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Abstract: In the management of intermodal transportation, incentive contract design problem has
significant impacts on the benefit of a multimodal transport operator (MTO). In this paper, we analyze a
typical water-rail-road (WRR) intermodal transportation that is composed of three serial transportation
stages: water, rail and road. In particular, the entire transportation process is planned, organized,
and funded by an MTO that outsources the transportation task at each stage to independent carriers
(subcontracts). Due to the variability of transportation conditions, the travel time of each transportation
stage depending on the respective carrier’s effort level is unknown (asymmetric information) and
characterized as an uncertain variable via the experts’ estimations. Considering the decentralized
decision-making process, we interpret the incentive contract design problem for the WRR intermodal
transportation as a Stackelberg game in which the risk-neutral MTO serves as the leader and the
risk-averse carriers serve as the followers. Within the framework of uncertainty theory, we formulate
an uncertain bi-level programming model for the incentive contract design problem under expectation
and entropy decision criteria. Subsequently, we provide the analytical results of the proposed model
and analyze the optimal time-based incentive contracts by developing a hybrid solution method which
combines a decomposition approach and an iterative algorithm. Finally, we give a simulation example to
investigate the impact of asymmetric information on the optimal time-based incentive contracts and to
identify the value of information for WRR intermodal transportation.

Keywords: intermodal transportation; asymmetric information; stackelberg game; uncertain
theory; entropy

1. Introduction

Water-rail-road (WRR) intermodal transportation is defined as a system that transfers the cargo from
an origin to a destination in one and the same intermodal transportation unit (e.g., a twenty-foot equivalent
unit (TEU) container) without handling of the goods themselves when changing modes by using three
different means of transport: water, rail and road. Compared to the unimodal one, the basic features of the
WRR intermodal transportation are: (1) the entire transportation process can be divided into a series of
sequential transportation stages; (2) three transportation modes are used for the carriage of cargos; (3) one
party, usually called multimodal transport operator (MTO), is responsible for the entire carriage and acts
as a principal. In particular, the MTO does not own any means of transport, and needs to outsource
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to specialized subcontractors who act as agents for all modes of transport in order to fulfill the whole
intermodal transportation chain. These subcontractors (carriers) might be a waterway operator, a railway
operator and a road haulier. Motivated by this, the study presented in this paper focuses on designing
contracts for the carriers engaging in the WRR intermodal transportation from the MTO’s perspective.

By being an experienced organizer in making optimal combinations of different modes of transport,
the MTO is responsible for the cargo-owner in the business of the WRR intermodal transportation, and
for the cargo’s complete journey from its original place of dispatch to its ultimate destination. Due to
the competitive environment in the market, the MTO pays more attention to reducing the door-to-door
delivery time, which is the total travel time of three serial transportation stages. One of the major reasons
for the fastest possible delivery is that the MTO wants the container to come back as soon as possible after
the delivery of cargo so that he can have a higher utilization ratio of the container and eventually earn
more freight. With such a concern, this paper aims at designing the time-based contracts offered by MTO
for the carriers to satisfy the cargo-owner’s needs by providing the optimized door-to-door services with
shorter delivery time.

In general, the travel time of each transportation stage depends on the respective carrier’s effort
level, which is a broad concept and has been widely used in the economics and management field.
In the intermodal transportation context, the effort level can be interpreted as the amount of human,
material and financial resources required to effectively improve transport capacity and efficiently complete
transportation task. For example, the carrier will incur a cost for assigning more drivers and upgrading
means of transport to shorten the travel time. As a matter of fact, there exists information asymmetry
between the MTO and the carriers because of maximizing their respective utilities in the decentralized
decision-making system. That is, the effort level is not only the carrier’s private information and unknown
to the MTO, but it is also at a cost to the carrier, and the carrier may not provide the effort level that
the MTO desires. This may lead to conflict between the carriers and the MTO and delay the travel
time. In the real situation, the carrier may ascribe the delay in delivery to the natural causes or force
majeure rather than his possible “lazy” behavior because the MTO cannot directly observe his action
(i.e., no sharing of information). Technically, one way of addressing this issue is for the MTO to introduce
communication and information technology for cargo tracking. On the other hand, from the operational
management point of view, the MTO can offer incentive contracts to the carriers based on the travel time
of their transportation stages to ensure that the carriers invest adequate efforts. Moreover, designing
the time-based incentive contract for WRR intermodal transportation is a decentralized decision-making
process that can be analyzed as a Stackelberg game in which the risk-neutral MTO serves as the leader and
the risk-averse carriers serve as the followers. With such a concern, the major purpose of this paper is to
develop a Stackelberg game approach to formulate the time-based incentive contract design problem for
WRR intermodal transportation.

Mathematically, the process of designing a time-based incentive contract can be modeled as a bi-level
programming problem. In the real world, due to the variability of transportation conditions (e.g., accidents,
failures and weather changes), the travel time of each transportation mode (stage) is not precisely known in
advance, thus, probability theory, fuzzy theory and uncertainty theory have been introduced to overcome
this issue. In some cases, sufficient historical data are known for travel time parameters and can be used
to characterize stochastic (objective) uncertainty by using stochastic programming techniques. However,
the travel times cannot be exactly predicted in advance when the MTO contracts with the carriers for the
first time. That is, no information about their probability distributions is known except for the experiences
and judgments of field experts, one must rely on fuzzy theory or uncertainty theory to handle the uncertain
information. However, some surveys showed that subjective uncertainty cannot be modeled by fuzzy
variables (numbers). This means that some real problems cannot be processed by fuzzy theory, because the
possibility measure has no self-duality property. Doing away with the self-duality property in mathematics
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may lead to counterintuitive results for modeling uncertain travel times (see Appendix A for details).
In order to deal with this type of uncertainty, Liu [1] founded an uncertainty theory that is a branch of
mathematics based on normality, monotonicity, self-duality, and countable subadditivity axioms. Within
the framework of uncertainty theory, we introduce a new version of utility function named mean-entropy
form as a measure of risk in which the entropy is more general than variance because entropy is free from
reliance on symmetrical uncertain distributions. Therefore, this paper aims to formulate an uncertain
bi-level programming model for the time-based incentive contract design problem in a WRR intermodal
transportation setting under expectation and entropy decision criteria.

1.1. Literature Review

This section presents a review of literature on the intermodal transportation problem, the contract
theory and the uncertain theory.

The first stream studies the intermodal transportation problem. The intermodal transportation is
defined as the transportation of a load from its origin to its destination by a sequence of at least two
transportation modes, in which the transfer from one mode to the next is performed at an intermodal
terminal [2]. Caris et al. [3] proposed new research themes concerning decision support for private
stakeholders as well as for public actors such as policy makers and port authorities in intermodal transport.
Lam and Gu [4] focused on developing innovative approaches in the area of enhanced intermodal network
design provided by freight integrators, which are to address cost minimisation, transit time minimisation,
and carbon footprint to better meet market needs. Verma and Verter [5] presented an analytical framework
for planning rail-truck intermodal transportation of hazmats, where a bi-objective optimization model
to plan and manage intermodal shipments is developed. Wang and Meng [6] considered a discrete
intermodal network design problem for freight transportation, in which the network planner needs to
minimize the total operating cost of carriers and hub operators under a general route choice model of
intermodal operators. Abbassi et al. [7] developed a new mathematical formulation and two solution
approaches for an intermodal transportation problem of agricultural products from Morocco to Europe to
minimise the transportation cost and the maximal overtime to delivery products. Wang et al. [8] presented
a bi-objective optimization formulation for the hub-and-spoke based road-rail intermodal transportation
network design problem by taking into account the expected value criterion and the critical value criterion.
For a detailed review of the intermodal transportation problem and its variations, interested readers can
refer to Arias and Fuentes [9] and Crainic et al. [10].

The second stream of literature related to our work is on the contract theory. Contract theory (Nobel
Memorial Prize in Economic Sciences 2016) has been highly successful and there are active research areas
in economics, finance and management. For example, Hart and Moore [11] explored whether the parties
can make up for this incompleteness to some extent by building into their contract a mechanism for
revising the terms of trade as each party receives information about benefits and costs. Holmström [12]
studied efficient contractual agreements in a principal-agent relationship under various assumptions
about what can be observed, and hence contracted upon, by both parties. Bolton and Scharfstein [13]
analyzed the optimal financial contract to balance the benefit of deterring predation by relaxing financial
constraints against the cost of exacerbating incentive problems. Christensen et al. [14] reviewed theoretical
and empirical work on financial contracting that is relevant to accounting researchers and discussed how
the use of accounting information in contracts enhances contracting efficiency. Grinblatt and Titman [15]
presented conditions for contract parameters that provide proper risk incentives for classes of investment
strategies. Chao et al. [16] discussed two contractual agreements by which product recall costs can be
shared between a manufacturer and a supplier to induce quality improvement effort. For learning contract
theory, we refer the interested reader to Bolton and Dewatripont [17].
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The third stream considers the uncertain theory. After the word “randomness” was used to represent
probabilistic phenomena, Knight [18] and Keynes [19] started to use the word “uncertainty” to represent
any non-probabilistic phenomena. The academic community also calls it Knightian uncertainty, Keynesian
uncertainty, or true uncertainty. As the scientific terminology evolves, the concept of uncertainty had
been interpreted either in terms of degrees of conviction [20], or as relative frequencies [21]. The latest
development was uncertainty theory founded by Liu [1] and refined by Liu [22] based on normality, duality,
subadditivity and product axioms. Since then, many experts and scholars began to pay attention to it and
investigated it [23–31]. Based on uncertain theory, Liu [22] presented the uncertain programming. With the
pioneering work of Liu [22], some work has been done on the extension of uncertain programming,
such as in multilevel programming [32], multi-objective programming [33] and goal programming [34].
Recently, uncertain theory has been used to develop the contract theory by several authors. For example,
Mu et al. [35] established an uncertain contract model for the rural migrant worker’s employment problem
to maximize the enterprise’s expected utility. Wang et al. [36] presented an uncertain contract model for
the price discrimination problem in labor market to maximize the employer’s expected welfare. Wu et al.
[37] discussed an uncertain contract problem with multi-dimensional incomplete information based on
the critical value criterion. Wang et al. [38] presented four classes of uncertain contract models in a project
management setting based on the expected value and the critical value criteria. Yang et al. [39] built two
classes of uncertain contract models for new product development and derived their respective optimal
incentive contracts. Fu et al. [40] considered an uncertain contract problem to implement an R&D project
through a menu of incentive contracts.

To clarify the novel features of this study, we detail the related research gaps of our paper as follows:

• This paper is distinct from the aforementioned work in that we consider an intermodal transportation
decentralized setting that can be analyzed as a Stackelberg game in which the risk-neutral MTO
serves as the leader and the risk-averse carriers serve as the followers from the point of view of
microeconomics.

• This is the first work in which the WRR intermodal transportation has been considered to evaluate
the uncertain travel time by domain expert’s knowledge, experience and professional feelings rather
than the probability which is on the basis of large sample size.

• There are no works addressing the uncertain contract problem in a WRR intermodal transportation
context. Hence, to fill this gap, this paper presents an uncertain bi-level programming approach
to formulate the time-based incentive contract design model for WRR intermodal transportation
uncertain travel time uncertainty.

1.2. Research Contributions and Outline

According to above-mentioned reasons, this study highlights some new points for the first time in the
WRR intermodal transportation area which can be useful for both academics and practitioners. The main
contributions of this study are outlined as follows:

• This paper employs uncertain variables to capture the characteristics of subjective uncertainty within
a WRR intermodal transportation field based on uncertainty theory. By doing so, the uncertain travel
time can be directly handled in the proposed modeling framework. Furthermore, the uncertain
distributions are flexible and diversified forms to quantify the travel time uncertainty when no
samples (sufficient historical data) are available.

• This paper adopts the expected utility and the mean-entropy utility functions to characterize MTO
and carriers’ profits, respectively. In particular, the MTO’s objective based on the expected utility
function is to maximize the expected profit. For the carriers, the entropy is used as a synonym for risk
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in the sense that uncertainty causes loss. Based on this, the mean-entropy utility allows the carrier to
maximize the linear combination of expected value and entropy of the carrier’s profit. Under these
two decision criteria, this paper presents an uncertain bi-level programming model to design the
time-based incentive contracts offered by the MTO.

• This paper develops a hybrid solution method by combining a decomposition method and an
iterative algorithm to obtain the parameters of the optimal time-based incentive contract and to
further identify the value of information. More specifically, the former approach divides the original
model into three sub-models by taking advantage of the structural characteristics. The latter approach
is to interactively solve the upper-level and lower-level programming problems in the equivalent
deterministic sub-models for deriving the analytical results of the proposed model.

The rest of the paper is organized as follows. Section 2 describes a modeling framework and presents
an uncertain bi-level programming model to design the incentive contract for the WRR intermodal
transportation. Section 3 derives the optimal time-based incentive contracts under symmetric and
asymmetric information and explores the effect of information asymmetry. Section 4 conducts a simulation
example to complement our analytical results. Finally, Section 5 provides conclusions and suggestions
for future studies. Preliminaries on uncertainty theory and proofs of all theorems are relegated to the
appendix for clarity of presentation.

2. Model Development and Description

In this section, we consider an MTO who is responsible for the entire WRR intermodal transportation
consisting of three stages that can be transported by the water, rail and road carriers in sequence (see
Figure 1). Aligning the conflicting goals of the MTO and carriers in the decentralized decision-making
process is one of the major challenges and the purpose of most contracts. In reality, there is asymmetry
information between the MTO and three carriers. That is, the carriers know their effort levels to accelerate
their respective transportation stages, but the MTO cannot directly and fully observe how much efforts
the carriers spend to shorten the travel time of their transportation stages. From the perspective of the
carrier, the effort level can be measured by the amount of human, material and financial resources spent in
improving transport capacity and accomplishing transportation task. As a result, the MTO should take
the lead to design and offer incentive contracts to the carriers. In this way, we can model the contracting
process as a Stackelberg game. Therefore, the sequence of the events in our model is described as follows:

• In Step 1, the MTO offers a take-it-or-leave-it incentive contract to three carriers simultaneously.
• In Step 2, three carriers accept or reject their contracts. If they accept, the water carrier first chooses

his effort level. Then, the rail carrier chooses his effort level after the water carrier has completed his
transportation stage, and the road carrier chooses his effort level after the rail carrier has completed
his transportation stage. If they reject, go back to Step 1.

• In Step 3, the MTO pays the carriers based on their realized travel times.

Next, we propose an uncertain bi-level programming approach to formulate the incentive contract
design model for the WRR intermodal transportation under uncertainty. In the following discussion, we
explicitly elaborate each part of the formulation, including the notations, decision variables, assumptions,
objective functions and constraints.

Model Formulation and Notations

To formally characterize the problem of interest, we introduce the following notations to be
used hereafter:

Decision variables:
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Figure 1. The sequence of the events in water-rail-road (WRR) intermodal transportation.

(w0i, w1i): the parameters of incentive contract i, where w0i represents the fixed payment and w1i
captures the incentive coefficient;

ei: the carrier i’ effort level for reducing the travel time of transportation stage i, such as assigning
more drivers and upgrading means of transport.

Parameters:
Ti(ei, ξi): the travel time of transportation stage i (non-negative uncertain variable);
Ci(ei): the effort cost incurred at transportation stage i;
Wi(Ti): the carrier i’ incentive contract offered by MTO;
T: the delivery time which is the total travel time, i.e., T = ∑3

i=1 Ti;
R(T): the MTO’s revenue;
π0

i : the carrier i’ reservation utility.
Assumptions:
Throughout this paper, the following assumptions are made in our model formulation.

(i) We assume that Ti(ei, ξi) = t0i − t1iei + ξi, i = 1, 2, 3, where t0i > 0 denotes the scheduled travel time
of transportation stage i for the all contracted cargoes, t1i > 0 measures the marginal impact of the
carrier i’ effort on shortening the announced travel time and ξi characterizes the uncertainty.

(ii) We assume that ξi = L (−ai, bi), i = 1, 2, 3, are mutually independent linear uncertain variables with
parameters left-width ai > 0 and right-width bi > 0.

(iii) We assume that the MTO designs the time-based incentive contracts to induce the
carriers to exert adequate efforts to complete their respective transportation stages, i.e.,
Wi(Ti) = w0i − w1iTi, i = 1, 2, 3.

(iv) We suppose that Ci(ei) =
1
2 λie2

i , i = 1, 2, 3, where λi > 0 represents cost coefficient. That is, when the
carrier inputs effort level in the respective transportation stage, he incurs a cost to shorten the travel
time.

(v) We suppose that the MTO’s revenue depends linearly on the delivery time, i.e., R(T) = r0 − r1T,
where r0 indicates the maximum revenue for the entire carriage and r1 means the loss per unit time.

In Assumption i, we define a linear function for modeling the relationship between the travel time
and the effort level. We believe that reality is more complicated. However, this linear function can
make analytical solutions accessible, thus enabling us to derive the closed form expression of the optimal
time-based incentive contract mechanism. Due to the lack of historical data, we use a linear uncertain
variable for computational purposes to reflect the uncertainty in Assumption ii. Note that the linear
uncertain variable is optional since some common uncertain variables such as zigzag uncertain variable
can be applied. Since the causes of travel time uncertainties are unrelated (i.e., the carriers are engaging in
different transportation stages), it is reasonable to assume that the uncertain components are independent.
In Assumption iii, this time-based incentive contract has been used in practice to induce the subcontractors
to increase their effort levels and complete their tasks earlier as proposed by Weitzman [41] and has
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been used by many researchers and practitioners, see Holmstrom and Milgrom [42]. In Assumption iv,
a quadratic cost function is made not only for expositional convenience but also in accordance with the
practical fact, which has been used in Yang et al. [39] and Tang et al. [43]. Assumption v is reasonable,
because the WRR intermodal transport is a time-limit system for the delivery. That is, the reduction of
delivery time by WRR intermodal transportation will lead to a reduction in financing costs, simply because
the interest payment period will be made shorter after the delivery time is shorter.

Objective functions:
According to the parties’ different philosophies of modeling uncertainty, the expected utility and

the mean-entropy utility functions (see Appendix B for details) are adopted to maximize the MTO’s and
carriers’ profits, respectively.

Expected utility: The main idea of the expected utility is to optimize the expected value of the MTO’s
profit, which can be expressed as

Π = E

[
R

(
3

∑
i=1

Ti (ei, ξi)

)
−

3

∑
i=1

Wi(Ti(ei, ξi))

]
, (1)

which is equal to her expected revenue minus her payment for three carriers.
Mean-entropy utility: The essential idea of the mean-entropy utility is to optimize the linear

combination of expected value and entropy of the carrier’s profit, which can be written as

πi = E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)] , i = 1, 2, 3, (2)

where ρi > 0 is the carrier i’s coefficient of risk aversion.
Constraints:
The individual rationality (IR) constraints, which guarantee the participation from the carriers, can be

expressed as

E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)] ≥ π0
i , i = 1, 2, 3. (3)

The incentive compatibility (IC) constraints, which induce the carriers to improve effort levels, can be
expressed as

ei ∈ arg max
e′i≥0

(E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)]) , i = 1, 2, 3. (4)

Using the above objectives and constraints, the incentive contract design problem for the WRR
intermodal transportation can be stated as the following uncertain bi-level programming model:

max
(w0,w1)

Π = E
[

R
(

∑3
i=1 Ti

(
e∗i , ξi

))
−∑3

i=1 Wi(Ti(e∗i , ξi))
]

subject to:
E
[
Wi(Ti(e∗i , ξi))− Ci(e∗i )

]
− ρi H

[
Wi(Ti(e∗i , ξi))− Ci(e∗i )

]
≥ π0

i , i = 1, 2, 3
w0i ≥ 0, i = 1, 2, 3
w1i ≥ 0, i = 1, 2, 3,
(e∗1 ,e∗2 ,e∗3) solves the following problem Pi, i = 1, 2, 3

Pi :


max

ei
πi = E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)]

subject to:
ei ≥ 0.

(5)
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Our formulation is based on the model developed by Wang et al. [38]. Several novelties made by this
paper relative to Wang et al. [38] are emphasized here. Firstly, in view of the studied problems, this paper
studies a WRR intermodal transportation problem which is very different from the problem proposed in
Wang et al. [38] that considered the project management problem. Secondly, in terms of proposed models,
we give a mean-entropy utility function to characterize the philosophy of modeling uncertainty, but the
entropy decision criterion was not used in Wang et al. [38]. Thirdly, based on the bi-level model, we study
the impacts of model parameters on the information value of the effort (see Section 3.3), which was not
discussed by Wang et al. [38]. By considering these three features, we take the first initiative to analyze the
cooperation between the MTO and the carriers from a Stackelberg game of view, which contributes a new
perspective to intermodal transportation theory and entropy theory.

In this paper, we analyze two cases to derive insights into which contract structures are appropriate in
different information structures and investigate the impact of asymmetric information. For easy reference,
we label the Cases S and A that will be studied in this paper. The first Case S represents the symmetric
information scenario in which the carrier’s effort level is public information. The second Case A represents
the asymmetric information scenario in which the carrier’s effort level is private information. In the
following section, we will study each of these scenarios separately.

3. Optimal Time-Based Incentive Contracts Design

3.1. Symmetric Information Case

To explore the influence of asymmetric information, as a benchmark we first derive the optimal
time-based incentive contracts when the MTO can directly contract on the carriers’ effort levels e.
Thus, the IC constraints (4) in Model (5) are no longer required. Under symmetric information, the
MTO specifies the effort levels e to optimize her expected profit for the carriers by writing a contract
(w0, w1) that solves the following mathematical programming model:

max
(w0,w1,e)

ΠS = E
[

R
(

∑3
i=1 Ti (ei, ξi)

)
−∑3

i=1 Wi(Ti(ei, ξi))
]

subject to:
E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)] ≥ π0

i , i = 1, 2, 3
w0i ≥ 0, i = 1, 2, 3
w1i ≥ 0, i = 1, 2, 3.

(6)

By computational methods for the expected value and Lemma A2, the MTO’s expected profit is
defined in Theorem 1.

Theorem 1. Assume that the travel time of three transportation stages are mutually independent linear uncertain
variables. Under Case S, the objective function of Model (6) can be written as

ΠS = E

[
3

∑
i=1

R (Ti (ei, ξi))

]
− E

[
3

∑
i=1

Wi(Ti(ei, ξi))

]
− 2r0.

Proof. See Appendix C.

According to Theorem 1 and Lemma A3, we first decompose the Model (6) into three uncertain
sub-models, and then derive the deterministic equivalent mathematical model in the following corollaries.
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Corollary 1. By Theorem 1, Model (6) can be decomposed into the following three sub-models:

max
(w0i ,w1i ,ei)

ΠS
i = E [R (Ti (ei, ξi))]− E [Wi(Ti(ei, ξi))]

subject to:
E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)] ≥ π0

i
w0i ≥ 0
w1i ≥ 0,

(7)

where i = 1, 2, 3 and ΠS = ΠS
1 + ΠS

2 + ΠS
3 − 2r0.

Corollary 2. By Lemma A3, the sub-model (7) can be transformed to the following deterministic
mathematical programming:

max
(w0i ,w1i ,ei)

ΠS
i = r0 − w0i − 1

2 (r1 − w1i)(2(t0i − t1iei)− ai + bi)

subject to:
w0i − 1

2 w1i(2(t0i − t1iei)− ai + bi)− 1
2 λie2

i −
1
2 ρiw1i(bi + ai) ≥ π0

i ,
w0i ≥ 0
w1i ≥ 0,

(8)

where i = 1, 2, 3.

Recognizing that the IR constraint of sub-model (8) will bind at the optimum and the carrier receives
his reservation profit under Case S, we can design an efficient algorithm denoted as Algorithm 1 to solve
sub-model (8). This procedure is described below:

Algorithm 1

1: Shows that the IR constraint of the sub-model (8) is binding.
2: Finds the optimal effort level by substituting the expected payment into the objective function of the

sub-model (8) with the first-order condition.

Theorem 2 shows that the optimal time-based incentive contracts for the WRR intermodal
transportation defined by Algorithm 1 under symmetric information case.

Theorem 2. Under Case S, the MTO’s optimal time-based incentive contracts are given by

w∗1i = 0,

w∗0i = π0
i ,

for i = 1, 2, 3.

Proof. See Appendix C.

Theorem 2 gives closed form of the optimal time-based incentive contract mechanisms (w∗0 , w∗1)
under Case S. It is worth noting that the optimal incentive term w∗1 , regardless of risk aversion levels, is
equal to 0 and the MTO sets the same values of w∗1 to the carriers in this case. This can be explained as
follows: when MTO can directly contract on the carriers’ effort levels, she does not need to motivate the
carriers. In other words, the symmetric information case can be considered as a centralized one. Unlike
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the incentive coefficient w∗1 , the base payment w∗0 in the optimal incentive contract depends on their
reservation utilities. The intuition behind this is that the fixed payment is set to make sure that the carriers
would accept the optimal time-based incentive contracts. According to Theorem 2, the corresponding
effort level for carrier i under Case S is given as e∗i = r1t1i

λi
, i = 1, 2, 3. Because the MTO can always request

the effort level to be set at her optimum, there is no hidden effort level problem.
In short, the results under this case serve as a reference for the deriving results of the alternative cases

studied. In this way, we can see why the asymmetric information is crucial to the optimal time-based
incentive contract and further investigate the impact of asymmetric information on the optimal time-based
incentive contracts for WRR intermodal transportation.

3.2. Asymmetric Information Case

Under asymmetric information, the carrier’s effort level for respective transportation stage is his
private information. In this case, the carrier sets his effort level so as to maximize his own mean-entropy
utility because it cannot be imposed as part of the contract terms. Under Case A, the MTO has to ensure
that the contracts are incentive compatible in Model (5).

Similar to our analysis of the symmetric information in Section 3.1, we may encounter the difficulty
of calculating the expected value and entropy value in the upper-level and lower-level programming
problems in Model (5), respectively. To overcome these difficulties, we transform the bi-level programming
model into its deterministic equivalent one.

Theorem 3. Assume that the travel times of three transportation stages are mutually independent linear uncertain
variables. Under Case A, the objective function of the upper-level problem of Model (5) can be written as

ΠA = E

[
3

∑
i=1

R (Ti (e∗i , ξi))

]
− E

[
3

∑
i=1

Wi(Ti(e∗i , ξi))

]
− 2r0.

Proof. See Appendix C.

On the basis of Theorem 3 and Lemma A3, the deterministic equivalent mathematical model is
derived in the following corollaries.

Corollary 3. According to Theorem 3, Model (5) can be decomposed into the following three sub-models:

max
(w0i ,w1i)

ΠA
i = E

[
R
(
Ti
(
e∗i , ξi

))]
− E

[
Wi(Ti(e∗i , ξi))

]
subject to:

E
[
Wi(Ti(e∗i , ξi))− Ci(e∗i )

]
− ρi H

[
Wi(Ti(e∗i , ξi))− Ci(e∗i )

]
≥ π0

i
w0i ≥ 0
w1i ≥ 0,
e∗i solves problems the following problem Pi,

Pi :


max

ei
πA

i = E [Wi(Ti(ei, ξi))− Ci(ei)]− ρi H [Wi(Ti(ei, ξi))− Ci(ei)]

subject to:
ei ≥ 0.

(9)

where i = 1, 2, 3 and ΠA = ΠA
1 + ΠA

2 + ΠA
3 − 2r0.
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Corollary 4. According to Lemma A3, the uncertain bi-level programming sub-model (9) an be transformed to the
following deterministic mathematical programming:

max
(w0i ,w1i)

ΠA
i = r0 − w0i − 1

2 (r1 − w1i)(2(t0i − t1ie∗i )− ai + bi)

subject to:
w0i − 1

2 w1i(2(t0i − t1ie∗i )− ai + bi)− 1
2 λi(e∗i )

2 − 1
2 ρiw1i(bi + ai) ≥ π0

i
w0i ≥ 0
w1i ≥ 0,
e∗i solves problems the following problem Pi,

Pi :


max

ei
πA

i = w0i − 1
2 w1i(2(t0i − t1iei)− ai + bi)− 1

2 λie2
i −

1
2 ρiw1i(bi + ai)

subject to:
ei ≥ 0.

(10)

Taking advantage of the structural characteristics of the deterministic model (10), we suggest an
iterative Algorithm 2 to solve each deterministic sub-problem. The solution process can be divided into
two steps, which is described as follows:

Algorithm 2

1: Determine the optimal solution of the lower-level programming problem by using the first-order
condition and substitute it into the IR constraint in the upper-level programming problem.

2: Show that the IR constraint is binding and substitute the expected payment into the objective function
of the upper-level programming problem of which the optimal solution is easily obtained by using the
first-order condition.

By Algorithm 2, we can obtain the following theorem characterizing the optimal time-based incentive
contracts offered by the MTO under asymmetric information case.

Theorem 4. Under Case A, the MTO’s optimal time-based incentive contracts are given by

w∗∗1i = r1 − λiρi(ai+bi)

2t2
1i

,

w∗∗0i = 1
2 w∗∗1i (2t0i + (ρi − 1)ai + (ρi + 1)bi)− 1

2 (w
∗∗
1i )

2 t2
1i

λi
+ π0

i ,

for i = 1, 2, 3.

Proof. See Appendix C.

Theorem 4 provides us with closed form expression of the optimal time-based incentive contract
mechanisms

(
w∗∗0 , w∗∗1

)
under Case A. This theorem interprets that the carrier i’s risk aversion level ρi has

an impact on the optimal time-based incentive contract mechanism
(
w∗∗0i , w∗∗1i

)
. The managerial insight of

Theorem 4 is that the MTO should design the incentive contract for the carrier i based on his risk aversion
level ρi in the decision making process. By Theorem 4, the corresponding effort level for carrier i under
Case A is given as e∗∗i = r1t1i

λi
− ρi(ai+bi)

2t1i
, i = 1, 2, 3. In can be seen that the optimal effort level e∗∗i decreases

in ρi. That is, the MTO has to induce the conservative carriers to improve effort level to accelerate their
respective transportation stages.
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3.3. Effect of Information Asymmetry

In this subsection, we draw a comparison between the optimal time-based incentive contract offered
by the MTO under symmetric and asymmetric information cases to understand the effect of information
asymmetry. It is intuitive that information asymmetry will introduce distortions in the optimal decisions
for the MTO and the carriers.

Corollary 5. By comparing the optimal time-based incentive contract under symmetric information with that under
asymmetric information, we can obtain w∗1i < w∗∗1i , for i = 1, 2, 3.

Corollary 5 shows that the optimal incentive coefficient under asymmetric information is greater
than its optimal value in the benchmark-setting of symmetric information. The optimal incentive term
is distorted upward by λiρi(ai+bi)

2t2
1i

under Case A. This is an expected result because the carrier must be

provided with information rent, which distorts the incentive term upward.

Corollary 6. The carrier i’s optimal effort level associated with the symmetric information case and asymmetric
information case satisfy e∗i > e∗∗i , for i = 1, 2, 3.

The intuition behind Corollary 6 is as follows. The optimal time-based incentive contract under
the symmetric information case results in higher effort levels and hence shortens the travel time of
transportation compared to the optimal time-based incentive contract under asymmetric information case.

4. Simulation Analysis

To explore the characteristics of the model, we present a simulation example to study and analyze the
proposed models. With the reported results, we believe that these findings have significant implications
for practice and indicate the need for time-based incentive contracts. In this section, we consider a
WRR intermodal transportation instance, in which the water, rail and road transportation stages are
performed by carriers in sequence. In particular, an MTO plans, organizes, and funds the entire intermodal
transportation chain and subcontracts each transportation stage to the respective specialized carriers.

From the above-mentioned discussion, it can be inferred that we can make the obtained solution
more realistic by addressing the uncertainties. Specifically, the travel time of each transportation
stage depending on the carrier’s effort level is unknown and characterized as an uncertain
variable via the experts’ estimations. Without loss of generality, using a linear uncertain variable
Ti = L (t0i − t1iei − ai, t0i − t1iei + bi) to denote the travel time uncertainty with uncertainty distribution

Φ(x) =


0, x < t0i − t1iei − ai
x−t0i+t1iei+ai

ai+bi
, t0i − t1iei − ai ≤ x ≤ t0i − t1iei + bi

1, x > t0i − t1iei + bi,

for i = 1, 2, 3. In this simulation example, we set t01 = 48 h, t11 = 1 (h/effort), t02 = 36 h, t12 = 2 (h/effort),
t03 = 24 h, t13 = 3 (h/effort). For the sake of convenience, we set a1 = a2 = a3 = 2 h and b1 = b2 = b3 = 1
h, which are used for computational purposes to reflect the uncertainty in asymmetrical forms.

Facing travel time uncertainty, we consider differing perceptions of risk for the MTO and carriers.
More specifically, the risk-neutral MTO tends to maximize the expected profit based on the expected utility
and the risk-averse carriers maximize their certainty equivalent values which take the mean-entropy form.
For the sake of convenience, we set ρ1 = ρ2 = ρ3 = ρ, which is the parameter characterizing carriers’ risk
aversion levels. As mentioned in the previous section, the carrier i must bear the effort cost Ci =

1
2 λie2

i ,
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i = 1, 2, 3. Due to the difference in the transportation condition, we assume that λ1 = 1 (dollar/effort2),
λ2 = 3 (dollar/effort2) and λ3 = 5 (dollar/effort2). Taking into carriers’ outside opportunity consideration,
we let π0

1 = 100 (dollar), π0
2 = 300 (dollar) and π0

3 = 500 (dollar) be the corresponding reservation utilities.
As a matter of fact, the MTO can earn a higher profit if the entire transportation process is

completed faster. Based on this, considering that revenue decreases in the delivery time, we assume
that R = 3000− 10(T1 + T2 + T3). On the other hand, the MTO often cannot observe how much effort the
carriers use to reduce the travel time of their transportation stages. As a result, the MTO needs to offer the
time-based incentive contracts to the carriers for ensuring that the cargo will move to their destination as
fast as possible.

4.1. Computational Results

By Theorems 2 and 4, we can obtain the closed form expressions for optimal time-based incentive
contract and effort levels for the carriers under Cases S and A, which are shown in Table 1. Table 1 illustrates
that the optimal time-based incentive contract mechanisms

(
w∗∗01 , w∗∗11

)
,
(
w∗∗02 , w∗∗12

)
and

(
w∗∗03 , w∗∗13

)
are

determined by the carriers’ risk aversion levels ρ. Therefore, these obtained results can provide useful
guidance to the MTO for adjusting incentives coefficients based on the carriers’ risk aversion levels.

Table 1. Closed form expressions for optimal time-based incentive contract mechanism and effort level.

Scenario Carrier w0 w1 e

Water 100 0 10
Symmetric information Rail 300 0 20

3
Road 500 0 6

Water 1
2

(
10− 3

2 ρ
)
(95 + 3ρ)− 1

2

(
10− 3

2 ρ
)2

+ 100 10− 3
2 ρ 10− 3

2 ρ

Asymmetric information Rail 1
2

(
10− 9

4

)
(71 + 3ρ)− 2

3

(
10− 9

4

)2
+ 300 10− 9

8 ρ 20
3 −

3
4 ρ

Road 1
2

(
10− 5

2 ρ
)
(47 + 3ρ)− 9

10

(
10− 5

2 ρ
)2

+ 500 10− 5
2 ρ 6− 1

2 ρ

Next, we investigate the impact of the parameter ρ alteration on MTO’s expected profit under Cases
S and A. Figure 2 shows that the MTO’s expected profit ΠA relies on the risk aversion level ρ. More
specifically, red and blue lines represent the MTO’s expected profits ΠS and ΠA, respectively. In particular,
we examine the information value, which is defined as the difference between the MTO’s expected profits
with and without contracting on the carriers’ effort levels, i.e., IV = ΠS −ΠA. Figure 2 demonstrates that
the MTO can always benefit when she can contract on the carriers’ effort levels. Therefore, the results
suggest that from the MTO’s perspective, it is beneficial to have better information about the carriers’
effort levels.

4.2. Discussion

Based on the computational results, we give several managerial insights and interpretations:

• In can be seen from Table 1 that the incentive coefficients decrease with the risk aversion level. This is
an expected result because if the carriers are more conservative, the MTO should motivate the carriers
to exert higher effort levels.

• It can be observed from Figure 2 that as the risk aversion level ρ increases, the MTO’s expected profit
ΠA decreases while ΠS remains the same. The rationale is that the MTO will lose more profits when
the carriers become more conservative.
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Figure 2. Impact of risk aversion level on the multimodel transport operator’s (MTO’s) expected profit.

• As shown in Figure 2, we can find that as the risk aversion level ρ increases, the value of information
IV is increasing. That is, the more conservative the carriers are, the greater the value of information
will be. The intuitive explanation for this result is that acquiring information of the effort becomes
important for the MTO if the carriers become more conservative.

5. Conclusion and Future Research

In this paper, we addressed the uncertain incentive contract design problem with an MTO and three
carriers working in sequence in a WRR intermodal transportation setting. For modeling travel time
uncertainty, we formulated an uncertain bi-level programming model for the incentive contract design
problem under the expectation and the entropy decision criteria based on the uncertainty theory. Taking
advantage of the structural characteristics, we first divided the original model into three sub-models and
then used an iterative algorithm to derive closed-form expressions for the optimal time-based incentive
contracts. To broaden the scope of application of this model, we implemented a simulation example in a
WRR intermodal transportation setting. The computational results show that the MTO is more willing to
acquire the carrier’s effort level information under the uncertain travel time environment by using the
numerical analysis.

Finally, we conclude by providing some directions for future research. In this paper, we assumed that
the travel times of the transportation stages are mutually independent. A further research path could be to
study the case where the travel times are correlated. Another alternative setting is one where the carrier
may wish to utilize her resources more effectively by varying her effort level over time, which might
extend our static model to the dynamic environment. Last but not least, the other heuristic algorithms for
increasing the performance of achievements could also be considered in future research.
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Appendix A. Why is Fuzzy Variable not Suitable for Uncertain Travel Time?

A fuzzy variable is a function from a possibility space to the set of real numbers. Some people think
that fuzzy variable is a suitable tool for modeling uncertain travel time. Is it really true? Unfortunately,
the answer is negative.

When asked about the travel time, we can expresses the subjective judgment by the terms “about
24 h”. If “about 24 h” is regarded as a fuzzy concept, then we may assign it a membership function, say

µ(x) =

{
(x−22)

2 , if 22 ≤ x ≤ 24
25− x, if 24 ≤ x ≤ 25.

This membership function represents a triangular fuzzy variable (22, 24, 25). We choose such a
membership function because it is not important for the focus of debate. Based on the membership
function µ and the definition of possibility measure

Pos{B} = sup
x∈B

µ(x),

the fuzzy theory will immediately conclude the following three propositions:

(a) the travel time is “exactly 24 h” with possibility measure 1;
(b) the travel time is “not 24 h” with possibility measure 1;
(c) “exactly 24 h” and “not 24 h” are equally likely.

However, it is doubtless that the belief degree of “exactly 24 h” is almost zero. On the other hand,
“exactly 24 h” and “not 24 h” have the same belief degree in possibility measure. Thus, we have to regard
them as “equally likely”. It seems that no human being can accept this conclusion. This paradox shows that
this imprecise travel time like “about 24 h” cannot be quantified by fuzzy variable because the possibility
measure has no self-duality property. From the above discussion, we can see that the fuzzy variable is not
suitable for modeling uncertain travel time in mathematics and may lead to wrong results in practice.

Appendix B. Preliminaries on Uncertainty Theory

Definition A1. Liu [1] Let Γ be a nonempty set, and L be a σ−algebra over Γ. A set functionM is called an
uncertain measure if it satisfies the following four axioms,

Axiom 1 (Normality Axiom)M {Γ=1} for the universal set Γ.
Axiom 2 (Duality Axiom)M{Λ}+M{Λc}=1 for any event Λ ∈ L.
Axiom 3 (Subadditivity Axiom) For every countable sequence of event Λ1, Λ2, ..., we have

M{
∞⋃

i=1

Λi} ≤
∞

∑
i=1
M{Λi}.

In this case, the triple(Γ, L,M) is called an uncertainty space.
Axiom 4 (Product Axiom) Liu [44] Let (Γk, Lk, Mk) be uncertainty spaces for k = 1, 2, .... The product

uncertain measureM is an uncertain measure satisfying

M{
∞

∏
k=1

Λk} =
∞∧

k=1

Mk{Λk},
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where Λk are arbitrarily chosen events from Lk for k = 1, 2, ..., respectively.

Definition A2 ([1]). An uncertain variable is a measurable function ξ from an uncertainty space (Γ,L,M) to the
set of real numbers, i.e., for any Borel set B of real numbers, the set

{ξ ∈ B} = {γ ∈ Γ|ξ(γ) ∈ B}

is an event.

Definition A3 ([1]). The uncertainty distribution Φ of an uncertain variable ξ is defined by

Φ(x) =M{ξ ≤ x}

for any real number x. Moreover, if the uncertainty distribution Φ(x) is continuous. Then for any real number x,
we have

M{ξ ≥ x} = 1−Φ(x),

which indicates that uncertain measureM is self-dual.

Definition A4 ([1]). An uncertainty distribution Φ(x) is said to be regular if it is a continuous and strictly
increasing function with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1.

Definition A5 ([22]). Let ξ be an uncertain variable with regular uncertainty distribution Φ. Then the inverse
function Φ−1(α) is called the inverse uncertainty distribution of ξ.

Definition A6 ([1]). Let ξ be an uncertain variable. Then the expected value of ξ is defined by

E[ξ] =
∫ +∞

0
M{ξ ≥ x}dx−

∫ 0

−∞
M{ξ ≤ x}dx

provided that at least one of the two integrals is finite. If ξ has an uncertainty distribution Φ, then the expected value
may be calculated by

E[ξ] =
∫ +∞

0
(1−Φ(x))dx−

∫ 0

−∞
Φ(x)dx

or equivalently,

E[ξ] =
∫ +∞

−∞
xdΦ(x).

If Φ is also regular, then

E[ξ] =
∫ 1

0
Φ−1(α)dα.

Definition A7 ([44]). Suppose that ξ is an uncertain variable with uncertainty distribution Φ. Then its entropy is
defined by

H[ξ] =
∫ +∞

−∞
S(Φ(x))dx,

where S(t) = −t ln t− (1− t) ln(1− t).
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Example A1. Suppose that ξ = L(a, b) is a linear uncertain variable where a and b are real numbers with a < b.
Its uncertainty distribution and inverse uncertainty distribution are given by

Φ(x) =


0, x < a
(x− a)/(b− a), a ≤ x ≤ b
1, x > b,

Φ−1(α) = (1− α)a + αb.

Furthermore, the expected value of ξ is

E[ξ] =
∫ 1

0
((1− α)a + αb)dα =

a + b
2

and the entropy of ξ is computed by

H[ξ] = −
∫ b

a

(
x− a
b− a

ln
x− a
b− a

+
b− x
b− a

ln
b− x
b− a

)
=

b− a
2

.

Definition A8 ([44]). The uncertain variables ξ1, ξ2, · · · , ξm are said to be independent if

M
{

m⋂
i=1

(ξi ∈ Bi)

}
=

m∧
i=1

M{ξi ∈ Bi},

for any Borel sets B1,B2, · · · ,Bm of real numbers.

Lemma A1 ([22]). Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regular uncertainty distributions
Φ1, Φ2, · · · , Φn respectively. If the function f (x1, x2, · · · , xn) is strictly increasing with respect to x1, x2, · · · , xm

and strictly decreasing with respect to xm+1, xm+2, · · · , xn, then

ξ = f (ξ1, ξ2, · · · , ξn)

is an uncertain variable with an inverse uncertainty distribution

Φ−1(α) = f (Φ−1
1 (α), · · · , Φ−1

m (α), Φ−1
m+1(1− α), · · · , Φ−1

n (1− α)).

Lemma A2 ([1]). Let ξ and η be independent uncertain variables with finite expected values. Then for any real
number a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Lemma A3 ([45]). Let ξ and η be independent uncertain variables. Then for any real numbers a and b, we have

H[aξ + bη] = |a|H[ξ] + |b|H[η].

Appendix C. Proofs of Theorems

Proof of Theorem 1. It is followed by Lemma A2.

Proof of Theorem 2. We employ the algorithm Algorithm 1 to solve Model (8), which is described
as follows.
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At optimality, the IR condition is binding. If it were not, we could replace w0i with w′0i < w0i. Since
the objective function is decreasing in w0i, w′0i improves the objective function. After substituting the fixed
payment into the objective function of Model (8), we have:

max
ei

ΠS
i = r0 −

1
2

r1 (2 (t0i − t1iei)− ai + bi)−
1
2

λi (ei)
2 − 1

2
ρiw1i(bi + ai)− π0

i ,

which is concave in ei. The maximum is completely characterized by the first-order condition

rit1i − λie∗i = 0,

which implies

e∗i =
r1t1i
λi

.

Substituting this into the objective function yields

max
w1i

ΠS
i = r0 +

1
2

r2
1t2

1,i

λi
− 1

2
ρiw1i(bi + ai)− π0

i ,

Because w1i ≥ 0, the optimal incentive term is w∗1i = 0 in Model (8). Following the determinate
optimal incentive coefficient w∗1i, the optimal fixed payment w∗0i can be obtained immediately.

Proof of Theorem 3. It is followed by Lemma A2.

Proof of Theorem 4. We use the iterative Algorithm 2 to solve Model (10), which is described as follows.

Step 1: The carriers i will choose e∗∗i to maximize his mean-entropy profit, that is the same
as maximizing

w0i −
1
2

w1i(2(t0i − t1iei)− ai + bi)−
1
2

λie2
i −

1
2

ρiw1i(bi + ai)− π0
i

which is concave in ei. The maximum is completely characterized by the first-order condition

w1it1i − λie∗∗i = 0,

which implies

e∗∗i =
w1it1i

λi
.

Substituting e∗∗i into Model (10) yields
max

(w0i ,w1i)
ΠA

i = r0 − w0i − 1
2 (r1 − w1i)

(
2
(

t0i − t1i
w1it1i

λi

)
− ai + bi

)
subject to:

w0i − 1
2 w1i(2(t0i − t1i

w1it1i
λi

)− ai + bi)− 1
2 λi(

w1it1i
λi

)2 − 1
2 ρiw1i(bi + ai) ≥ π0

i .

(A1)

Step 2: At optimality, the IR condition is binding. If it were not, we could replace w0i with w′0i < w0i.
Since the objective function is decreasing in w0i, w′0i improves the objective function. After substituting the
fixed payment into the objective function of Model (10), we have:

max
w1i

ΠA
i = r0 −

1
2

r1

(
2
(

t0i − t1i
w1it1i

λi

)
− ai + bi

)
− 1

2
λi

(
w1it1i

λi

)2
− 1

2
ρiw1i(bi + ai)− π0

i ,
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which is concave in w1i. As a consequence, the first-order condition is necessary and sufficient. By the
first-order condition, we can obtain w∗∗1i = r1 − λiρi(ai+bi)

2t2
1i

. Once the optimal incentive coefficient w∗∗1i is

determined, the optimal fixed payment w∗∗0i for carrier i can be obtained immediately. The proof of the
theorem is complete.
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