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Abstract: We study Bell scenarios with binary outcomes supplemented by one bit of classical
communication. We developed a method to find facet inequalities for such scenarios even when
direct facet enumeration is not possible, or at least difficult. Using this method, we partially solved
the scenario where Alice and Bob choose between three inputs, finding a total of 668 inequivalent
facet inequalities (with respect to relabelings of inputs and outputs). We also show that some of these
inequalities are constructed from facet inequalities found in scenarios without communication, that is,
the well-known Bell inequalities.

Keywords: quantum nonlocality; communication complexity

1. Introduction

Bell nonlocality [1,2] is one of the most intriguing phenomena encountered in modern physics.
Nonlocality was discovered more than 50 years ago, and there are still simple well-posed fundamental
questions about nonlocality that remain unanswered. In this article, we focus on one of these questions,
which is impressively simple to state but has proven very hard to answer. In the interest of quantifying
and understanding nonlocality, one can create variations of Bell’s original local hidden variable (LHV)
model by adding a nonlocal resource. A nonlocal resource is any resource that establishes correlations
at a distance. A PR box [3–5] is an example of such a nonlocal resource. Another example is classical
communication [6–10], which is the focus of this paper. In particular, one can ask how many bits
of information are needed to reproduce correlations arising from projective measurements on any
two-qubit state [6,8,9,11]. For the singlet, it is known that one bit is sufficient (the explicit model is
given in Reference [10]); therefore, we are interested in partially entangled states, which are known
to be simulable with two bits [10], but not with zero bits [12]. We ask whether one bit also suffices to
simulate projective measurements on all two-qubit partially entangled states. It is interesting that such
a well-posed binary-answer question for projective measurements on two-qubit pure states has still
not been answered, even though several authors have worked on this problem [13,14]. This illustrates
the technical difficulty of studying nonlocality. Our strategy is to find Bell-like inequalities that are
satisfied by all LHV models supplemented by one bit of communication, and then look for a violation
of such inequalities. Although we do not provide an answer to Toner and Bacon’s question here, our
results already provide a deeper understanding of Bell-like inequalities for scenarios with one bit of
communication. Additionally, our work can be of interest to physicists working on alternative causal
structures to Bell’s theorem (see References [15–17]).

Regular Bell scenarios and Bell scenarios supplemented with one bit of communication sent
by Alice to Bob are formally described in Section 2, along with the methods we used to find the
main results. In particular, we introduce a useful notation and propose a method to tackle scenarios
where direct facet enumeration is difficult. Section 3 gives a proof that all projective measurements on
quantum states can be reproduced by one bit of communication, for scenarios where Bob has only two
dichotomic measurement settings, despite the fact that we assume the bit to be communicated from
Alice to Bob. In Section 4, we discuss the results we obtained for the scenario where both Alice and
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Bob have three inputs. Finally, we conclude by discussing the general structure of Bell-like inequalities
with one bit of communication, and future directions of research.

2. Bell Inequalities with Auxiliary Communication

2.1. Bell Scenarios

In a bipartite Bell scenario, see Figure 1, the two observers are usually called Alice and Bob.
Alice and Bob choose from a set of inputs (measurement settings) and, as a result, get an output
(measurement outcome). After they select their inputs, Alice and Bob are not allowed to communicate.
Nevertheless, they both have access to the same set of local variables because they share randomness
that was generated by a common source at a past time. The observers are allowed to use local variables
to produce their outcomes. Alice and Bob both have a number of measurements settings X and Y,
respectively, and a number of outputs A, B. This defines the physical setup, or Bell scenario, generally
noted XYAB. Since in this article we restrict to binary-outcome measurements, we note Bell scenarios
XY22 simply as XY. In the lab, Alice and Bob repetitively perform measurements and record the
outcome statistics, which are described by joint probability distribution p(ab|xy). If the correlations
allowed by p(ab|xy) are explainable using only common past history and local operations by the
observers, physicists say the experiment statistics admit a local hidden variable (LHV model). In such
a case, we can write

p(ab|xy) =
∫

q(λ)pA(a|xλ)pB(b|yλ) (1)

where λ is a local variable (infinite shared randomness), q(λ) is its probability distribution, and
pA(a|xλ), pB(b|yλ) are, respectively, Alice and Bob’s marginal probabilities. If Equation (1) is not
satisfied, p(ab|xy) is not local.

x   {0,1,...,X-1}

a(x,λ)   {0,1} b(y,c,λ)   {0,1}

y   {0,1,...,Y-1}

A B*

c(x,λ)   {0,1}

XY+1
λ λ

Figure 1. XY + 1 scenario where Alice and Bob choose between X and Y binary-outcome measurements,
respectively, and share local hidden variables λ (shared randomness). Alice is allowed to send one bit
c(x, λ) of classical communication to Bob.

If locality is assumed, then deterministic strategies can be defined through the marginals of Alice
and Bob [2]. The marginals define their respective local strategies. Set L of all local strategies pL(ab|xy)
is finite because Alice and Bob choose from a finite set of measurements, and it defines a convex
polytope usually called the local polytope. For binary outcomes, there are 2X+Y deterministic strategies,
and the local polytope is of dimension X + Y + XY. The facets of this polytope define inequalities that
are satisfied by any probability distribution in L, but are violated for quantum-probability distributions.
These are the famous Bell inequalities, the simplest of which is the CHSH inequality, for binary inputs
and outputs on both sides:

p(00|00) + p(00|01)+p(00|10)− p(00|11)

− pA(0|0)− pB(0|0) ≤ 0
(2)

This inequality is violated by quantum mechanical probability distributions, up to 1√
2
− 1

2 ≈ 0.2071.
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2.2. Bell Scenarios Supplemented by One Cbit (Bell + 1)

We are interested in the simulation of projective measurements on qubits through one bit of
classical communication. Since quantum correlations are symmetric with respect to Alice and Bob,
we specifically consider one-way communication (in one direction; in this case, from Alice to Bob),
as two-way communication would have no advantage in a quantum scenario. The protocol goes
as follows: Alice and Bob first receive their inputs, then Alice is allowed to send one bit of classical
communication to Bob. In this way, Alice and Bob can simulate all p(ab|xy) that satisfy:

p(ab|xy) =
∫

q(λ)pA(a|xλ)pB(b|ycλ) (3)

where the marginal of Bob now also depends on the value of classical bit c = c(x, λ).
One can define all local strategies with one bit of communication analogous to the original Bell

scenario. The local strategies can all be written in terms of local deterministic strategies, for which
the marginal probabilities of Alice and Bob can only take values 0 and 1. There is a finite number of
such strategies and, hence, a finite number of vertices that define a convex polytope. Once we have
generated all the vertices, we look for the facets of this polytope: this is the so-called facet-enumeration
problem. We call the set of local strategies with one bit of communication C. The inequalities defining
these facets are violated only if there exists a two-qubit state and projective measurements yielding
correlations that cannot be reproduced using one bit of classical communication.

2.3. Local Strategies for Bell + 1 and Notation

Joint probability distribution p(ab|xy) for each local strategy can be computed in the
following way:

p(ab|xy) = ∑
λ

q(λ)pA(a|xλ)pB(b|cyλ) (4)

where c = c(x, λ) is the communication function, and can be encoded in multiple ways. In a similar
fashion to Bell scenarios, we define such a scenario as XY + 1, where we again omit the number of
outputs as they are always binary. For a given number of inputs on Alice’s side X, the number of
communication functions in the case of one cbit is given by the Stirling number of the second kind,
denoted S(X, 2) or {X

2}, and defined as {X
k} := 1

k! ∑k
j=0(−1)k−j(k

j)jX . The Stirling number of the second
kind gives the number of distinct ways to divide a set into two nonempty subsets.

By directly generating all local strategies, we obtain {X
2} · 2X · 22Y vertices. This method generates

repeated vertices because it takes into account the situations where Bob does not use the communication
bit. By removing repetitions, we end up with a smaller number of vertices, given by:

2X
(

2Y +

{
X
2

}
(22Y − 2Y)

)
(5)

This is a sum of three terms. The first term gives the vertices for the local polytope of the Bell scenario,
in which case no communication function is used. The second term accounts for three kinds of
strategies: Bell local strategies like the first term, strategies where there is communication but the
bit is not used by Bob, and finally strategies for which the bit is used. In order to only keep the Bell
local strategies and the strategies for which the bit of communication is useful, we must remove the
strategies that do not use the bit, for which the third term accounts. In the second term, the Stirling
number gives the number of possible communication functions, and the bit of communication gives a
factor of two multiplying Y (the bit is counted as an extra binary input on Bob’s side). An interesting
consequence of this is that, for different values of (X, Y), one can have the same amount of vertices.
In fact, any XX + 1 scenario has the same number of vertices as an (X + 1)(X− 1) + 1 scenario. Any
X(X + 1) + 1 scenario also has the same number of vertices as an (X + 2)(X− 1) + 1 scenario.
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The dimension of the XY + 1 polytope is X + 2XY. It is easy to see why: Joint probability
distribution p(ab|xy) consists of 4XY elements, but none of these elements is independent due to
normalization and no-signalling constraints. Normalization removes the XY of these elements, and
no signalling from Alice to Bob removes X(Y − 1) elements. Therefore, X + 2XY is the minimal
number of variables (probability elements) needed to define the polytope. The usual notation for
vertices, from Toner and Bacon [11], is given by {p(00|xy) . . . p(10|xy) . . . pA(a = 0|x) . . . }. The
three dots mean that we run through all the values of x and y, for example, {p(00|xy) . . . } means
{p(00|00), p(00|01), p(00|10), p(00|11), etc...}. We instead chose to use notation {p(00|xy) . . . pB(b =

0|xy) . . . pA(a = 0|x) . . . } similarly to Reference [18] because it makes it easier to see what inequalities
reduce to when considering probability distributions in the no-signalling (NS) subspace, such as
quantum probability distribution (see Table S1, provided as a Supplementary File). This becomes clear
when we study the first nontrivial scenarios, 32 + 1 and 33 + 1, while 2Y + 1 is trivial for all Y because
Alice can simply send her input as the communication bit; in fact, as we show in Section 3, X2 + 1 is
also trivial for all X.

A Bell + 1 inequality can be written as:

∑
xy

dxy p(00|xy) + ∑
xy

exy pB(0|xy) + ∑
x

fx pA(0|x) ≤ b (6)

We can represent such an inequality as a table (see Table 1) in which elements are the coefficients
multiplying each probability element {p(00|xy) . . . pB(b = 0|xy) . . . pA(a = 0|x) . . . }. We denote the
coefficients for p(00|xy) elements as dxy, while the coefficients for Bob’s marginals are exy, and for
Alice’s marginals fx. Finally, an inequality is also characterized by its bound b.

Table 1. Inequalities notation 33 + 1. fx are the weights of Alice’s marginals pA
x (a = 0|x), dxy are the

weights of joint probabilities for outcomes a = b = 0, and exy are the coefficients for Bob’s marginals
pB(b = 0|xy).

f0
d00 d01 d02
e00 e01 e02

f1
d10 d11 d12
e10 e11 e12

f2
d20 d21 d22
e20 e21 e22

≤ b

Note that a vector of the form

~IS = (d00, d01, . . . , dXY, e00, e01, . . . , eXY, c0, c1, . . . , cX) (7)

belongs to the NS subspace iff exy is independent of x for all y.
Knowing the vertices, it is possible to compute all facets of a given polytope using dedicated

software such as PORTA [19] or PANDA [20].

2.4. Extension of Inequalities from Bell to Bell + 1 Scenarios and Intersection of Bell + 1 Inequalities with
NS Subspace

An inequality of a Bell scenario can be extended to the corresponding Bell + 1 scenario. We extend
inequalities from the NS space to the one-bit space by choosing the coefficients for Bob’s marginals
in a clever way. For any Bell inequality, there are infinite such extensions. We chose the one
orthogonal to the NS subspace as depicted in Figure 3, i.e., we imposed that the vector characterizing
the extension lay within NS subspace. This orthogonal extension is unique. Let us look at the
example of 33 + 1, a scenario where we need to use this technique because a full resolution of the
polytope is difficult. In Table 2, we show how to extend an arbitrary 33 inequality to the 33 + 1 space.
We extended the inequality to the 33 + 1 space by adding coefficients for Bob’s marginals, which in this
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higher-dimensional space dependent on both x and y. We chose the coefficients for Bob’s marginals
such that e′y satisfied e0y = e1y = e2y = e′y/3 for all y, where e′y are coefficients of the 33 inequality for
Bob’s marginals pB(0|y). In this way, one can intersect the one-bit inequality with the nonsignalling
subspace and map it back to the original Bell inequality that was used for the extension.

Table 2. Orthogonal extension of a Bell inequality to the one-bit communication space (for example,
for 33 + 1). The bound in both cases is the local bound.

e′0 e′1 e′2
f0 d00 d01 d02
f1 d10 d11 d12
f2 d20 d21 d22

≤ 0 −→

f0 d00 d01 d02
e′0/3 e′1/3 e′2/3

f1 d10 d11 d12
e′0/3 e′1/3 e′2/3

f2 d20 d21 d22
e′0/3 e′1/3 e′2/3

≤ 0

Intersecting a one-bit inequality with NS subspace is also straightforward to do using our choice
of notation, as one simply has to sum up the coefficients for Bob’s marginals ∑x exy = e′y, then

The bound for the NS inequality in Table 3 has to be carefully considered. Indeed, this bound is
the one-bit bound for~IS, a particular extension (not the orthogonal one) of~INS of Table 3. Different
extensions do not give the same one-bit bound though, see Figure 2. For clarity, we used a simplified
scheme. In Figure 2, we represent the signalling space as a plane containing the NS space, represented as
a line. Using brackets, we also represent the bounds of the NS polytope that are given by non-negativity
condition p(ab|xy) ≥ 0 for all a, b, x, y. In a similar way, the vertical lines in the NS space delimit
the local polytope. The points where those lines are placed represent facets of the local polytope.
A facet of the one-bit polytope is a hyperplane IS; in our representation, it is an interval. In order for
probability distribution to not be reproducible by one bit of communication, we need its representative
point to be farther to the right than the intersection of IS with the NS space. For any point in the NS
space~q ∈ NS,~IS ·~q = ~INS ·~q. Therefore, a quantum bound for~INS larger than the one-bit bound of~IS

implies that the distribution attaining the value of the quantum bound cannot be reproduced with one
bit of communication. Note that the orthogonal extension’s bound is always equal ti or larger than the
correct one-bit bound, since having one bit of communication implies leaving the NS subspace.

Table 3. Intersecting one-bit inequality IS with NS subspace amounts to summing the coefficients for
Bob’s marginals, characterizing one of his inputs y.

~IS =

f0
d00 d01 d02
e00 e01 e02

f1
d10 d11 d12
e10 e11 e12

f2
d20 d21 d22
e20 e21 e22

≤ b NS−→ ~INS =

e′0 e′1 e′2
f0 d00 d01 d02
f1 d10 d11 d12
f2 d20 d21 d22

≤ b

NS [ ]
local

hyperplane

Figure 2. Geometry schematic of one-bit and no-signalling spaces. NS space is represented as a line,
while the signalling space is represented as two-dimensional. The non-negativity conditions delimiting
the NS polytope are represented by brackets.
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2.5. Cutting the Polytope

When direct facet enumeration cannot be done in one or two weeks, we use a trick to find a
smaller set of inequalities. The trick consists in enumerating the facets for a subpolytope of C, where
C is the one-bit polytope. The way we select the subpolytope is by taking a Bell scenario inequality,
extending it to the one-bit space in an orthogonal way as shown in Figure 3, and removing any vertex
that satisfies this new inequality. This amounts to cutting the polytope with a hyperplane.

As previously described, we chose the coefficients for Bob’s marginals in the one-bit space to be
equal because this corresponds to an orthogonal extension of the facet with respect to the NS space, i.e.,
IS ⊥ NS, where IS is the rightmost inequality in Table 2. We extensively tested the choice of coefficients
with the 32 + 1 scenario, which was already fully solved [14]. In order to generate all relevant facets,
it is important that coefficients for Bob’s marginals for inputs that give a CHSH inequality are equal.
The other coefficients seem completely arbitrary. In the 33 + 1 example of Table 2, for Bob’s input
y = 1, this means coefficients for pB(0|xy) for x = 0, 1 should be equal, and the coefficient for x = 2
is arbitrary.

When we change the choice of coefficients for Bob’s marginals, we perform a rotation of the
hyperplane used to cut the one-bit polytope. Therefore, one could try different choices of coefficients in
order to select different sets of vertices and, therefore, produce several subpolytopes out of the original
polytope. Furthermore, each relabelling of the inequality cuts a different region of the polytope,
possibly revealing new facets.

NS space

local vertices

L

Extended inequality used
           for the cut

Figure 3. A C polytope is cut by an extended Bell inequality, which is orthogonal to the NS subspace.
The NS subspace is represented as a two-dimensional space. We chose not to represent the C polytope as
we did not know its geometrical form. By keeping all vertices that saturate or violate such an inequality,
one obtains a subpolytope for which it is easier to find the facets via direct facet enumeration.

There is another freedom for the cut: one can modify the bound of the inequality used for the
cut. This causes a translation of the hyperplane that allows to change the size of the subpolytopes
we generate. Therefore, for very hard problems, we can increase the bound to try to solve smaller
subpolytopes. This translation technique has been used before (see [21] for further details).

Last but not least, when we cut a polytope and find the facets of the subpolytope, some facets are
not facets of the original polytope, but they were created by the cut. In order to keep only the relevant
inequalities, we check their rank and whether the vertices of the original polytope exactly saturate the
inequalities bound.

3. X2 + 1 Scenarios

Scenarios of 2Y + 1 are trivial because Alice can send her input as the classical bit. Surprisingly,
X2 + 1 inequalities also cannot be violated by any NS distribution despite the assumption that the
classical bit is sent from Alice to Bob. The reason is that every NS vertex of an X2 Bell scenario can
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be reproduced using a PR box [4,22]. Therefore, one PR box can simulate any quantum state in X2
scenarios, as boxes can be written as convex combinations of the NS vertices. Furthermore, one bit
of communication is a strictly stronger nonlocal resource that one PR box [23]. Therefore, one bit of
communication can simulate any quantum state in an X2 scenario.

4. 33 + 1 Scenario

In this section, we present our results for the 33+ 1 scenario. For this scenario, facet enumeration is
demanding but, by cutting the polytope, we can recover a large list of inequalities. In the corresponding
33 Bell scenario, besides CHSH there is one new inequality, called I3322, which we can also use to cut
the 33 + 1 polytope:

I3322 =

-1 0 0
-2 1 1 1
-1 1 1 -1
0 1 -1 0

≤ 0

4.1. Cutting with CHSH

We apply the cut with extended CHSH inequality using the procedure described above.
We then solve the subpolytope. We find 657 inequivalent inequalities, where 179 inequalities have

a quantum advantage when intersected with the NS subspace. Note that quantum probabilities do
not violate the one-bit bound C, but they can offer, as is the case for the 179 inequalities, an advantage
with respect to local bound L in the NS subspace. We can distinguish the inequalities by how close the
quantum bound is from the one-bit bound with the following figure of merit:

Q− L
C− L

(8)

This figure of merit also gives a lower bound on the amount of average communication required
to reproduce 3322 correlations [24]. The best quantum bound that we obtained with respect to the local
bound was halfway between the local and one-bit bounds (see inequalities 195 and 232 in Table S1).
This result implies that, to reproduce 3322 correlations, Alice needs to send to Bob one bit at least half
of the time on average. By looking inside the NS subspace, we can show that our halfway quantum
bound is obtained through a sum of two I3322 inequalities (recall that the quantum bound of I3322 is
equal to 0.25). We also found inequalities that, in the NS subspace, correspond to the sum of two
CHSH, and inequalities corresponding to one CHSH or one I3322. In addition, we found violations that
correspond to a CHSH or an I3322 inequality, plus a term that changes the optimal state/measurement
and, therefore, modifies the quantum bound, too. Performing the same analysis in the 32 + 1 scenario,
one finds that correlations can be reproduced only if the amount of average communication is higher
than 0.4142.

In Table 4, we give an explicit example of a facet that has a larger quantum bound with respect
to the local bound (inequality number 232 in Table S1, which can be found in the Appendix). In the
nonsignalling subspace, this facet corresponds to a sum of I3322. In order to clarify this, we intersected
the facet of the C polytope with the NS subspace.
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Table 4. Facet of 33 + 1, for which the quantum bound is halfway between the local and one-bit
bounds. When intersected with the NS space, this inequality reduces to a sum of I3322 inequalities.
This inequality corresponds to facet number 232 in Table S1.

-3 2 2 2
-1 -1 -1

-1 2 2 -2
-1 -1 1

0 2 -2 0
-1 1 0

≤ 1 NS−→
-3 -1 0

-3 2 2 2
-1 2 2 -2
0 2 -2 0

≤ 1

The resulting inequality is I3322 + Iperm
3322 with a bound of one instead of zero, where Iperm

3322 is I3322

with a relabeling of the parties (permutation of Alice and Bob labels). We found another inequality of
the same type, which also includes a sum of I3322 and Iperm

3322 , although it is less obvious to see because
it also includes some other terms that do not contribute to the quantum bound. The second inequality
(number 195 in Table S1) is given in Table 5.

Table 5. Second facet (number 195) of 33 + 1 for which the quantum bound is halfway between the
local and one-bit bounds.

-3 2 2 2
-1 -1 -1

-1 2 -2 1
-1 1 0

0 2 1 -2
-1 -1 1

≤ 1 NS−→
-3 -1 0

-3 2 2 2
-1 2 -2 1
0 2 1 -2

≤ 1

We give more examples of 33 + 1 inequalities in the appendix, along with their NS intersections.
We also tested the subpolytope method in the 32 + 1 scenario. By cutting with CHSH, we

retrieved 80 inequalities. By removing those that are not true facets of the one-bit polytope, we
obtained 17 inequalities. By sorting these inequalities into inequivalence classes, we ended up with
nine inequalities, a positivity facet, and the eight new facets that were published in Reference [14].
In this scenario, by cutting the polytope we easily recover the complete list of facet inequalities.
Additionally, by intersecting these facets with the NS subspace, we again find that inequalities that
have a larger quantum bound than local bound are constructed from CHSH. The best inequality in
terms of distance between local and quantum bounds in 32 + 1 is a sum of two CHSH.

4.2. Cutting with I3322

We repeated the “cutting” procedure using the I3322 inequality instead of CHSH. There are two
other versions (in fact many more: any relabeling as discussed in Section 2.5) of I3322 that we can use.
One of them is Iperm

3322 , which we previously introduced. The other is the symmetrized version of I3322:

Isym
3322 =

-1 -1 0
-1 0 1 1
-1 1 -1 1
0 1 1 -1

≤ 0

These inequalities are equivalent in the NS subspace, but when extended to the one-bit space
they become inequivalent. Therefore, each cut gives a different number of vertices and facets. Cutting
with I3322, we obtained 513 inequivalent facets, 151 of them having a larger quantum bound than local
bound in the NS subspace. The cut with Isym

3322 yields 642 inequivalent inequalities, 171 of them having a
quantum advantage in the NS subspace. Finally, Iperm

3322 gives 634 facets, 174 with a quantum advantage
in the NS subspace.

We grouped all these inequalities together, and removed equivalent inequalities. We ended up
with a total of 667 inequalities, 184 of which have a stronger quantum bound than local bound.
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We found the same construction as before, and inequalities are constructed out of inequalities of
the Bell polytope. For example, we found the same facet inequalities for 33 + 1 that reduce to the sum
of two I3322 in the NS subspace.

We also attempted to directly solve the full polytope. At the moment when we extracted the list
of inequalities generated with the full polytope, the number of inequalities had not increased in the
last two months. We thus conjecture that the list of 668 facet inequalities is complete.

5. Conclusions

We present a method and notation to find facets of Bell scenarios supplemented by one bit of
classical communication. The notation we used simplifies the study of one-bit inequalities, especially
with respect to their intersection with NS subspace. Even though the one-bit polytope is difficult to
directly solve, we were able to find an extensive list of facets that we conjecture to be complete. In the
33 + 1 scenario, we found no quantum violation of the one-bit bound. Given the structure of 33 + 1
facets, and assuming our conjecture is correct, we proved that the obtained statistics by choosing
between three projective measurements on any two-qubit quantum state can be reproduced by one
bit of classical communication between parties. Our results also imply that, in this scenario, Alice
must send one bit at least half of the time on average to Bob in order for the two parties to reproduce
quantum correlations. These findings constitute a step further toward answering the binary-answer
question raised in Section 1. Our results provide a better understanding of the general structure of
Bell inequalities supplemented by one bit. Indeed, we found that, by intersecting the facets of the C
polytope with the NS subspace, we derive inequalities that are constructed from Bell inequalities of
the corresponding scenario without communication. This can be a starting point to guess new facets
for scenarios where Bell inequalities are known.

The next scenarios to tackle are 34 + 1, 43 + 1, and 44 + 1. An important point is that our results
show that the best inequalities we found in terms of distance between local and quantum bounds
are sums of the same Bell inequality of the corresponding Bell scenario; for example, for 33 + 1, the
best inequality is a sum of two Bell inequalities from 33. If this is a general trend for Bell scenarios
supplemented by one bit of communication, in order to find a violation of the one-bit bound we require
that Bell inequalities of the corresponding Bell scenario should be:

(1) maximally violated by a partially entangled state; and
(2) have a quantum bound that is more than halfway between local and one-bit bounds.

Only starting from four settings on one side and three on the other do we have partially entangled
states maximally violating a facet Bell inequality [25]. In addition, in the 44 + 1 scenario, states
that maximally violate Bell inequalities are, in most cases, very close to maximally entangled [25].
Furthermore, for polytopes of higher dimension than the 44 scenario [26], we still do not know the
complete list of facets, which complicates the problem even more. All of these points are quite negative
in the perspective of solving the binary-answer question; nevertheless, there are possible avenues to get
closer to the solution. An idea is to generate facets from subpolytopes of such complicated scenarios,
but one has to be lucky to find optimal inequalities in terms of communication. Another possibility is
to guess inequalities using known Bell inequalities, at least up to four settings for each party.

Supplementary Materials: The following are available online at http://www.mdpi.com/1099-4300/21/2/171/s1.
Table S1: Conjectured complete list of tight Bell + 1 inequalities with three settings for both parties. Coefficients
for each inequality are given in the following order: d00 d01 d02 d10 d11 d12 d20 d21 d22 e00 e01 e02 e10 e11 e12 e20 e21
e22 f0 f1 f2. For each inequality, we give local bound L, two-qubit quantum bound Q, one bit of communication
bound C, and quantum state that achieves the largest quantum bound |ψ(θmax)〉 = cos θmax|00〉+ sin θmax|11〉.
All quantities were computed for nondegenerate measurements.
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Appendix A. Examples of 33 + 1 Facets and Complete List

In this appendix, we give examples of 33 + 1 facets, along with their NS intersection and
connection to Bell inequalities. We start with a 33 + 1 facet, shown in Table A1, that reduces to
the sum of two CHSH inequalities in the NS subspace (inequality 349 in our Table S1).

Table A1. Facet of 33 + 1, for which the quantum bound is
√

2− 1, for a local bound of zero and
a one-bit bound of one. When intersected with the NS space, this inequality reduces to a sum of
CHSH inequalities.

0 -1 0 1
0 0 0

0 0 1 -1
0 0 0

-2 1 1 2
0 -1 -1

≤ 1 NS−→
0 -1 -1

0 -1 0 1
0 0 1 -1
-2 1 1 2

≤ 1

This inequality corresponds, in the NS subspace, to a sum of one CHSH inequality that uses Alice’s
inputs x = 0, 2 and Bob’s inputs y = 0, 2, and another CHSH that uses x = 1, 2 and y = 1, 2. Therefore,
the quantum bound of this inequality is

√
2− 1 ≈ 0.4142, which is twice the amount of violation for

CHSH. The quantum bound is obtained for the maximally entangled state 1/
√

2(|00〉+ |11〉).
One can also have a single I3322 contained in the facet, as the example in Table A2 shows (inequality

number 529):

Table A2. Facet of 33 + 1, for which the quantum bound is 0.25, for a local bound of zero and a one-bit
bound of one. When intersected with the NS space, this inequality reduces to I3322. In fact, we see
that it corresponds to Isym

3322 if we permute Alice’s inputs x = 1 and x = 2. This inequality is maximally
violated by the maximally entangled state, and its quantum bound is the I3322 quantum bound.

-1 0 1 1
0 0 -1

0 1 1 -1
-1 -1 1

-1 1 -1 1
0 0 0

≤ 1 NS−→
-1 -1 0

-1 0 1 1
0 1 1 -1
-1 1 -1 1

≤ 1

In Table A3, we give an example of a facet which when intersected with the NS space reduces
to a CHSH inequality and some other terms. Despite the extra terms, its quantum bound is the
maximum violation of CHSH, attained for a maximally entangled state. This inequality is number 380
in Table S1, and it is similar to the inequality of Table 5, in the sense that both are constructed from Bell
inequalities, and have some extra terms that do not contribute to the quantum bound. If we remove
these extra terms, the quantum and local bounds would therefore not change. Understanding how
these extra terms arise could lead to a better understanding of how to construct Bell + 1 inequalities
from Bell inequalities.
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Table A3. Facet of 33 + 1, for which the quantum bound is 1/2(
√

2− 1), for a local bound of zero
and a one-bit bound of one. When intersected with the NS space, this inequality reduces to a CHSH
inequality for two of each party’s inputs and some other terms. This inequality is maximally violated
by the maximally entangled state, and its quantum bound is the CHSH quantum bound.

0 -1 1 0
0 -1 1

-2 0 2 2
1 -1 -1

-1 1 1 0
-1 0 -1

≤ 1 NS−→
0 -2 -1

0 -1 1 0
-2 0 2 2
-1 1 1 0

≤ 1 =

0 -1 0
0 -1 1 0
0 0 0 0
-1 1 1 0

+

0 -1 -1
0 0 0 0
-2 0 2 2
0 0 0 0

≤ 1

Most inequalities of 33 + 1 have a quantum bound that is different than the CHSH bound, I3322 or
twice their amount. Most inequalities have quantum bounds that do not easily relate to Bell inequalities
for binary outcomes, up to three settings. As a final example, we show such an 33 + 1 facet and how its
NS intersection is constructed from CHSH and I3322 even if the quantum bound does not directly relate
to the maximal violations of the Bell inequalities. One such facet is inequality number 196 in Table S1.

Table A4. Facet of 33 + 1, for which the quantum bound is 0.4158, for a local bound of zero and a
one-bit bound of one. When intersected with the NS space, this inequality reduces to a sum of a CHSH
inequality for two of each party’s inputs and an I3322. This inequality is maximally violated by the
nonmaximally entangled state.

-1 0 1 1
0 0 0

-2 2 -1 2
-1 0 -1

0 2 1 -2
-1 -1 1

≤ 1 NS−→
-2 -1 0

-1 0 1 1
-2 2 -1 2
0 2 1 -2

≤ 1 =

-1 -1 0
-1 0 1 1
-1 1 -1 1
0 1 1 -1

+

-1 0 0
0 0 0 0
-1 1 0 1
0 1 0 -1

≤ 1

As shown in Table A4, facet number 196 corresponds to a sum of Isym
3322 and CHSH using inputs

x = 1, 2 of Alice and y = 0, 2 of Bob. maximum violation of 0.4158 is given by a partially entangled state:

|ψ〉 = 0.738|00〉+ 0.675|11〉 (A1)

and resistance to noise for this inequality is λ = 0.7830, larger than the resistance to noise of CHSH
(λCHSH = 0.7071), but lower than the resistance to noise of I3322 (λI3322 = 0.8).
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