
entropy

Article

Bayesian Recurrent Neural Network Models for
Forecasting and Quantifying Uncertainty in
Spatial-Temporal Data

Patrick L. McDermott 1,* and Christopher K. Wikle 2

1 Jupiter Intelligence, Boulder, CO 80302, USA
2 Department of Statistics, University of Missouri, Columbia, MO 65211, USA; wiklec@missouri.edu
* Correspondence: plmyt7@gmail.com

Received: 29 December 2018; Accepted: 12 February 2019; Published: 15 February 2019
����������
�������

Abstract: Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the
machine learning and dynamical systems literature to represent complex dynamical or sequential
relationships between variables. Recently, as deep learning models have become more common,
RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal
processes represent a class of complex systems that can potentially benefit from these types of models.
Although the RNN literature is expansive and highly developed, uncertainty quantification is often
ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous
framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more
formal framework while maintaining the forecast accuracy that makes these models appealing,
by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally,
we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear
spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world
nonlinear spatio-temporal forecasting applications.

Keywords: recurrent neural network; Bayesian machine learning; nonlinear dynamical models;
long-lead forecasting; spatial-temporal

1. Introduction

Nonlinear and quasilinear spatio-temporal data can be found throughout the engineering,
biological, geophysical and social sciences. Some examples of such processes include animal
or robotic interactions, local economic forecasting, river flow forecasting, visual motion capture,
and radar precipitation reflectivity nowcasting, to name a few. The nonlinearity in these systems
makes forecasting and quantifying uncertainty difficult from both a modeling and computational
perspective. While statistical forecasting of univariate nonlinear time-series processes is relatively
well-developed [1,2], nonlinear multivariate systems have seen much less progress in statistics.
Dynamical spatial-temporal models (DSTMs) are multivariate systems that have the added challenge
of characterizing interactions between different scales of variability while simultaneously facing the
curse-of-dimensionality that is exacerbated for nonlinear parametric spatio-temporal models, e.g., [3].

Some more recent nonlinear DSTMs in the statistical literature include threshold or regime
switching models, e.g., [4,5], agent (individual)-based models, e.g., [6], general quadratic nonlinear
(GQN) models [7], analog models [8], and mechanistic nonlinear models [9]. While such models have
shown success for particular systems, more flexible models are often needed for highly nonlinear
systems with complex latent relationships. Furthermore, with only a few exceptions, it can be quite
difficult to explicitly specify the nonlinearities in these systems. One exception includes using

Entropy 2019, 21, 184; doi:10.3390/e21020184 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/1099-4300/21/2/184?type=check_update&version=1
http://dx.doi.org/10.3390/e21020184
http://www.mdpi.com/journal/entropy

Entropy 2019, 21, 184 2 of 26

physically motivated models such as stochastic partial differential equations, e.g., [7,9,10], although
this requires some a priori knowledge of the dynamics in the system. Due to the many challenges
associated with modeling nonlinear spatio-temporal processes, much of the statistical development of
these models has lagged behind other disciplines such as applied mathematics, dynamical systems,
and machine learning.

One of the many appealing aspects of machine learning methods is their ability to extract salient
features and relationships from complex high-dimensional data, particularly for forecasting and
classification. Spatio-temporal processes are a strong candidate for machine learning methods due to
the complex interactions and high-dimensionality that are ubiquitous in these processes. While there
have been past attempts to apply machine learning methods, such as feed-forward neural networks,
e.g., [11] and deep learning models, e.g., [12] to nonlinear spatial-temporal processes, the explicit
accounting for dynamics in these processes has been less of a focus. Moreover, although feed-forward
neural networks provide a convenient framework for modeling multivariate processes, they are not
designed to explicitly capture time-sequential dynamical interactions between variables. As noted in
the dynamical systems literature, explicitly modeling the dynamics is often paramount to successfully
forecasting such systems. Recurrent neural networks (RNNs) represent a machine learning model
with the potential to effectively model the nonlinear dynamics in multivariate sequential systems such
as spatio-temporal processes.

First popularized in the 1980s, RNNs fell out of favor, in part, because of the so-called
“vanishing gradient” problem that makes these models extremely difficult to estimate with
back-propagation. More recently, as deep learning models have gained in popularity, solutions
such as “long-short-term-memory” (LSTM) networks [13,14] have helped mitigate this vanishing
gradient problem. As RNNs have become more manageable from an estimation perspective, they have
increasingly been used to model complicated sequential forecasting problems such as visual object
tracking [15], speech recognition [16], and text generation [17], just to name a few. Simultaneously,
RNNs have also seen a rise in usage in the dynamic systems literature due to their ability to
replicate complex attractor dynamics that are often present in chaotic systems [18]. Thus, RNNs
provide a black-box method that can capture dynamical relationships for problems where it is either
difficult to specify these relationships a priori or little information is available on the specific form
of these relationships. Importantly, RNNs fill this void by providing a mechanism for capturing
complex sequential relationships between variables, thus providing a modeling tool for a broad set of
dynamical problems.

As RNNs have become more prevalent, a variant of the original RNN model, referred to as
an echo-state network (ESN) [19] has become a staple in the dynamical systems literature for solving
nonlinear forecasting problems. ESNs are extremely appealing because they retain much of the forecast
accuracy of an RNN at a fraction of the computational cost. In essence, ESNs simulate randomly the
parameters that make up the hidden states of a RNN (see below), thus reducing the problem to a
traditional regression type problem. Although the methodology described here is more closely related
to the RNN framework than the ESN, we do borrow and discuss ideas from the ESN literature to
motivate choices pertaining to the proposed model. For a spatial-temporal example of an ESN model
see [20]. Conversely, LSTMs represent a variant of the RNN that use a gated structure to control how
fast or slow certain structures are remembered. While the presented methodology does not consider
LSTMs, due to the similar issues of dependent parameters in both the LSTM and traditional RNN
framework, many of the ideas presented here could be extended into the LSTM framework.

Despite the broad size and overall scope of the RNN literature, these models are almost
always presented without considering uncertainty. The few attempts at quantifying uncertainty are
generally presented in an ad hoc fashion, without a formal probability based framework. For example,
recent work such as [21] use less rigorous methods such as dropout (see Section 2.3) to quantify
uncertainty. Conversely, as previously discussed, the statistical literature on modeling of nonlinear
dynamical spatio-temporal systems does consider uncertainty quantification but is not well-developed,

Entropy 2019, 21, 184 3 of 26

especially compared to its linear counterpart. We address both of these issues by proposing a Bayesian
spatial-temporal RNN model in which the forecasting strength of a traditional RNN is preserved,
while also producing comprehensive uncertainty measures. In particular, we introduce a RNN
model within a fully Bayesian framework that accounts for uncertainty in both parameters and
data in a rigorous fashion. Furthermore, the data generating process and associated error process
(e.g., measurement error) are rarely accounted for in the RNN literature. Accounting for these errors is
often critical in the spatio-temporal literature, see [10]. The proposed Bayesian framework allows one
to take advantage of the forecasting ability of the RNN model while also rigorously accounting for
both the data generating process and other error processes associated with the data.

The application of MCMC methods to neural networks dates back to the seminal work of [22].
Since the work of [22] there have been limited attempts to use Bayesian MCMC methods with other
neural network type models (e.g., RNNs, LSTMs). While others have used Bayesian modeling within
the RNN framework, e.g., [23–25], to our knowledge this is the first fully Bayesian RNN trained with
traditional Markov Chain Monte Carlo (MCMC) methods. The additional transition parameters in
an RNN (see Section 2.1) introduce an extra layer of dependence, and thus sampling difficulties, that
require advanced sampling techniques beyond what is presented in previous works such as [22].
Additionally, the gradient based nature of many previous Bayesian sampling methods for traditional
neural networks, e.g., [22], require additional modifications to deal with the “vanishing gradient”
problem discussed above. To assist with this problem we introduce additional expansion parameters
within a traditional MCMC framework to help break some of this dependence between parameters.

By using MCMC methods, the proposed model and algorithm can more accurately measure
uncertainty compared to traditional optimization methods or variational Bayesian methods. Although
Bayesian methods such as stochastic gradient MCMC (SG-MCMC) have recently shown promise as an
estimation tool for high-dimensional RNNs, i.e., [25], these stochastic gradient algorithms typically
require the partitioning of the data to create so-called mini-batches. Spatio-temporal models often
involve explicit dependencies between data points in space and/or time along with hierarchical
relationships. Therefore, it may be difficult or impossible to partition the data in this way (especially
when considering spatial dependence), which may make such stochastic algorithms prohibitive for
spatial-temporal problems that are considered within a rigorous statistical framework.

We introduce multiple extensions to the traditional RNN model at both the data and latent stage
of the model, with the dual aim of facilitating estimation and improving the forecasting ability of the
model. The proposed extensions incorporate mechanisms from both the ESN and dynamical systems
literature. Furthermore, we regularize the parameters in the model by proposing priors that help
mitigate over-parameterization, inspired by traditional ESN models. Similar to traditional RNNs,
fitting an RNN within a fully Bayesian framework presents a multitude of computational issues.
To assist with computation, we propose using dimension reduction to deal with high-dimensional
spatial-temporal processes. In addition, within a MCMC paradigm, we borrow the idea of including
expansion parameters in the model from the data augmentation literature, e.g., [26–28], to assist with
sampling the highly dependent parameters that make up an RNN.

Section 2 describes the proposed Bayesian spatio-temporal RNN model, along with various
modeling details. Next, Section 3 goes through the specifics of the MCMC algorithm developed to
implement the model. In the beginning of Section 4 the choices made for the setup of the model
are described in detail. Section 4 continues with a simulated multiscale Lorenz dynamical system
example, followed by a long-lead sea surface temperature (SST) forecasting problem and a United
States (U.S.) state-level unemployment rate application. Finally, we end with a concluding discussion
on the approach, along with possible future extensions in Section 5.

Entropy 2019, 21, 184 4 of 26

2. Spatio-Temporal Recurrent Neural Network

2.1. Traditional Recurrent Neural Network

Suppose we are interested in the ny-dimensional spatial-temporal response vector Yt at time t with
corresponding input vector xt of dimension nx, with one being the first element of xt corresponding
to an intercept term (or bias term). Then, the traditional RNN model for multivariate data, e.g., [29],
is defined as follows for t = 1, . . . , T:

data stage: Yt = g(Vht), (1)

hidden stage: ht = gh(Wht−1 + Uxt), (2)

where ht is a nh-dimensional vector of hidden state variables, W is a square nh × nh weight matrix,
U is a nh × nx weight matrix, and V is a ny × nh weight matrix. The function g(·) is an activation
function that creates a mapping between the response and the hidden states, and gh(·) denotes the
activation function for the hidden layer. For a continuous response vector, g(·) is simply the identity
function, although this setup can also handle categorical data by allowing g(·) to be the softmax
function. Nonlinearity is induced in the RNN model through the form of gh(·), which is typically
defined to be the hyperbolic tangent function (as is assumed throughout this article).

The square weight matrix W in (2) can be thought of analogously to a transition matrix in a
typical vector autoregressive (VAR) model. That is, W models the latent dynamic connections between
the various hidden states. Thus, underlying nonlinear interactions between variables or locations
can effectively be modeled within this framework through W. Having a mechanism to capture these
interactions is often vital when modeling nonlinear spatio-temporal processes, e.g., [3]. Critically,
the hidden states extract and supply salient hidden dynamic features from the data. Ideally, the hidden
states will represent a general set of dynamical patterns from the input data, thus allowing the V
parameters to appropriately weight these patterns. While the RNN defined in (1) and (2) has shown
success at forecasting a variety of different systems, the model lacks any explicit error terms, and thus,
does not contain a mechanism to formally account for uncertainty in the data, model, or parameters.

2.2. Bayesian Spatio-Temporal Recurrent Neural Network

In this section we introduce the Bayesian spatio-temporal RNN, referred to hereafter as the
BAST-RNN model. Borrowing the notation introduced in the previous section, the BAST-RNN model
is defined as follows:

data stage: Yt = µ + V1ht + V2h2
t + εt, εt ∼ Gau(0, R), (3)

hidden stage: ht = gh(
δ

|λw|
Wht−1 + Ux̃t), (4)

where µ is a ny-dimensional spatial intercept vector, V1 and V2 are each ny× nh output weight matrices,
and the initial hidden state is set such that h0 ≡ 0. Here, we assume that R ≡ σ2

ε I, but note that when
necessary, additional temporal or spatial structure can be modeled through the covariance matrix R
(such an additional structure is not needed for the applications presented here). The hidden state
parameter, λw, represents the largest eigenvalue of the matrix W and δ is a scaling parameter with
a Unif(0, 1) prior. By dividing W by |λw| and restricting δ, we ensure the spectral radius of W is at
most one. When the spectral radius of W exceeds one, the model may exhibit unstable behavior [19],
and restricting the spectral radius in this fashion is common in the ESN literature, since W is not
estimated in the ESN model. We should note that this scaling does not guarantee stationarity. We find
that including δ in the model provides extra flexibility while providing stability for the hidden states.
It is important to note that given the parameters δ, W,U, the initial condition h0, and input vectors, x̃t

(see below), the hidden states are known and thus, do not need to be directly estimated. A so-called
“leaking-rate” parameter is often included in the ESN framework when defining (4). Similar to [20],

Entropy 2019, 21, 184 5 of 26

we did not find this additional parameter useful for spatio-temporal forecasting, and therefore omitted
it from the BAST-RNN model specification.

Along with scaling W, we also extend the traditional RNN model by allowing for additional
nonlinearity in (3) through h2

t ≡ (h2
t,1, . . . , h2

t,nh
)′. By including a nonlinear mapping between the

response and ht, the proposed model can capture more nonlinear behavior and accommodate more
extreme responses, see [20]. This nonlinear transformation of the hidden states provides additional
useful covariates (and thus patterns) for predicting the process of interest. It may also be useful to
include higher order interactions between the ht’s, although such interactions are not helpful for
the applications described below. The major difference between the BAST-RNN and an ESN model
(for example, the similar ESN model presented in [20]) concerns the estimation of the hidden states
that make up the BAST-RNN. Using both input and output information, within a Bayesian framework,
to estimate these parameters, the BAST-RNN requires far fewer hidden states (i.e., nh) than a typical
ESN model.

We borrow the idea of embedding the input from the dynamical systems literature as introduced
by [30], to define the input vector in (4) as:

x̃t
′ = {x′t, x′t−τ̃ , . . . , x′t−mτ̃}′, (5)

where τ̃ is usually referred to as the “embedding lag” and m the “embedding length”, thus leading to
a (m + 1)nx + 1 dimensional input vector (assuming the first element of x̃t

′ corresponds to an intercept
term). By embedding the process of interest, the proposed model utilizes all of the recent trajectory of
the system, opposed to a single instance in time. Other statistical nonlinear spatio-temporal forecasting
methods, e.g., [8,20], have shown that embedding the process of interest can lead to more accurate
forecasts and quantifiably better uncertainty measures.

2.3. BAST-RNN Prior Distributions

The presented BAST-RNN model is comprised of multiple high-dimensional parameter weight
matrices, resulting in an over-parameterized model. This problem is not unique to the BAST-RNN,
and is often a criticism of RNNs and feed-forward neural networks in general. Due to the
prevalence of this over-parameterization problem, many solutions have been proposed in the machine
learning literature. All of the applications presented below contain training datasets that would be
considered small in terms of number of samples compared to traditional machine learning problems.
Issues concerning over-fitting can be exacerbated when dealing with training sets that contain a small
number of samples. It is not uncommon to have such examples in the spatio-temporal literature. Thus,
properly addressing issues related to over-fitting is vital to the success of the proposed methodology.

More recently, a method known as dropout [31,32] has shown promise as a tool to deal with
over-parameterized weight matrices, thereby helping to prevent over-fitting. In essence, dropout
creates a type of “hard” regularization by removing entire hidden units (and therefore weight parameters)
during training. Similarly, ESN models deal with over-parameterized weight matrices by randomly
setting a large percentage of parameters in the weight matrices to zero and then drawing the remaining
parameters from a bounded or constrained distribution, see [20]. These are just two of the many
proposed solutions for regularizing the over-parameterized weight matrices that make up neural
network models. For statistical models, addressing this problem is similarly vital to help prevent
over-fitting. Therefore, we propose regularization priors for the BAST-RNN model (see below) that
borrow ideas from both the dropout and ESN method of regularization in a rigorous fashion.

Allowing for many possible sparse networks is a strength of both the dropout and ESN regularization
methods. As discussed throughout the Bayesian machine learning literature, e.g., [25,33], the natural
modeling averaging implicit in the fully Bayesian paradigm acts in a similar way to produce a model
averaging effect across many potential networks. Generally in a Bayesian framework, model averaging
is induced by using one of the many available priors in the Bayesian variable selection literature,

Entropy 2019, 21, 184 6 of 26

see [34] for an overview. For example, stochastic search variable selection (SSVS) priors [35] represent
an effective tool for shrinking parameter values infinitesimally close to zero. In general, SSVS priors
consist of a mixture of two distributions, in which one of the distributions shrinks the parameter value
near (or to) zero, while the other distribution in the mixture is more vague and allows the parameter to
be non-zero.

Although the traditional SSVS prior uses Gaussian distributions, i.e., [36] for the weight matrices
W and U, we replace these Gaussian distributions with a truncated normal to create a “hard” constraint
(see (6) and (7) below). As has been previously noted in the Bayesian neural network literature, i.e., [37],
the parameters at the top level of the model (i.e., V1ht and V2h2

t for the BAST-RNN model in (3))
are not identifiable. By using truncated normal distributions, we are in some sense constraining
the contribution of each weight matrix W and U towards the ht’s. While helping to partly alleviate
this identifiability problem, we also find that using truncated normals helps improve mixing when
performing MCMC estimation. Finally, as discussed in [37], this non-identifiability is not an issue
when parameters are given proper priors and interest is only in prediction, as is the case here.

Using the SSVS framework described above, each element of the weight matrix W = {wi,`},
for i = 1, . . . , nh and ` = 1, . . . , nh, is given the following prior distribution:

wi,` = γw
i,`TN[−aw ,aw](0, σ2

w,0) + (1− γw
i,`)TN[−aw ,aw](0, σ2

w,1), (6)

where σ2
w,0 � σ2

w,1 and the notation TN[−aw ,aw] denotes a truncated normal distribution, truncated
between −aw and aw. Moreover, γw

i,` represents an indicator variable with prior, γw
i,` ∼ Bernoulli(πw),

such that πw can be thought of as the prior probability of including wi,` in the model. An analogous
prior is used for each element of U = {ui,r} for r = 1, . . . , (m + 1)nx + 1, such that:

ui,r = γu
i,rTN[−au ,au](0, σ2

u,0) + (1− γu
i,r)TN[−au ,au](0, σ2

u,1), (7)

where γu
i,r ∼ Bernoulli(πu) and σ2

u,0 � σ2
u,1. As described in Section 4.2, both hyper-parameters πw

and πu are set to small values in order to regularize many of the parameters in the model (since σ2
w,1

and σ2
u,1 are set to very small values, as detailed in Appendix A). The priors defined in (6) and (7) mimic

aspects of the regularization produced from using dropout or the ESN model by similarly removing or
(nearly) zeroing out many of the model parameters, but in a more formal framework. While developing
the proposed model we also considered other popular Bayesian variable selection priors such as the
Lasso prior [38] and the horseshoe prior [39]. We found the proposed SSVS priors provided the most
flexibility with our approach and provided a similar mechanism as the dropout method in helping
to prevent over-fitting. Note, there are many other variations of the original SSVS prior, such as the
spike-and-slab LASSO [40], that could also be utilized within the presented methodology.

Next, the parameters matrices V1 and V2 are given traditional SSVS priors with Gaussian
distributions (see Appendix A for the full details). Although a L2 (ridge) penalty is typically used for
estimating the V matrices in the ESN model, we found this penalty to be less flexible. To finish the
specification of the model, the spatial intercept is given the Gaussian prior, µ ∼ Gau(0, σ2

µI), and the
variance parameter σ2

ε is given the inverse-gamma prior, σ2
ε ∼ IG(αε, βε). See Appendix A for the

specific values of the presented hyper-parameters and Section 4.2 for a further discussion on certain
hyper-parameter choices.

2.4. Dimension Reduction

With the rise of machine learning and high-dimensional methods has come the increase in size of
spatio-temporal data sets. In most cases, this increase in size can be attributed to the number of spatial
locations (or grid-points) in a given data set, rather than the number of time points. When ny or nx

(or both) is large, the BAST-RNN model can quickly become computationally prohibitive. For example,
with more locations, each step of the MCMC algorithm (in particular, Metropolis-Hastings steps) will
become more computationally costly. Secondly, with more locations it may be necessary to increase

Entropy 2019, 21, 184 7 of 26

the value of nh, thus increasing the size of all the weight parameter matrices in the model. A common
solution to this problem in the spatio-temporal dynamical modeling literature is to use some form of
dimension reduction, i.e., [10]. This is primarily because there is a great deal of dependence in the
spatial dimension and the underlying dynamics live on a much lower dimensional manifold than the
dimension of the spatial data. It is common then that a first encoding step is conducted to project the
spatio-temporal data into lower dimensional space, and then the complex dynamics are modeled from
this lower dimensional space.

There is a great deal of flexibility when selecting a dimension reduction method for high-dimensional
spatio-temporal processes. Depending on the application, any number of methods can be selected
from linear methods such as wavelets, splines, or principal components, or nonlinear methods such as
Laplacian eigenmaps [41], restricted Boltzmann machines [42], or diffusion maps [43], just to name
a few. To describe how dimension reduction can be used with the BAST-RNN model, suppose we
let Zt be a nz-dimensional observed response vector at time t. Then, for linear dimension reduction,
Zt can be decomposed such that Zt ≈ ΦYt, where Φ is a nz × nb basis function matrix and Yt

is a nb-dimensional vector of basis coefficients. Importantly, we assume that nb � nz, thus, Yt

provides a lower-dimensional set of variables (expansion coefficients) with which our model can be
built. For example, the proposed BAST-RNN model can be re-formulated using the basis coefficients
as follows:

data model: Zt = ΦYt + νt νt ∼ Gau(0, Σν), (8)

process model: Yt = µ + V1ht + V2h2
t + εt εt ∼ Gau(0, R, (9)

where the error term νt helps account for the truncation error caused by using a reduced dimension.
For some applications it may be more important than others to include the error term (i.e., νt) in
(8). Although the forecasting applications examined below do not include this truncation error term,
the proposed framework allows for the potential to account for such uncertainty.

3. Computation: Parameter Expansion MCMC

Similar to non-Bayesian RNN estimation, the nonlinearity and dependence structures in the
BAST-RNN model present unique estimation and computational challenges. Both the W and U weight
matrices in the BAST-RNN model are particularly difficult to estimate due to the fact that both are
within the nonlinear activation function, along with the many dependencies that exist between these
two matrices. This dependence occurs since, given the embedded input (x̃t above) and δ, the hidden
states in (4) are completely determined by W and U. Thus, as W and U change, so do the values of the
hidden states. Importantly, since W weights the hidden states, the parameter values of W are highly
dependent on the specific values of the hidden states and by proxy, the values of U.

Parameter expansion data augmentation (PXDA), e.g., [26–28], is a method developed for missing
data problems in which mixing for MCMC algorithms is difficult due to dependencies between
parameters. While the parameter expansion in the PXDA algorithm is generally applied to missing
data, we borrow the parameter expansion idea and apply it to the sampling of the W matrix (we did
not find it necessary to use this same technique on the U matrix), since W directly weights the hidden
states. In essence, parameter expansion MCMC (PX-MCMC) introduces extra parameters (referred to
as the expansion parameters) into the model to create extra randomness. For example, suppose for a
given iteration of the MCMC algorithm we sampled W and then U. Instead of moving from W to U
(i.e., W→ U), the expanded parameter is used to create an intermediate step such that W→ W∗ → U.
That is, W∗ is a randomly transformed version of W, thus helping to break some of the dependence
between weight matrices W and U [28] (refers to this randomness as a “shake-up” of the parameters).
Without this extra randomness, samples for the weight matrices W and U quickly become degenerate.

By introducing this intermediate step, the mixing in the MCMC algorithm greatly improves for
both the W and U matrix. The amount of randomness used to transform W into W∗ can be thought

Entropy 2019, 21, 184 8 of 26

of similarly to the learning rate parameter used in traditional stochastic gradient descent (SGD) or
SG-MCMC algorithms for machine-learning problems. Typically, a learning rate parameter is used in
SGD algorithms to determine how fast or slow the weights in a given model are learned. For example,
in SG-MCMC, at each iteration when the model parameters are updated, a standard multivariate
Gaussian distribution multiplied by a learning rate parameter is added to the updated parameter
values, i.e., [25]. Analogous to the learning rate for SGD, the extra randomness induced by W∗ allows
the algorithm to better search the entire parameter space, thus improving the mixing of the algorithm.

To more rigorously describe the PX-MCMC algorithm, we need to define additional notation.
Suppose we introduce the expansion parameter matrix α, where α = {αi,`} for i = 1, . . . , nh and
` = 1, . . . , nh, and α ⊂ A, where A ∈ Rn2

h . Next, we define the transformation tα : W −→ W,
where we require tα to be a one-to-one differentiable function and denote the Jacobian for this
transformation as Jα(W). Let ΓV1 , ΓV2 , ΓU , and ΓW denote all of the indicator variables for the SSVS
priors corresponding to the respective weight matrices in (3) and (4). We define Θ to be all of
the parameters in the model not associated with W; that is, Θ ≡ {µ, V1, V2, ΓV1 , ΓV2 , U, ΓU , δ, σ2

ε }.
Furthermore, let Y1:T ≡ {Y1, . . . , YT} and x̃1:T ≡ {x̃1, . . . , x̃T}. Finally, we define the likelihood of the
model (before the introduction of the expansion parameter matrix α) using the following slight abuse

of notation
T
∏

t=1
[Yt | Θ, W, ΓW , x̃t] = [Y1:T | Θ, W, ΓW , x̃1:T], where [·] denotes a distribution.

Now, we outline the PX-MCMC for the BAST-RNN model; note, we leave the detailed description
of the presented algorithm for Appendix B. Using the notation defined above, one can show
(see Appendix B) the following relationship for the joint posterior of W and ΓW :

[W, ΓW | Θ, Y1:T , x̃1:T] =
∫

A
[tα(W), ΓW | Θ, Y1:T , x̃1:T] |Jα(W)| [α] dα. (10)

To sample from the integral in (10), we assume W′, ΓW ∼ [tα(W), ΓW | Θ, Y1:T , x̃1:T]. We will take
W = t−1

α (W′), thus allowing for the joint sampling of W and ΓW , leading to Step 1 in Algorithm 1.
Next, the draw from [α] is denoted as α0, thus Step 2 in Algorithm 1.

Algorithm 1 PX-MCMC algorithm.

1. Sample W, ΓW from: [W, ΓW | Θ, Y1:T , x̃1:T] ∝

[Y1:T | Θ, W, ΓW , x̃1:T] [W | ΓW] [ΓW].
2. Generate α0,i,` ∼ Gau(0, σ2

α) for i = 1, . . . , nh and ` = 1, . . . , nh.

3. Transform W̃ = t−1
α0

(W).

4. Sample α from: [α | tα(W̃), ΓW , Θ, Y1:T , x̃1:T] ∝

[Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [tα(W̃) | ΓW , α] [α] |Jα(W̃)|.
5. Sample Θ from: [Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ].

We assume α ∼ Gau(0, σ2
α I) for the BAST-RNN model implementation, where the prior variance

σ2
α can be thought of as analogous to the learning rate parameter used in many machine learning

estimation algorithms. There is a great deal of flexibility with regards to the particular distribution
used for [α], i.e., [28], and its choice should depend on the particular model and application.
Letting W̃ ≡ t−1

α0
(W), we can sample α and Θ using the following full-conditional distributions

(see Appendix B for further details):

[α | tα(W̃), ΓW , Θ, Y1:T , , x̃1:T] ∝

[Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T][tα(W̃) | ΓW , α] [α] |Jα(W̃)|, (11)

[Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ]. (12)

Entropy 2019, 21, 184 9 of 26

Taking the previous three equations together, we can form the PX-MCMC algorithm given in
Algorithm 1. For the sake of brevity, we leave the specific full-conditional distributions for all the
model parameters for Appendix C.

4. Applications

We begin by discussing the specifics of model implementation, including comparison metrics
and methods, the MCMC setup, and specific hyper-parameter choices. We then present the analysis
of a simulated multiscale Lorenz data set from the Lorenz dynamical system. In addition, the setup
and results of a Pacific SST long-lead forecasting problem are given, followed by an application to
state-level unemployment data in the U.S.

4.1. Validation Measures and Alternative Models

Since the stated goal of developing the BAST-RNN model is to produce accurate forecasts with
realistic uncertainty bounds, we evaluate the model in terms of both mean squared prediction error
(MSPE) and continuous ranked probability score (CRPS). Both measures are only calculated for
out-of-sample values, since the focus of the model is on forecasting. For our purposes, the MSPE is
defined as the average squared difference between the out-of-sample forecasts and true out-of-sample
values across all time periods and spatial locations. Moreover, for a predictive CDF F and true
out-of-sample realization h, CRPS is defined as e.g., [44]:

CRPS(F, h) =
∫
R
(F(r)− 1{r ≥ h})2dr. (13)

The usefulness of CRPS lies in its ability to both quantify the accuracy and distribution of a
forecast, thus producing a principled (proper scoring rule) measure of how well a model quantifies
uncertainty, i.e., [45]. In all the applications presented below, after the model is trained on in-sample
data, out-of-sample forecasts are generated successively at the given lead time. We define lead time
as the temporal difference between the input and the response. These successive forecasts are made
by repeatedly plugging in the inputs for a given lead time to get out-of-sample forecasts, using the
posterior samples from the BAST-RNN.

For the sake of comparison, we also evaluated the ensemble quadratic ESN (E-QESN) model
from [20] for all of the applications below. The E-QESN model presents a strong comparison model
since it can also quantify uncertainty and shares much of the same flexibility as the BAST-RNN model.
Few other methods share the E-QESN’s ability to produce forecasts with uncertainty quantification
at such a low computational and implementation cost. Unlike the BAST-RNN, the E-QESN is not
presented within a Bayesian framework and thus produces less theoretical sound uncertainty estimates.

We also compared to a model referred to as the linear DSTM, e.g., [10] (Chapter 7), defined here as:

Yt,i =
ny

∑
j=1

aijYt−1,j + ζ
(l)
t,i , (14)

for each location Yt,i, where {ai,j} are weight parameters and ζ
(l)
t,i is a spatially referenced noise term,

such that ζ
(l)
t ∼ Gau(0, Σζl). Finally, we compared to the GQN model discussed above [7]. For the

results presented below, the GQN model is defined as:

Yt,i =
ny

∑
j=1

aijYt−1,j +
ny

∑
k=1

ny

∑
`=1

bi,k,`Yt−1,kYt−1,` + ζ
(q)
t,i , (15)

where ζ
(q)
t ∼ Gau(0, Σζq). Both Σζl and Σζq are estimated empirically using the residuals from the

training period. Although both the GQN and linear DSTM can be formulated as Bayesian models,

Entropy 2019, 21, 184 10 of 26

such formulations are not pursued here. Instead, forecast distributions are calculated through a
Monte Carlo approach for both models. While this is not an exhaustive list of comparison methods,
these methods represent much of the state-of-the art in statistical spatial-temporal modeling and
nonlinear spatial-temporal forecasting. Note, although not pursued here, there are many other
spatio-temporal nonlinear models from the applied mathematical literature that could also be applied
to the applications presented here, such as the stochastic mode reduction models of [46] and the
empirical model reduction methods from [47].

4.2. BAST-RNN Implementation Details

Note, the implementation settings discussed here are used for all of the presented applications,
with slight deviations for specific applications as discussed below. The BAST-RNN model is
implemented using the PX-MCMC algorithm (Algorithm 1), sampling 100,000 iterations with the first
25,000 iterations treated as burn-in, while thinning the samples such that every fifth post burn-in
sample was retained. We monitored convergence by examining the trace plots for the parameters in
the model along with the posterior forecasts (a sample of such trace plots can be found in Appendix D).
The number of hidden units (nh) is set to 20. We found this number of hidden units balanced
computational cost and forecast accuracy in that larger numbers of hidden units produced similar
results in terms of forecast accuracy, but substantially slowed the algorithm. Although not pursued
here, the number of hidden units could be varied by using advanced computational methods such
as reversible jump MCMC [48]. Selection of the parameters for the embedded input, defined in (5),
is conducted by using cross-validation, over an application specific grid with the E-QESN model,
see ([20], for a detailed description of this procedure). As suggested by [49], both the input and
response are scaled by their respective means and standard deviations.

While we leave the specific hyper-parameter values used in the prior distributions to Appendix A,
we will briefly discuss these choices. Specifically for the parameter weight matrices that make up the
hidden units (i.e., W and U), the hyper-parameters πw and πu (as defined in Section 2.3) are set to small
values to encourage sparseness and prevent overfitting. In particular, these hyper-parameters are set
such that πw > πu, since the matrix U is weighting the data; we found this specification helped prevent
overfitting to the in-sample data. Moreover, aw and au are both set to small values so that aw = au,
as to follow the common practice in machine learning of bounding parameter values to prevent
particular hidden states (and by proxy particular in-sample patterns) from dominating, and thus, avoid
overfitting. As discussed in [49], when parameter values are unbounded in the RNN framework the
hidden states become extremely nonlinear to the point that the results can become unstable.

4.3. Simulation: Multiscale Lorenz-96 Model

Many RNN methods in the literature use the classic three-variable Lorenz model from [50] to
evaluate forecasting ability, e.g., [51,52]. Due to the chaotic and nonlinear behavior of the Lorenz
model, this system produces data resembling a realistic nonlinear forecasting problem, but it has
an unrealistically low state dimension (three) and is not spatially referenced. Here, evaluation of
the BAST-RNN model is applied to a less cited, but more spatially interesting Lorenz model [53],
often referred to as the Lorenz-96 model, which explicitly includes spatial locations and structure.
In particular, we consider a more complicated extension of the Lorenz-96 model, the multiscale Lorenz-96
model, that contains interacting large-scale and small-scale processes, where the large-scale locations
are directly influenced by neighboring small-scale locations and vice-versa, e.g., [54–56].

While multiple parameterizations exist for the multiscale Lorenz-96 model, we use the following
parameterization from [55] (note, the superscript L is used throughout to signify variables from the
Lorenz-96 model):

Entropy 2019, 21, 184 11 of 26

dxL
kL

dt
= xL

kL−1(xL
kL+1 − xL

kL−2)− xL
kL
+ F̃ +

hx

JL
∑
jL

yL
jL ,kL

+ η
(1)
kL

,

dyL
jL ,kL

dt
=

1
εL

[yL
jL+1,kL

(yL
jL−1,kL

− yL
jL+2,kL

)− yL
jL ,kL

+ hyxL
kL
], (16)

for jL = 1, . . . , JL and kL = 1, . . . , KL (for notational convenience the subscript t has been suppressed
from (16)). The state variable xL

kL
denotes the process at a large-scale process location, with each

large-scale location having JL corresponding small-scale locations denoted by the process yL
jL ,kL

. Each of
the large-scale locations can be thought of as equally spaced spatial variables on a one-dimensional
circular spatial domain such that xL

KL+1 = xL
1 (i.e., periodic boundary conditions). A given set of

small-scale locations corresponding to a particular large-scale location is defined with a similar spatial
domain and boundary condition.

The parameter F̃ in (16) denotes a forcing parameter, while εL controls the time-scale separation
between the large and small-scale processes, η

(1)
kL

is an additive independent Gaussian noise term

such that η
(1)
kL

iid∼ Gau(0, σ2
η1
), with σ2

η1
= 1, and hx, hy control how much the large and small-scale

locations influence each other, respectively. For the analysis using the BAST-RNN model, we simulate
from the full model but treat the small-scale locations as unobserved and evaluate the BAST-RNN
only on the large-scale locations, thus creating a difficult but realistic nonlinear spatio-temporal
forecasting problem. After burn-in, 400 time periods are retained from the the multiscale Lorenz-96
model, with the last 75 time periods treated as out-of-sample. The data are simulated with a time
step of ∆ = 0.05 using an Euler solver. We use the same parameter values as [55] to simulate the data:
KL = 18, JL = 20, F̃ = 10, εL = 0.5, hx = −1, and hy = 1. In order to create a more statistically-oriented
forecasting problem, Gaussian white noise error is added to each large-scale realization, so that

zL
kL

= xL
kL
+ η

(2)
kL

, where η
(2)
kL

iid∼ Gau(0, σ2
η2
), with σ2

η2
= (2.5)2. In addition, the forecasting problem is

made slightly more nonlinear by setting the lead time to three periods (i.e., the input and response
are separated by three periods). Along with using the implementation settings detailed in Section 4.2,
the embedded input parameters τ̃ = 2 and m = 4 are used.

Posterior mean forecasts and prediction intervals (P.I.s) for the BAST-RNN model with the
multiscale Lorenz-96 data are shown for six locations in Figure 1. Note that because a low
signal-to-noise ratio was used to simulate the data, the true signal is substantially corrupted by
the additive noise (as shown by the blue dotted line used to represent the true signal of the process in
Figure 1). Despite the high level of noise, the model recovers much of the signal for the six locations
shown in Figure 1. Moreover, it appears that many of the true values of the process are captured by
the 95% P.I.s. Across all 18 large-scale locations in the simulated data, 91.9% of the true values are
contained within the 95% P.I.s, while only 72.8% of the true values are contained within the intervals
produced by the E-QESN model.

A more detailed comparison of the BAST-RNN model and the three models described in Section 4.1
can be found in Table 1. In particular, Table 1 shows the BAST-RNN outperforming the other three
competing models by producing lower values for the MSPE. It is not entirely surprising that the
BAST-RNN and E-QESN model outperformed the other two less flexible models considering the level
of nonlinearity in the simulated data. The different methods of estimating the hidden state parameters
may account for the BAST-RNN outperforming the E-QESN in terms of MSPE. In addition, compared
to the E-QESN model, Table 1 also shows the BAST-RNN model produces superior uncertainty
measures based on a lower CRPS. Overall, these results simultaneously demonstrate the ability of the
BAST-RNN model to accurately forecast the trajectory of the states in a nonlinear process, while also
giving robust measures of uncertainty.

Entropy 2019, 21, 184 12 of 26

Figure 1. Posterior out-of-sample summaries for six of the 18 large-scale locations from the simulated
multiscale Lorenz-96 data over 75 periods. The black line in each plot represents the true simulated
value (data), while the red line denotes the forecasted posterior mean from the BAST-RNN model.
The blue dashed line denotes the true signal of the process, defined to be the value of the large-scale
locations in Equation (16) before the additive error, Gau(0, σ2

η1
), is applied. The shaded grey area in

each plot signifies the 95% posterior prediction intervals. The dotted green line denotes a persistence
forecast (i.e., Ŷi,t+τ = Yi,t).

Table 1. Comparison of the four forecasting methods for the simulated multiscale Lorenz-96 data in
terms of mean squared prediction error (MSPE) and continuous ranked probability score (CRPS), with
a lead time of three periods. Both metrics are calculated over all out-sample periods and locations.

Model MSPE CRPS

BAST-RNN 13.08 154.37
E-QESN 13.91 168.61

GQN 14.85 172.50
Lin. DSTM 15.11 166.60

4.4. Application: Long-Lead Tropical Pacific SST Forecasting

Tropical Pacific SST is one of the largest sources of variability affecting global climate, e.g., see the
overview in [57]. Changes in SST at various time-scales contribute to extreme weather events across
the globe, from hurricanes to severe droughts, as well as related impacts (e.g., waterfowl migration).
Therefore, accurate long-lead SST forecasts are vital for many resource managers. Of particular interest
when considering SST is the anomalous warming (El Niño) and cooling (La Niña) of the Pacific ocean,
referred to collectively as the El Niño Southern Oscillation (ENSO) phenomena.

The focus of our analysis is on the ENSO phenomena that occurred during 2015 and 2016.
Besides being one of the most extreme ENSO events on record, many forecasting methods that
were effective for past ENSO cycles failed to accurately forecast the 2015–2016 cycle, i.e., [57,58].
As described in [59], there are currently a suite of both deterministic and statistical methods for
forecasting SST, with the statistical models often performing as well or better than the deterministic

Entropy 2019, 21, 184 13 of 26

models. A summary of the deterministic models used to forecast SST can be found in works such as [60]
and [61]. Some nonlinear statistical models that have shown success for the ENSO forecasting problem
include a general quadratic nonlinear (GQN) model, i.e., [7], a switching Markov model [4], and classic
neural network models, i.e., [62]; for a more expansive list of nonlinear SST models see [20]. It is
important to note that to our knowledge, this is the first RNN method applied to the ENSO forecasting
problem with a formal mechanism for quantifying uncertainty. Furthermore, the BAST-RNN model
is used to produce out-of-sample forecasts and P.I.s with a lead time of six months for the 2015–2016
ENSO cycle. Due to the lead time and intensity of the 2015–2016 ENSO cycle, this presents a difficult
nonlinear forecasting problem.

The SST forecasting application uses monthly data over a spatial domain covering 29◦ S–29◦ N
latitude and 124◦ E–70◦ W longitude, with a resolution of 2◦ × 2◦, leading to 2229 oceanic spatial
locations. The data set is available from the publicly available extended reconstruction sea
surface temperature (ERSST) data (http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/) provided by
National Ocean and Atmospheric Administration (NOAA) and covers a period from 1970 through 2016.
As is common in the climatology literature, the SST data are converted into anomalies by subtracting
the monthly climatological means calculated (in this case) over the period 1981–2010, for each spatial
location. Furthermore, when constructing ENSO forecasting methods, it is common to evaluate the
performance of a given method using the univariate summary measure for ENSO referred to as the
Niño 3.4 index. Much of the variability in the ENSO phenomena is contained in the Niño 3.4 region
(i.e., 5◦ S–5◦ N, 120◦–70◦ W), so for our purposes, the Niño 3.4 index is simply the average SST anomaly
over all locations in this region for a given month (see Figure 3).

Training of the model is implemented using Algorithm 1 and the setup from Section 4.2 with
data from January 1970–August 2014, while out-of-sample forecasts were made every two months
for a period from February 2015–December 2016 (i.e., the 2015–2016 ENSO cycle) with a lead time of
six months. Using the description in Section 2.4, dimension reduction is conducted using empirical
orthogonal functions (EOFs), also referred to as spatial-temporal principal components, see Chapter 5
of [10], on both the input and response. The first 10 EOFs, which account for over 80% of the variability
in the data, are retained for both the input and response. This same number of EOFs has been used
in multiple previous SST studies, i.e., [4,63]. Note, the first two EOFs account for almost 57% of the
variation in the data. Due to this, some of the variables associated with these EOFs were given higher
values for πu (see Appendix A for the specific values and a more detailed discussion of these choices).
Once again, the embedded input parameters are selected using the E-QESN model such that τ̃ = 6
and m = 4.

Comparison of the forecasting ability of the BAST-RNN model and the E-QESN model for the
entire spatial domain can be seen in Figure 2 for October 2015. Occurring directly before the peak
of the 2015–2016 ENSO cycle (see Figure 3), October 2015 represents an important month from the
most recent ENSO cycle. Overall, both methods capture much of the warm intensity trend, with the
BAST-RNN model forecasting a slightly higher intensity (especially for the Niño 3.4 region) compared
to the E-QESN method. Although both methods appear to produce P.I.s with similar upper bounds,
the P.I’s for the BAST-RNN are narrower, suggesting the model is more confident in its prediction of a
warm period. Importantly, the highest intensity true values from the Niño 3.4 region for October 2015
are contained within the 95% P.I.s for the BAST-RNN model.

Furthermore, the BAST-RNN model is evaluated in terms of the previously described Niño 3.4
index in Figure 3. Much of the overall temporal nonlinear trend of the 2015–2016 ENSO cycle is
captured by the BAST-RNN model, as shown in Figure 3, with nearly all of the true values contained
within the 95% P.I.s. We should note, like the vast majority of ENSO forecasting models, the forecast
mean from the BAST-RNN model also underestimates the peak of the ENSO cycle. Considering the
2015–2016 ENSO cycle was one of the most extreme ENSO cycles of recent record, i.e., [58], it is not
entirely surprising that most models underestimated the peak of the cycle. However, it is important to

http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/

Entropy 2019, 21, 184 14 of 26

reiterate that the out-of-sample forecast P.I.s for the BAST-RNN model still suggested the possibility of
a large warming event during the true peak, unlike many other ENSO forecast models.

150 200 250

-2
0

-1
0

0
1

0
2

0

(a) SST Observations: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(a) SST Observations: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(b) BAST-RNN Forecast Mean: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(b) E-QESN Forecast Mean: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)
-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(c) BAST-RNN Forecast 2.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(c) E-QESN Forecast 2.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(d) BAST-RNN Forecast 97.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(d) E-QESN Forecast 97.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Figure 2. Spatial posterior summaries of sea surface temperature (SST) anomalies for all 2229 oceanic
spatial locations in the SST long-lead forecasting application for October 2015. The left column shows
results from the BAST-RNN model, while the right column contains results from the competing E-QESN
model for the same period. (a) The true SST for October 2015. (b) Posterior mean out-of-sample forecasts
for the BAST-RNN model and mean out-of-sample forecasts over all ensembles for the E-QESN model.
(c) Lower 2.5% point wise P.I.s for the respective forecasting method. (d) Upper 97.5% point wise P.I.s
for the respective forecasting method. All plots are in units of degree Celsius.

Entropy 2019, 21, 184 15 of 26

Figure 3. Summary of the posterior results with the BAST-RNN model for the Niño 3.4 index. For a
given month, the Niño 3.4 index is defined as the average SST over all locations in the Niño 3.4 region
(5◦ S–5◦ N, 120◦–70◦ W). The solid black lines denotes the true Niño 3.4 index for a given month during
the 2015–2016 cycle. Posterior mean out-of-sample forecasts from the BAST-RNN model are denoted by
the light blue line. The grey shaded area represents the 95% P.I.s from the BAST-RNN for the Niño 3.4
index. All values are given in units of degree Celsius.

Once again we evaluate the performance of the BAST-RNN against the three comparison models
described above. Throughout the 2015–2016 ENSO cycle, Table 2 shows the BAST-RNN as a more
accurate long-lead forecasting model than the other three models. The BAST-RNN model greatly
outperforms the other models over the Niño 3.4 region, illustrating the model’s ability to forecast
nonlinear dynamics. Moreover, Table 2 also shows the BAST-RNN model has the lowest CRPS
over all 2229 locations in the application, thus providing useful uncertainty information across the
entire spatial domain. By producing sensible uncertainty metrics for events six months into the
future, the BAST-RNN model gives resource managers advanced information on which informed
decisions can be made. Considering the widespread impact SST has on the global climate, such reliable
information is invaluable from both a scientific and economical perspective.

Table 2. Summary metrics for each of the four methods evaluated for the long-lead SST forecasting
application. Overall, MSPE denotes the MSPE calculated over all out-of-sample periods and all oceanic
locations. The column labeled CRPS denotes the CRPS calculated over all locations and out-of-sample
time periods. The columns Niño 3.4 MSPE and Niño 3.4 CRPS denote the MSPE and CRPS, respectively,
over all locations in the Niño 3.4 region and all out-of-sample periods.

Model Overall MSPE Niño 3.4 MSPE CRPS Niño 3.4 CRPS

BAST-RNN 0.253 0.223 3.437 0.318
E-QESN 0.272 0.319 3.455 0.408

GQN 0.309 0.619 3.924 0.538
Lin. DSTM 0.328 0.785 3.752 0.699

4.5. Application: U.S. State-Level Unemployment Rate

Finally, the BAST-RNN model was applied to forecasting state unemployment rates in the
Midwest of the U.S. Previous research by [64,65] have shown neural network models to be successful
for forecasting national unemployment. A lesser studied, but equally important, component of
unemployment forecasting is the spatio-temporal problem of forecasting state-level rates. Moreover,

Entropy 2019, 21, 184 16 of 26

while linear models have shown success at forecasting unemployment rates at short lead times,
nonlinear models generally produce more accurate results at longer lead times, i.e., [64,66].
The BAST-RNN can account for the nonlinearity present for a longer lead forecast, while also
incorporating the dependence between unemployment rates in near-by states.

Compared to the previous two applications (Lorenz system and SST), the U.S. unemployment rate
is a much slower moving process (i.e., compare Figures 3 and 4 where each displays approximately one
(quasi) cycle of the processes of interest, and note that Figure 4 covers a temporal span twice as long as
Figure 3). For example, there have been many fewer U.S. unemployment cycles over the past 40 years
compared to ENSO cycles. Due to this difference in the rate of the dynamical process, smaller values
for the hyper-parameters aw and au are used for the unemployment application (see Appendix A for
the specific values and a more detailed discussion). By using smaller values for aw and au the model
has more memory of recent past values, i.e., [19], which is necessary for slower moving processes.
Similar to the two previous applications, the embedding parameters were selected with the E-QESN
model, with the model selecting τ̃ = 0 and m = 0 (i.e., x̃t

′ = xt in (5)).

Figure 4. Posterior out-of-sample summaries and comparison methods for six of the 12 states in the
U.S. state-level unemployment application. The observed unemployment rate is represented by the
black line. The red line denotes the posterior mean from the BAST-RNN model, while the dotted blue,
green, and orange line represent the ensemble quadratic ESN (E-QESN), general quadratic nonlinear
(GQN), and Linear Dynamical spatial-temporal model (DSTM), respectively. The shaded grey area in
each plot signifies the 95% posterior prediction intervals associated with the BAST-RNN model.

Seasonally adjusted monthly unemployment data were obtained from the publicly available
Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2), for a period starting in
January 1976 for the 12 states that make up the U.S. Census Bureau’s Midwest Region [67]. The period
from December 2008 through June 2014 was designated as the out-of-sample period to evaluate the
performance of the model. This period represents the most recent unemployment cycle caused by the
Great Recession that started in 2008 and provides a nonlinear time series to assess the model. Using
a lead time of six months, each model was trained on data from January 1976 through May 2008.
The results in Table 3 show the BAST-RNN model to be a more accurate forecast model with higher
quality uncertainty measures than the three competing models. From Figure 4 it is clear that all four

http://research.stlouisfed.org/fred2

Entropy 2019, 21, 184 17 of 26

models struggle with identifying the start of the unemployment cycle in 2009, with the BAST-RNN
model generally recovering to accurately predict the states with peaks later in the cycle. Across the
six states displayed in Figure 4 (selected to represent a range of different unemployment cycles in the
region), the BAST-RNN model appears to be the most accurate in terms of forecasting the decrease in
the unemployment rate during the recovery that followed the 2008 recession.

Table 3. Comparison for the four forecasting methods for the U.S. state-level unemployment data
in terms of mean squared prediction error (MSPE) and continuous ranked probability score (CRPS),
with a lead time of six months. Both metrics are calculated over all out-of-sample periods and states.

Model MSPE CRPS

BAST-RNN 0.612 27.11
E-QESN 0.965 36.66

GQN 0.964 37.32
Lin. DSTM 0.865 33.60

5. Discussion and Conclusions

The results of all three applications presented above demonstrate the potential of using machine
learning methods within a Bayesian modeling framework for forecasting nonlinear spatio-temporal
processes. While many methods struggled with forecasting the 2015–2016 ENSO cycle, the BAST-RNN
model forecasted much of the overall cycle correctly, especially when accounting for forecast
uncertainty. Additionally, the BAST-RNN model was able to forecast the correct nonlinear trajectory
for the multiscale Lorenz data despite a considerable amount of noise. With regards to both forecast
accuracy and quantification of uncertainty, the BAST-RNN model was superior to the three competing
models, over a reasonably long out-of-sample temporal span across three different applications.

Placing popular machine learning methods, such as RNNs, within a more rigorous statistical
framework allows for more thorough uncertainty quantification, while also providing a useful
framework for building more complicated models. That is, the proposed BAST-RNN model provides a
first step towards more hierarchical machine learning methods that account for sources of variation at
multiple levels. High-dimensional real-world processes often contain multiple layers of interconnected
uncertainties and these uncertainties can more easily be untangled and formally modeled within the
proposed modeling framework. Conversely, even the most precise uncertainty quantification methods
are of diminishing value if they are not flexible enough to accurately forecast the process of interest.
Thus, by combining the forecasting ability of the RNN model with the rigor of Bayesian modeling,
the proposed methodology provides a powerful tool for modelers.

The proposed model can be used for a broad range of forecasting problems (as seen by the
variety of applications analyzed here) both in its current form and with relatively minor modifications.
For example, the model can easily be extended to account for different types of response data such
as binary or count data. Moreover, the BAST-RNN is flexible enough to deal with varying degrees
of nonlinearity, whereas past statistical nonlinear forecasting models may fail with higher levels
of nonlinearity. The applications shown above provide evidence of this flexibility with the model
producing accurate results for both quasilinear processes (SST and unemployment) and a highly
nonlinear process (Lorenz process).

Other extensions of the model include letting the parameters associated with the embedded
input and the number of hidden units vary, which could more accurately account for the uncertainty
associated with these choices. Putting the model within a fully Bayesian hierarchical framework is
another possible extension. Moreover, when adding additional hidden layers to the model it may
be necessary to incorporate more computational efficient methods to improve scalability, possibly
borrowing ideas from the ESN literature. It is also likely that other forms of dimension reduction may
be useful when considering the BAST-RNN model for other applications. In particular, incorporating
the nonlinearity or dynamics of the process explicitly in the selected dimension reduction method

Entropy 2019, 21, 184 18 of 26

could be important for some applications. For large data sets, where dimension reduction is not
appropriate, it may be necessary to combine the presented computational framework with other
computational methods such as Langevin dynamics, i.e., [68].

Author Contributions: Computational code was written by P.L.M.. Moreover, P.L.M. and C.K.W. both contributed
to the model design and manuscript preparation.

Funding: This work was partially supported by the U.S. National Science Foundation (NSF) and the U.S. Census
Bureau under NSF grant SES-1132031, funded through the NSF-Census Research Network (NCRN) program.
In addition, partial support was provided by NSF grant DMS-1811745.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Specification of Priors

Below is a list of prior distributions for all of the parameters in the BAST-RNN model, along with
specific values for each of the hyper-parameters used in the model.

Each element in the weight matrix W is given the following prior distribution:

wi,` = γw
i,`TN[−aw ,aw](0, σ2

w,0) + (1− γw
i,`)TN[−aw ,aw](0, σ2

w,1), for γw
i,` ∼ Bernoulli(πw),

where σ2
w,0 = (1, 000)2, σ2

w,1 = 0.001, aw = 0.20, and πw = 0.20.

Each element in the weight matrix U is given the following prior distribution:
ui,r = γu

i,rTN[−au ,au](0, σ2
u,0) + (1− γu

i,r)TN[−au ,au](0, σ2
u,1), for γu

i,r ∼ Bernoulli(πu),

where σ2
u,0 = (1, 000)2, σ2

u,1 = 0.0005, au = 0.20, and πu = 0.025.

Each element in the weight matrix V1 is given the following prior distribution:

v1,k,i = γv
1,k,iGau(0, σ2

v1,0) + (1− γv
1,k,i)Gau(0, σ2

v1,1), for γ1,k,i ∼ Bernoulli(πv1),

where σ2
v1,0 = 10, σ2

v1,1 = 0.01, and πv1 = 0.50.

Each element in the weight matrix V2 is given the following prior distribution:

v2,k,i = γv
2,k,iGau(0, σ2

v2,0) + (1− γv
2,k,i)Gau(0, σ2

v2,1), for γ2,k,i ∼ Bernoulli(πv2),

where σ2
v2,0 = 0.5, σ2

v2,1 = 0.05, and πv2 = 0.25.

Finally, α ∼ Gau(0, σ2
α I), where σ2

α = (.10)2, µ ∼ Gau(0, σ2
µI), where σ2

µ = 100, δ ∼ Unif(0, 1),
σ2

ε ∼ IG(αε, βε), where αε = 1 and βε = 1.

For the SST application, πu was set to 0.05 for all of the U parameters associated with the first
EOF as well as U parameters associated with non-lagged inputs corresponding to the second EOF.
Overall, the first two EOFs account for almost 57% of the variation in the SST data with the first EOF
accounting for 46% of the overall variation by itself, thus suggesting higher prior probabilities for these
inputs to be included in the model.

As discussed in the main text, the U.S. state-level unemployment application involved a much
slower moving process than the SST and Lorenz system examples. In particular, this can be seen
by comparing Figures 3 and 4, where Figure 3 displays an approximately completed ENSO cycle,
and Figure 4 shows part of an unemployment cycle, while Figure 4 covers a temporal span twice as
long as Figure 3. To account for this difference, the hyper-parameters aw and au were adjusted for the
unemployment application such that, au = 0.05 and aw = 0.05.

To justify these prior choices we simulated from (4) with different values of aw and au, while
setting the input to zero for every period after the first period. As shown in Figure A1, this procedure
allowed us to examine the memory of the hidden units for different values of aw and au. The results
in Figure A1 show that for smaller values of aw and au, the hidden units have more memory (i.e.,

Entropy 2019, 21, 184 19 of 26

the original signal dies off slowly). Therefore smaller values of aw and au are more appropriate for
the slower moving unemployment example, which requires more memory of the recent trajectory of
the process. It is important to note that the focus of Figure A1 is on how quickly the original signal is
forgotten for values of aw and au rather than on the displayed dynamical speeds.

Figure A1. Prior simulation for the unemployment application to demonstrate the difference in memory
of the hidden units, ht, for different values of aw and au. (a) The first 200 periods from a simulation
from (4) with aw = 0.05 and au = 0.05, for a fixed input. (b) The first 50 periods from a simulation
from (4) with aw = 0.20 and au = 0.20, for a fixed input. Together, (a,b) illustrate how smaller values of
aw and au are more appropriate for slower moving processes that require more memory, such as the
unemployment application.

Appendix B. Details of Algorithm 1

Suppose we introduce the expansion parameter α where α = {αi,`} for i = 1, . . . , nh and
` = 1, . . . , nh, and α ⊂ A where A ∈ Rn2

h . Define the following function tα : W −→ W, where we
require that tα is a one-to-one differentiable function. Let Θ represent all of the parameters in the model
not associated with W, such that Θ ≡ {V1, V2, µ, ΓV1 , ΓV2 , U, ΓU , δ, σ2

ε }. Next, let Y1:T ≡ {Y1, . . . , YT}
and x̃1:T ≡ {x̃1, . . . , x̃T}.

We define the likelihood of the model (before the introduction of the expansion parameter

matrix α) using the following slight abuse of notation
T
∏

t=1
[Yt | Θ, W, ΓW , x̃t] = [Y1:T | Θ, W, ΓW , x̃1:T],

with the notation [·] denoting a distribution. We assume that α is only dependent on Θ, W, ΓW , and
Y1:T through the transformation tα and independent of these values otherwise.

The function tα is defined as follows: tα(W) = {tαi,`(wi,`)} = {κ(wi,` − αi,`)}, where:
κ(qκ) = −a + 2a

1+e−qκ , thus ensuring qκ ∈ [−a, a]. The Jacobian for the transformation tα(W), is defined

as Jα(W) = ∂
∂W tα(W) =

nh
∏
i=1

nh
∏
`=1

∂tαi,` (wi,`)

∂wi,`
, while the Jacobian for the transformation t−1

α (W), is defined

as J̃α(W) = ∂
∂W t−1

α (W) =
nh
∏
i=1

nh
∏
`=1

∂t−1
αi,`

(wi,`)

∂wi,`
.

Entropy 2019, 21, 184 20 of 26

1. Sample W and ΓW as follows:

[W, ΓW | Θ, Y1:T , x̃1:T] =
[Θ, W, ΓW | Y1:T , x̃1:T]

[Θ | Y1:T , x̃1:T]
(A1)

=

∫
A[Θ, W, ΓW , α | Y1:T , x̃1:T]dα

[Θ | Y1:T , x̃1:T]
(A2)

=

∫
A[Θ, W, ΓW | Y1:T , x̃1:T , α][α | Y1:T , x̃1:T]dα

[Θ | Y1:T , x̃1:T ,]
(A3)

=

∫
A[Θ, W, ΓW | Y1:T , x̃1:T][α]dα

[Θ | Y1:T , x̃1:T ,]
(A4)

=

∫
A[Θ, tα(W), ΓW | Y1:T , x̃1:T] |Jα(W)| [α] dα

[Θ | Y1:T , x̃1:T]
(A5)

=
∫

A
[tα(W), ΓW | Θ, Y1:T , x̃1:T] |Jα(W)| [α] dα, (A6)

As stated in the main text, to sample from this integral, we assume W′, ΓW ∼ [tα(W), ΓW |
Θ, Y1:T , x̃1:T]. We will take W = t−1

α (W′), thus allowing for the joint sampling of W and ΓW . This result
leads to step 1 of Algorithm 1 and defining α0 as the simulated value from [α] leads to step 2. Note
the procedure described here closely follows the procedure outlined directly below Equation (1.4.3)
in [27]. The assumption stated above that α is only dependent on Θ, W, ΓW , x̃1:T and Y1:T through the
transformation tα is utilized when going from (A3) to (A4).

2. Sample Θ and α, as follows:

[Θ, α | W, ΓW , Y1:T , x̃1:T] =
[Θ, α, W, ΓW , Y1:T , x̃1:T]

[W, ΓW , Y1:T , x̃1:T]
(A7)

=
[Θ, α, t−1

α0
(W), ΓW , Y1:T , x̃1:T] | J̃α0(W)|

[t−1
α0

(W), ΓW , Y1:T , x̃1:T] | J̃α0(W)|
(A8)

=
[Θ, α, t−1

α0
(W), ΓW , Y1:T , x̃1:T]

[t−1
α0

(W), ΓW , Y1:T , x̃1:T]
(A9)

∝ [Θ, α, W̃, ΓW , Y1:T , x̃1:T] (A10)

= [Θ, α, tα(W̃), ΓW , Y1:T , x̃1:T] |Jα(W̃)| (A11)

∝ [Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [Θ]

× [tα(W̃) | ΓW , α] [α] |Jα(W̃)| (A12)

Above in (A10), W̃ is defined as W̃ ≡ t−1
α0

(W). Going from (A11) to (A12), we assume α is
conditionally independent of ΓW , tα(W̃) and α are independent of x̃1:T , and Θ is conditionally
independent of α, tα(W̃), ΓW , and x̃1:T . Finally, the full-conditional distributions for Θ and α are
as follows:

[α | tα(W̃), ΓW , Θ, Y1:T , , x̃1:T] ∝ [Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T]

× [tα(W̃) | ΓW , α] [α] |Jα(W̃)| (A13)

[Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [Θ] (A14)

∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ] (A15)

Entropy 2019, 21, 184 21 of 26

These two full conditionals lead directly to steps 4 and 5 of Algorithm 1, respectively, where α is
sampled using Metropolis-Hasting steps and Θ is sampled using Gibbs and Metropolis-Hasting steps
(see Appendix C).

Algorithm 1 PX-MCMC algorithm.

1. Sample W, ΓW from: [W, ΓW | Θ, Y1:T , x̃1:T] ∝

[Y1:T | Θ, W, ΓW , x̃1:T] [W | ΓW] [ΓW].
2. Generate α0,i,` ∼ Gau(0, σ2

α) for i = 1, . . . , nh and ` = 1, . . . , nh.

3. Transform W̃ = t−1
α0

(W).

4. Sample α from: [α | tα(W̃), ΓW , Θ, Y1:T , x̃1:T] ∝

[Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [tα(W̃) | ΓW , α] [α] |Jα(W̃)|.
5. Sample Θ from: [Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ].

Appendix C. Full-Conditionals for the BAST-RNN Model

The full-conditional distributions for all of the parameters in the BAST-RNN model are detailed
in this Appendix. To ease the notation we define:

Θ̃ ≡ {µ, V1, V2, ΓV1 , ΓV2 , W, ΓW , α, α0, U, ΓU , δ, σ2
ε },

and borrowing the notational convention from [69], let Θ̃−wi,` = Θ̃ ∩ {wi,`}c, such that the notation “c”
denotes the compliment. Thus, Θ̃−wi,` denotes the collection of all of the parameters in Θ̃ except for
wi,`. A similar notation can be used for all of the other parameters in the model.

We will use the notation Φ(·) to denote the cumulative distribution function for the Gaussian
distribution. Next, let Υk be a (2nh + 1)× (2nh + 1) diagonal matrix with the first diagonal element
corresponding to σ2

µ, the next nh diagonal entries corresponding to γv
1,k,iσ

2
v1,0 + (1 − γv

1,k,i)σ
2
v1,1

(for i = 1, . . . , nh), and the last nh diagonal entries corresponding to γv
2,k,iσ

2
v2,0 + (1 − γv

2,k,i)σ
2
v2,1

(for i = 1, . . . , nh). Probability distribution functions for the Gaussian priors associated with v1,k,i
and v2,k,i are denoted by φv1(·) and φv2(·) (as defined in Appendix A), respectively.

Finally, the vector h̃t is defined as h̃t ≡ (1, h′t, h2′
t)
′, such that h̃1:T is a (2nh + 1) × T matrix.

Throughout, we will let gt ≡ µ + V1ht + V2h2
t to reduce the amount of notation. The BAST-RNN

model is defined by the following full-conditional distributions:

• [wi,`, γw
i,` | Y1:T , x̃1:T , Θ̃−{wi,`,γw

i,`}
] ∝

T
∏

t=1
exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)

×
(γw

i,`exp
(−w2

i,`
2σ2

w,0

)
Φ(aw

σw,0
)−Φ(−aw

σw,0
)
+

(1−γw
i,`)exp

(−w2
i,`

2σ2
w,1

)
Φ(aw

σw,1
)−Φ(−aw

σw,1
)

)
×
(

π
γw

i,`
w + (1− πw)

1−γw
i,`

)
,

for i = 1, . . . , nh and ` = 1, . . . , nh.

• [αi,` | Y1:T , x̃1:T , Θ̃−αi,`] ∝
T
∏

t=1
exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)

×
(γw

i,`exp
(−{tαi,` (w̃i,`)}

2

2σ2
w,0

)
Φ(aw

σw,0
)−Φ(−aw

σw,0
)

+
(1−γw

i,`)exp
(−{tαi,` (w̃i,`)}

2

2σ2
w,1

)
Φ(aw

σw,1
)−Φ(−aw

σw,1
)

)
× exp

(
−α2

i,`
2σ2

α

)
×
(

2awexp(−w̃i,`+αi,`)

(1+exp(−w̃i,`+αi,`))2

)
,

for i = 1, . . . , nh and ` = 1, . . . , nh.

• [ui,r, γu
i,r | Y1:T , x̃1:T , Θ̃−{ui,r ,γu

i,r}] ∝
T
∏

t=1
exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)

×
(γu

i,rexp
(−u2

i,r
2σ2

u,0

)
Φ(au

σu,0
)−Φ(−au

σu,0
)
+

(1−γu
i,r)exp

(−u2
i,r

2σ2
u,1

)
Φ(au

σu,1
)−Φ(−au

σu,1
)

)
×
(

π
γu

i,r
u + (1− πu)

1−γu
i,r

)
,

Entropy 2019, 21, 184 22 of 26

for i = 1, . . . , nh and ` = 1, . . . , nh.

• [δ | Y1:T , x̃1:T , Θ̃−δ] ∝
T
∏

t=1
exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)
× I[0,1](δ)

• [µ1,k, V1,k, V2,k | Y1:T , x̃1:T , Θ̃−{µ1,k ,V1,k ,V2,k}] ∝

Gau
((1

σ2ε
h̃1:Th̃′1:T + Υ−1

k
)−1 1

σ2ε
h̃1:TY1:T,k,

(1
σ2ε

h̃1:Th̃′1:T + Υ−1
k
)−1

)
,

for k = 1, . . . , nh.

• [γv
1,k,i | Y1:T , x̃1:T , Θ̃−{γv

1,k,i}
] ∝ Bernoulli

(
φv1 (v1,k,i |γv

1,k,i=1)
φv1 (v1,k,i |γv

1,k,i=1)+φv1 (v1,k,i |γv
1,k,i=0)

)
,

for i = 1, . . . , nh and k = 1, . . . , ny.

• [γv
2,k,i | Y1:T , x̃1:T , Θ̃−{γv

2,k,i}
] ∝ Bernoulli

(
φv2 (v2,k,i |γv

2,k,i=1)
φv2 (v2,k,i |γv

2,k,i=1)+φv2 (v2,k,i |γv
2,k,i=0)

)
,

for i = 1, . . . , nh and k = 1, . . . , ny.

• [σ2
ε | Y1:T , x̃1:T , Θ̃−{σ2

ε }] ∝ IG(
Tny

2 + αε, 1
2

T
∑

t=1
(Yt − gt)′(Yt − gt) + βε).

All the parameters in Θ̃ are sampled in the order provided above, with W, ΓW , α, U, ΓU , and δ

requiring Metropolis-Hasting steps, while V1, V2, µ, ΓV1 , ΓV2 , and σ2
ε are sampled with Gibbs steps.

Appendix D. Trace Plots for the BAST-RNN Model

Displayed below are various trace plots from the Lorenz-96 simulated example. The convergence
for the other applications (not shown here) was similar.

Figure A2. Trace plots for the parameters δ and σ2
ε for the Lorenz-96 simulated example.

Entropy 2019, 21, 184 23 of 26

Figure A3. A sample of four trace plots for the posterior predictions from the Lorenz-96 simulated example.

References

1. Fan, J.; Yao, Q. Nonlinear Time Series; Springer: Berlin, Germany, 2005.
2. Billings, S.A. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal

Domains; John Wiley & Sons: Hoboken, NJ, USA, 2013.
3. Wikle, C. Modern perspectives on statistics for spatio-temporal data. Wiley Interdiscip. Rev. Comput. Stat.

2015, 7, 86–98. [CrossRef]
4. Berliner, L.M.; Wikle, C.K.; Cressie, N. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling.

J. Clim. 2000, 13, 3953–3968. [CrossRef]
5. Wu, G.; Holan, S.H.; Wikle, C.K. Hierarchical Bayesian spatio-temporal Conway–Maxwell Poisson models

with dynamic dispersion. J. Agric. Biol. Environ. Stat. 2013, 18, 335–356. [CrossRef]
6. Hooten, M.B.; Wikle, C.K. Statistical agent-based models for discrete spatio-temporal systems. J. Am.

Stat. Assoc. 2010, 105, 236–248. [CrossRef]
7. Wikle, C.K.; Hooten, M.B. A general science-based framework for dynamical spatio-temporal models. Test

2010, 19, 417–451. [CrossRef]
8. McDermott, P.L.; Wikle, C.K. A model-based approach for analog spatio-temporal dynamic forecasting.

Environmetrics 2016, 27, 70–82. [CrossRef]
9. Richardson, R.A. Sparsity in nonlinear dynamic spatiotemporal models using implied advection.

Environmetrics 2017, 28, e2456. [CrossRef]
10. Cressie, N.; Wikle, C. Statistics for Spatio-Temporal Data; John Wiley & Sons: New York, NY, USA, 2011.
11. Tang, B.; Hsieh, W.W.; Monahan, A.H.; Tangang, F.T. Skill comparisons between neural networks and

canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures. J. Clim. 2000,
13, 287–293. [CrossRef]

12. Dixon, M.F.; Polson, N.G.; Sokolov, V.O. Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic
Flows and High Frequency Trading. arXiv 2017, arXiv:1705.09851.

13. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
14. Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A novel connectionist

system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868.
[CrossRef] [PubMed]

15. Ning, G.; Zhang, Z.; Huang, C.; He, Z.; Ren, X.; Wang, H. Spatially supervised recurrent convolutional
neural networks for visual object tracking. arXiv 2016, arXiv:1607.05781.

http://dx.doi.org/10.1002/wics.1341
http://dx.doi.org/10.1175/1520-0442(2001)013<3953:LLPOPS>2.0.CO;2
http://dx.doi.org/10.1007/s13253-013-0141-2
http://dx.doi.org/10.1198/jasa.2009.tm09036
http://dx.doi.org/10.1007/s11749-010-0209-z
http://dx.doi.org/10.1002/env.2374
http://dx.doi.org/10.1002/env.2456
http://dx.doi.org/10.1175/1520-0442(2000)013<0287:SCBNNA>2.0.CO;2
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TPAMI.2008.137
http://www.ncbi.nlm.nih.gov/pubmed/19299860

Entropy 2019, 21, 184 24 of 26

16. Yildiz, I.B.; von Kriegstein, K.; Kiebel, S.J. From birdsong to human speech recognition: Bayesian inference
on a hierarchy of nonlinear dynamical systems. PLoS Comput. Biol. 2013, 9, e1003219. [CrossRef] [PubMed]

17. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.
18. Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks-with an Erratum Note;

German National Research Center for Information Technology GMD Technical Report: Bonn, Germany,
2001; Volume 148.

19. Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training.
Comput. Sci. Rev. 2009, 3, 127–149. [CrossRef]

20. McDermott, P.L.; Wikle, C.K. An Ensemble Quadratic Echo State Network for Nonlinear Spatio-Temporal
Forecasting. STAT 2017, 6, 315–330. [CrossRef]

21. van der Westhuizen, J.; Lasenby, J. Bayesian LSTMs in medicine. arXiv 2017, arXiv:1706.01242.
22. Neal, R.M. Bayesian Learning for Neural Networks. Ph.D. Thesis, University of Toronto, Toronto, ON,

Canada, 1994.
23. Chatzis, S.P. Sparse Bayesian Recurrent Neural Networks. In Machine Learning and Knowledge Discovery in

Databases; Springer: Berlin, Germany, 2015; pp. 359–372.
24. Chien, J.T.; Ku, Y.C. Bayesian recurrent neural network for language modeling. IEEE Trans. Neural Netw.

Learn. Syst. 2016, 27, 361–374. [CrossRef] [PubMed]
25. Gan, Z.; Li, C.; Chen, C.; Pu, Y.; Su, Q.; Carin, L. Scalable Bayesian Learning of Recurrent Neural Networks

for Language Modeling. arXiv 2016, arXiv:1611.08034.
26. Liu, J.S.; Wu, Y.N. Parameter expansion for data augmentation. J. Am. Stat. Assoc. 1999, 94, 1264–1274.

[CrossRef]
27. Hobert, J.P.; Marchev, D. A theoretical comparison of the data augmentation, marginal augmentation and

PX-DA algorithms. Ann. Stat. 2008, 36, 532–554. [CrossRef]
28. Hobert, J.P. The data augmentation algorithm: Theory and methodology. Handbook of Markov Chain Monte

Carlo; Chapman & Hall/CRC: London, UK, 2011; pp. 253–293.
29. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated feedback recurrent neural networks. In Proceedings of the

International Conference on Machine Learning, Lille, France, 6–11 Junly 2015; pp. 2067–2075.
30. Takens, F. Detecting strange attractors in turbulence. Lect. Notes Math. 1981, 898, 366–381.
31. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to

prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.
32. Polson, N.; Sokolov, V. Deep Learning: A Bayesian Perspective. Bayesian Anal. 2017, 12, 1275–1304.

[CrossRef]
33. MacKay, D.J. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4, 448–472.

[CrossRef]
34. O’Hara, R.B.; Sillanpää, M.J. A review of Bayesian variable selection methods: What, how and which.

Bayesian Anal. 2009, 4, 85–117. [CrossRef]
35. George, E.I.; McCulloch, R.E. Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 1993, 88, 881–889.

[CrossRef]
36. George, E.I.; McCulloch, R.E. Approaches for Bayesian variable selection. Stat. Sin. 1997, 7, 339–373.
37. Ghosh, M.; Maiti, T.; Kim, D.; Chakraborty, S.; Tewari, A. Hierarchical Bayesian neural networks: An

application to a prostate cancer study. J. Am. Stat. Assoc. 2004, 99, 601–608. [CrossRef]
38. Park, T.; Casella, G. The bayesian lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [CrossRef]
39. Carvalho, C.M.; Polson, N.G.; Scott, J.G. The horseshoe estimator for sparse signals. Biometrika 2010,

97, 465–480. [CrossRef]
40. Ročková, V.; George, E.I. The spike-and-slab lasso. J. Am. Stat. Assoc. 2018, 113, 431–444. [CrossRef]
41. Belkin, M.; Niyogi, P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering.

In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and
Synthetic (NIPS’01), Vancouver, BC, Canada, 3–8 December 2001; pp. 585–591.

42. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

43. Coifman, R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [CrossRef]
44. Matheson, J.E.; Winkler, R.L. Scoring rules for continuous probability distributions. Manag. Sci. 1976,

10, 1087–1096. [CrossRef]

http://dx.doi.org/10.1371/journal.pcbi.1003219
http://www.ncbi.nlm.nih.gov/pubmed/24068902
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.1002/sta4.160
http://dx.doi.org/10.1109/TNNLS.2015.2499302
http://www.ncbi.nlm.nih.gov/pubmed/26625430
http://dx.doi.org/10.1080/01621459.1999.10473879
http://dx.doi.org/10.1214/009053607000000569
http://dx.doi.org/10.1214/17-BA1082
http://dx.doi.org/10.1162/neco.1992.4.3.448
http://dx.doi.org/10.1214/09-BA403
http://dx.doi.org/10.1080/01621459.1993.10476353
http://dx.doi.org/10.1198/016214504000000665
http://dx.doi.org/10.1198/016214508000000337
http://dx.doi.org/10.1093/biomet/asq017
http://dx.doi.org/10.1080/01621459.2016.1260469
http://dx.doi.org/10.1016/j.acha.2006.04.006
http://dx.doi.org/10.1287/mnsc.22.10.1087

Entropy 2019, 21, 184 25 of 26

45. Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Appl. 2014, 1, 125–151. [CrossRef]
46. Majda, A.J.; Timofeyev, I.; Vanden-Eijnden, E. Systematic strategies for stochastic mode reduction in climate.

J. Atmos. Sci. 2003, 60, 1705–1722. [CrossRef]
47. Kravtsov, S.; Kondrashov, D.; Ghil, M. Multilevel regression modeling of nonlinear processes: Derivation

and applications to climatic variability. J. Clim. 2005, 18, 4404–4424. [CrossRef]
48. Green, P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika 1995, 82, 711–732. [CrossRef]
49. Lukoševičius, M. A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade;

Springer: Berlin, Germany, 2012; pp. 659–686.
50. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]
51. Ma, Q.L.; Zheng, Q.L.; Peng, H.; Zhong, T.W.; Xu, L.Q. Chaotic time series prediction based on evolving

recurrent neural networks. In Proceedings of the 2007 International Conference on Machine Learning and
Cybernetics, Hong Kong, China, 19–22 August 2007; Volume 6, pp. 3496–3500.

52. Chandra, R.; Zhang, M. Cooperative coevolution of Elman recurrent neural networks for chaotic time series
prediction. Neurocomputing 2012, 86, 116–123. [CrossRef]

53. Lorenz, E.N. Predictability: A problem partly solved. In Proceedings of the Seminar on Predictability,
Reading, UK, 4–8 September 1995; Volume 1.

54. Wilks, D.S. Effects of stochastic parametrizations in the Lorenz’96 system. Quart. J. R. Meteorol. Soc. 2005,
131, 389–407. [CrossRef]

55. Chorin, A.J.; Lu, F. Discrete approach to stochastic parametrization and dimension reduction in nonlinear
dynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 9804–9809. [CrossRef]

56. Grooms, I.; Lee, Y. A framework for variational data assimilation with superparameterization. Nonlinear
Processes Geophys. 2015, 22, 601–611. [CrossRef]

57. Hu, S.; Fedorov, A.V. The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts,
and preconditioning by the failed 2014 event. Clim. Dyn. 2017, 1–19. [CrossRef]

58. L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.;
Gottschalck, J.; Halpert, M.S.; Huang, B.; et al. Observing and predicting the 2015-16 El Niño. Bull. Am.
Meteorol. Soc. 2017, 98, 1363–1382. [CrossRef]

59. Barnston, A.G.; Tippett, M.K.; L’Heureux, M.L.; Li, S.; DeWitt, D.G. Skill of real-time seasonal ENSO model
predictions during 2002–2011: Is our capability increasing? Bull. Am. Meteorol. Soc. 2012, 93, 631–651.
[CrossRef]

60. Barnston, A.G.; He, Y.; Glantz, M.H. Predictive skill of statistical and dynamical climate models in SST
forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull. Am. Meteorol. Soc. 1999,
80, 217–243. [CrossRef]

61. Jan van Oldenborgh, G.; Balmaseda, M.A.; Ferranti, L.; Stockdale, T.N.; Anderson, D.L. Did the ECMWF
seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J. Clim. 2005,
18, 3240–3249. [CrossRef]

62. Tangang, F.T.; Tang, B.; Monahan, A.H.; Hsieh, W.W. Forecasting ENSO events: A neural network–extended
EOF approach. J. Clim. 1998, 11, 29–41. [CrossRef]

63. Gladish, D.W.; Wikle, C.K. Physically motivated scale interaction parameterization in reduced rank quadratic
nonlinear dynamic spatio-temporal models. Environmetrics 2014, 25, 230–244. [CrossRef]

64. Liang, F. Bayesian neural networks for nonlinear time series forecasting. Stat. Comput. 2005, 15, 13–29.
[CrossRef]

65. Sharma, S.; Singh, S. Unemployment rates forecasting using supervised neural networks. In Proceedings of
the 2016 6th International Conference Cloud System and Big Data Engineering (Confluence), Noida, India,
14–15 January 2016; pp. 28–33.

66. Teräsvirta, T.; Van Dijk, D.; Medeiros, M.C. Linear models, smooth transition autoregressions, and neural
networks for forecasting macroeconomic time series: A re-examination. Int. J. Forecast. 2005, 21, 755–774.
[CrossRef]

67. Jones, N.A.; Smith, A.S. The Two or More Races Population, 2000; US Department of Commerce, Economics
and Statistics Administration, US Census Bureau: Washington, DC, USA, 2001; Volume 8.

http://dx.doi.org/10.1146/annurev-statistics-062713-085831
http://dx.doi.org/10.1175/1520-0469(2003)060<1705:SSFSMR>2.0.CO;2
http://dx.doi.org/10.1175/JCLI3544.1
http://dx.doi.org/10.1093/biomet/82.4.711
http://dx.doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
http://dx.doi.org/10.1016/j.neucom.2012.01.014
http://dx.doi.org/10.1256/qj.04.03
http://dx.doi.org/10.1073/pnas.1512080112
http://dx.doi.org/10.5194/npg-22-601-2015
http://dx.doi.org/10.1007/s00382-017-3531-2
http://dx.doi.org/10.1175/BAMS-D-16-0009.1
http://dx.doi.org/10.1175/BAMS-D-11-00111.1
http://dx.doi.org/10.1175/1520-0477(1999)080<0217:PSOSAD>2.0.CO;2
http://dx.doi.org/10.1175/JCLI3420.1
http://dx.doi.org/10.1175/1520-0442(1998)011<0029:FEEANN>2.0.CO;2
http://dx.doi.org/10.1002/env.2266
http://dx.doi.org/10.1007/s11222-005-4786-8
http://dx.doi.org/10.1016/j.ijforecast.2005.04.010

Entropy 2019, 21, 184 26 of 26

68. Welling, M.; Teh, Y.W. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the
28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011;
pp. 681–688.

69. Bradley, J.R.; Wikle, C.K.; Holan, S.H. Bayesian spatial change of support for count-valued survey data with
application to the american community survey. J. Am. Stat. Assoc. 2016, 111, 472–487. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/01621459.2015.1117471
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Spatio-Temporal Recurrent Neural Network
	Traditional Recurrent Neural Network
	Bayesian Spatio-Temporal Recurrent Neural Network
	BAST-RNN Prior Distributions
	Dimension Reduction

	Computation: Parameter Expansion MCMC
	Applications
	Validation Measures and Alternative Models
	BAST-RNN Implementation Details
	Simulation: Multiscale Lorenz-96 Model
	Application: Long-Lead Tropical Pacific SST Forecasting
	Application: U.S. State-Level Unemployment Rate

	Discussion and Conclusions
	Specification of Priors
	Details of Algorithm 1
	Full-Conditionals for the BAST-RNN Model
	Trace Plots for the BAST-RNN Model
	References

