quantify the distance metric between the MI distributions. The null distribution of this statistic is
calculated under the null hypothesis that the samples are drawn from the same distribution.
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2.5. Comparison between cis- and trans-GRPs in Each Condition

To assess differences between cis-and trans-GRPs within the same biological condition, we again
made use of the KS test. In each phenotype (tumor or control), we performed the KS test to compare,
for each chromosome k, the difference between the cis-GRPkk and every trans-GRPkl regulatory programs.

Additionally, we decided to compare, in both biological conditions, each cis-GRPkk to every
trans-GRPkl for each chromosome k by using the Hellinger distance, H2(X, Y). The Hellinger distance
H2 is a semi-quadratic form of f-divergence to measure the difference between two probability functions.
Unlike the KS metric—already introduced– that considers maximum deviations (as given by the supremne
difference), we may think of H2(X, Y) as a weighted average of the odds ratio given by a probability
distribution X which is absolutely continuous respect to another probability distribution Y. For the case of
the sub-regulatory programs we have the following expression:

H2(δGk,k, δGk,l) =
1√
2

∥∥∥√δGk,k −
√

δGk,l
∥∥∥

2
(5)

Here ‖·‖2 is the Euclidean norm. δGk,k is the probability density of the cis-GRP for chromosome k
and δGk,l is the probability density of the trans-GRP involving chromosomes k and l.

3. Results and Discussion

3.1. Intra- and Inter-Chromosome Interactions Exhibit Differences in MI Changes

We have previously observed that intra- and inter-chromosome interactions behave differently in
breast cancer and regular breast tissue; if a threshold is established based on MI values, as to generate
sparse graphs, the observed effect may be thought of as a loss of trans-regulation in breast cancer, as
compared to healthy breast tissue [6]. By considering full cis- and trans-GRPs it is possible to further assess
the way in which these types of interactions change.

In Figure 1 we observe the changes of cis-GRPs (∆Gcis) for every chromosome as well and trans-GRPs
(∆G trans) for every pair of chromosomes, in terms of two indicators: GLS , a measure of the direction of MI
changes, and GLR, a measure of the magnitude of losses and gains in MI.

It may be seen that trans- interactions between any two pairs of chromosomes exhibit overall more
losses than gains in terms of MI, with higher MI drops than MI gains. On the other hand, cis- interactions in
each chromosome have more varied behaviors: (a) Either they also exhibit losses, but both their frequency
and magnitude are lower than the one observed in trans interactions (this is the case for chromosomes
1, 2, 5, 6, 11, 17, 19 and X); or (b) they exhibit more losses than gains, but the average magnitude of the
gains is higher than the average magnitude of the losses (the case for chromosomes 3, 4, 7, 8, 9, 10, 12, 13,
14, 15, 16, 18, 19, 20, and 22); the behavior of chromosome 21 is the only one where there are more gains,
and gains have a higher magnitude.

GLS and GLR are proportional. As it can be observed from Figure 1, an increase in g/l scrore, is
accompanied with an increase in the GLR.
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Figure 1. A scatterplot, where each point represents a subregulatory program for a pair of chromosomes,
comprised of all mutual information function (MI) values for each pair of genes in Chromosome i and
Chromosome j. By comparing the MI between gene pairs in tumor and control, in terms of gain loss score
(GLS) (whether there are more losses or gains in MI) and gain loss ratio (GLR) (whether MI losses or MI
gains have a higher magnitude), we identify that interchromosomal interactions between genes in any
pair of chromosomes have more losses than gains of MI in disease, with an average MI loss greater than
the average MI gain. Meanwhile, intrachromosomal interactions may exhibit three different behaviors:
(i) they have more losses with higher average MI loss, although with higher GLS and GLR values than the
interchromosomal interactions (chromosomes 1, 2, 5, 6, 11, 17, 19, X); (ii) they have more losses, but the
average MI gain is higher (chromosomes 3, 4, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 22) or (iii) they have
more gains, with a higher average MI gain (21).

3.2. Cis-Patterns Depend on the Chromosome Size

The structure of a chromosome is composed of two arms: The p (short) and q arms, separated by
a centromere (see Supplementary Figure S1). Based on the position of the centromere, the chromosomes are
classified into metacentric, where the centromere is placed in the middle of the chromosome, acrocentric,
where the centromere is placed closer to the extreme of the chromosome, and submetacentric, which the
centromere is not in the center of the chromosome, but at neither extreme position.

There is a direct relationship between the structure and number of genes in the chromosomes:
Metacentric and submetacentric chromosomes contain more genes than acrocentric chromosomes.
Chromosome 1, 19, or 2, which are metacentric chromosomes, contain around 2000 genes; meanwhile
chromosome 21, 22, 13 or 14 contain around 300 genes.

Interestingly, the GLS and GLR in the cis-GRPs exhibit a different pattern depending on the size
of the chromosomes: the larger chromosomes show lower GLS and GLR than acrocentric and smaller
chromosomes. Supplementary Figure S1 provides a more detailed description of this phenomenon.

This apparently functional behavior appears to be highly related to the structure of the chromosome.
This is, during cancer the loss of information observed in terms of mutual information, depends on the
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number of genes in the chromosome, which is in turn related to the size of the chromosome. A possible
explanation to this behavior could be related to the closeness between genes inside the chromosome.
Meanwhile chromosomes 1, 17, 11 or 19 present a high density of genes, chromosomes 21, 18, or 13 are less
dense and present less genes.

3.3. Cis-GRPs Are More Similar in Health and Disease than Trans-GRPs

Based on previous observations regarding the changes in gene regulation observed in breast
cancer, the observed phenomenon may obey to one of the following: trans-regulation becoming weaker,
cis-regulation becoming stronger, or a combination of the two. By comparing whole GRPs between health
and disease, it is possible to have a complete assessment of this phenomenon(for complete details refer to
supplementary Figure S2).

In Figure 2, a heatmap is presented in which the color intensity is proportional to the log negative
Kolmogorov-Smirnov (KS) distance between GRPs in tumors and the corresponding GRPs in health
(− log(kstc)). As it is kown KS distance ksij arises from an uniparametric test to compare probability
distributions ksij = supx |Fi,n(x) − Fj,m(x)| where Fi,n and Fj,m are the corresponding cummulative
distributions. In the central diagonal, the KS distances between cis-GRPs may be found, while KS
distances between trans-GRPs are found elsewhere. It may be seen that cis-GRPs are closer between health
and disease (ranging from 0.07 to 0.18) than trans-GRPs which are notably farther.

These observations, along with those mentioned in Section 2.1, may be pointing to a phenomenon
in which trans-regulation in fact becomes weaker, whereas the cis-regulation is less severely affected,
and therefore prevails as the main component of the regulatory phenomenon.
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Figure 2. A heatmap showing the differences between GRPs in health and disease. In each square, the color
intensity is proportional to − log(kstc), the Kolmogorov-Smirnov (KS) distance between the subregulatory
program for ij in cancer vs the subregulatory program for ij in control. We may observe that in general,
the distances between trans-GRPs in control and cancer are greater than the distances between cis-GRPs in
health and disease.
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3.4. Differences in cis-and trans-GRPs in Health and Disease

A final question is to observe whether cis-and trans-regulation behaves differently within the same
phenotype. We may evaluate this through the use of GRPs. We do so by comparing, for each chromosome
k, the Gk,k with each Gk,l through the use of the KS test.

In Figure 3 we show two heatmaps, one for tumors (panel A) and one for controls (panel B). In
each heatmap, the color intensity is proportional to the (negative log) KS distance between the Gk,k

(cis) and the Gk,l (trans). The figure clearly illustrates how, in the case of cancer, trans-GRPs involving
a given chromosome are virtually equidistant to the corresponding cis-GRP for said chromosome.
Meanwhile, in healthy breast tissue, each trans-GRP has a unique distance from the corresponding cis-GRP.
Furthermore, in all chromosomes in cancer, KS values are lower than those for the healthy phenotype.
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Figure 3. A heatmap showing the differences between cis-GRPk and trans-GRPkl in terms of KS statistic.
Notice that in tumors, each trans-GRPkl is almost equidistant to cis-GRPkk (that is, each column has virtually
the same color intensity in all rows), which is not the case in controls.

Reconstructing a Spatial Dimension of Gene Regulation through Information Theoretic Approaches

As we have mentioned, the difference between cis-and trans-regulation is at its core, a spatial
difference, as chromosomes are fundamentally units of biological organization in localized space.
Therefore, the differences observed through these information theoretical approaches may be reflecting
this spatial organization.

To illustrate this, we used another distance matrix: Hellinger distance between the probability
density functions (PDFs) associated to each GRP. For each chromosome k, the Hellinger distance between
PDF(Gk,k) and each PDF(Gk,l) was calculated, in the cancer and healthy phenotypes.

In Figure 4, we show network visualizations (panel A, cancer, panel B, healthy) in which each
node represents a chromosome, and the links represent the aforementioned Hellinger distance between
PDF(Gk,k) and each PDF(Gk,l). Through this, we may use a force-directed layout to organize these
chromosomes in space. In these visualizations, the thickness and color intensity of the edges is higher if
the distance between the PDFs is smaller. Furthermore, in the case of cancer, we may observe that the
layout (based on the aforementioned Hellinger distances) pushes together certain pairs of chromosomes
(such as chromosomes 2 and X, or 3 and 8). This is a phenomenon that is not observed in healthy cells.
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Figure 4. A network visualization of spatial behavior in terms of MI. Each node represents a chromosome.
Each directed link has as weight the Hellinger distance (as calculated with the textmineR R package)
between the probability density functions (PDFs) of cis-GRPkk and trans-GRPkl . The intensity of each
link (transparency and thickness) is inversely proportional to the Hellinger distance. The nodes are
arranged using a prefuse force-directed layout algorithm, considering the inverse of the Hellinger distance.
This pushes nodes where cis-GRPkk and trans-GRPkl are similar together. Notice that the position of
chromosomes is different in tumors and controls. Also notice that, overall, links are thicker (that is,
PDFs are closer) in controls. Supplementary Figure S1 provides a force-directed visualization that shows
some cases in tumor networks where chromosomes are "pushed together" (such as 2 and X, or 3 and 8).

It is important to mention that this observation by itself is not revealing a true spatial orientation
of chromosomes in the cell nucleus space. However, based on the relationship that exists between
information-theoretic based correlations in gene expression, and the spatial organization of genes, it may
be indicative of specific spatial arrangements observed in each phenotype. In the end, ours is a descriptive
method that may serve as a hypothesis generator; ultimately, experimental validation is needed. Our results
could serve as an starting point for experimental explorations using novel technologies such as hi-C,
ultra-microscopy, and future related techniques.

4. Conclusions

Despite the enormous effort that has been devoted to dissect and analyze the molecular origins
of breast cancer, the complex gene regulatory mechanisms behind this terrible disease still constitute
a challenge for diagnostic and therapeutic interventions. With the advent of high throughput experimental
approaches (and the big data provided by them), information theoretical tools have allowed us to analyze
at an extremely detailed level such complex gene regulatory programs.

Here we have analyzed how cancer-associated gene regulatory programs present a robust
phenomenon of spatial organization, associating mechanistic features of gene regulation with the three
dimensional structure of genomes and its influence on the transcriptional machinery. In brief, we have
discovered how the global regulatory patterns diverge from health. How some relationships are lost,
and few are gained. Cis-regulation becomes the norm, while trans-regulation becomes undifferentiated.
A new spatial organization thus emerges.

A number of questions and hypotheses arise from this study, namely

• To what extent changes in gene regulation are relevant to breast cancer evolution?
• What are the possible consequences (functional or otherwise) of regulatory localization?
• Why different chromosomes behave differently? Including, but not limited to size effects.
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• Are these patterns different in different cancers? Are they similar?

Rigurous quantitative studies, firmly grounded on the tenets of information theory will no doubt
continue shedding light on the phenomenology of complex diseases, thus providing pivotal insights to the
advancement of medical science.

Supplementary Materials: The following supplementary materials are available online http://www.mdpi.com/1099-
4300/21/2/195/s1: Figure S1: Classification of Chromosme types. Classifications of Chromosomes: I Telocentric
Centromere placement very close to the top, p arms barely visible if visible at all. II Acrocentric q arms are still
much longer than the p arms, but the p arms are longer than those in telocentric. III Submetacentric p and q arms
are very close in length but not equal. IV Metacentric p and q arms are equal in length. A: Short arm (p arm)
B: Centromere C: Long arm (q arm) D: Sister Chromatids. Figure used under CC BY-SA 4.0 licensing. Source:
https://commons.wikimedia.org/w/index.php?curid=49028965. Figure S2: Force-directed chromosome-wise GRP
network visualizations. GRP for control and cancer. The whole Gene Regulatory Program for Basal and healthy
phenotype are available upon request. The code associated with this research is available at the following repository:
https://github.com/CSB-IG/regulaciontrans-pipeline.
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