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Abstract: We establish an universal property of logarithmic loss in the successive refinement problem.
If the first decoder operates under logarithmic loss, we show that any discrete memoryless source is
successively refinable under an arbitrary distortion criterion for the second decoder. Based on this
result, we propose a low-complexity lossy compression algorithm for any discrete memoryless source.
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1. Introduction

In the lossy compression problem, logarithmic loss is a criterion allowing a “soft” reconstruction
of the source, a departure from the classical setting of a deterministic reconstruction. In this setting,
the reconstruction alphabet is the set of probability distributions over the source alphabet. More
precisely, let x be the source symbol from the source alphabet X , and q(·) be the reconstruction symbol
which is the probability measure on X . Then the logarithmic loss is given by

`(x, q) = log
1

q(x)
.

Clearly, if the reconstruction q(·) has a small probability on the true source symbol x, the amount
of loss will be large.

Although logarithmic loss plays a crucial role in the theory of learning and prediction, relatively
little work has been done in the context of lossy compression, notwithstanding the two-encoder
multi-terminal source coding problem under logarithmic loss [1,2], or recent work on the single-shot
approach to lossy source coding under logarithmic loss [3]. Note that lossy compression under
logarithmic loss is closely related to the information bottleneck method [4–6]. In this paper, we focus
on universal properties of logarithmic loss in the context of successive refinement.

Successive refinement is a network lossy compression problem where one encoder wishes
to describe the source to two decoders [7,8]. Instead of having two separate coding schemes,
the successive refinement encoder designs a code for the decoder with a weaker link, and sends
extra information to the second decoder on top of the message of the first decoder. In general,
successive refinement coding cannot do as well as two separate encoding schemes optimized for the
respective decoders. However, if we can achieve the point-to-point optimum rates using successive
refinement coding, we say the source is successively refinable.

Although necessary and sufficient conditions of successive refinability is known [7,8], proving
(or disproving) successive refinability of the source is not a simple task. Equitz and Cover [7] found a
discrete source that is not successively refinable using Gerrish problem [9]. Chow and Berger found a
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continuous source that is not successively refinable using Gaussian mixture [10]. Lastras and Berger
showed that all sources are nearly successively refinable [11]. However, still only a few sources are
known to be successively refinable. In this paper, we show that any discrete memoryless source is
successively refinable as long as the weaker link employs logarithmic loss, regardless of the distortion
criterion used for the stronger link.

In the second part of the paper, we show that this result can be useful to design a lossy compression
algorithm with low complexity. Recently, the idea of successive refinement is applied to reduce the
complexity of point-to-point lossy compression algorithm. Venkataramanan et al. proposed a new lossy
compression for Gaussian source where the codewords are linear combination of sub-codewords [12].
No and Weissman also proposed a low-complexity lossy compression algorithm for Gaussian source
using extreme value theory [13]. Both algorithms are successively describing source and achieve low
complexity. Roughly speaking, successive refinement algorithm provides a smaller size of codebook.
For example, the naive random coding scheme has a codebook of size enR when the blocklength is n
and the rate is R. On the other hand, if we can design a successive refinement scheme with half rate
in the weaker link, then the size of codebook is enR/2 each. Thus, the overall codebook size is 2enR/2.
The above idea can be generalized to successive refinement scheme with L decoders [12,14]

The universal property of logarithmic loss in successive refinement implies that, for any
point-to-point lossy compression of discrete memoryless source, we can insert a virtual intermediate
decoder (weaker link) under logarithmic loss without losing any rates at the actual decoder (stronger
link). As we discussed, this property allows us to design a lossy compression algorithm with
low-complexity for any discrete source and distortion pair. Note that previous works only focused on
specific source and distortion pair such as binary source with Hamming distortion.

The remainder of the paper is organized as follows. In Section 2, we revisit some of the known
results pertaining to logarithmic loss. Section 3 is dedicated to successive refinement under logarithmic
loss in the weaker link. In Section 4, we propose a low complexity compression scheme that can be
applied to any discrete lossy compression problem. Finally, we conclude in Section 5.

Notation: Xn denotes an n-dimensional random vector (X1, X2, . . . , Xn) while xn denotes a specific
possible realization of the random vector Xn. X denotes a support of random variable X. Also, Q
denotes a random probability mass function while q denotes a specific probability mass function. We
use natural logarithm and nats instead of bits.

2. Preliminaries

2.1. Successive Refinability

In this section, we review the successive refinement problem with two decoders. Let the source
Xn be i.i.d. random vector with distribution pX . The encoder wants to describe Xn to two decoders by
sending a pair of messages (m1, m2) where 1 ≤ mi ≤ Mi for i ∈ {1, 2}. The first decoder reconstructs
X̂n

1 (m1) ∈ X̂ n
1 based only on the first message m1. The second decoder reconstructs X̂n

2 (m1, m2) ∈ X̂ n
2

based on both m1 and m2. The setting is described in Figure 1.

Xn Enc Dec 1

Dec 2

X̂n
1

X̂n
2

m1

m2

Figure 1. Successive Refinement.

Let di(·, ·) : X × X̂i→[0, ∞) be a distortion measure for i-th decoder. The rates of code (R1, R2)

are simply defined as



Entropy 2019, 21, 158 3 of 12

R1 =
1
n

log M1

R2 =
1
n

log M1M2.

An (n, R1, R2, D1, D2, ε)-successive refinement code is a coding scheme with block length n and
excess distortion probability ε where rates are (R1, R2) and target distortions are (D1, D2). Since we
have two decoders, the excess distortion probability is defined by Pr

[
di(Xn, X̂n

i ) > Di for some i
]
.

Definition 1. A rate-distortion tuple (R1, R2, D1, D2) is said to be achievable if there is a family of
(n, R(n)

1 , R(n)
2 , D1, D2, ε(n))-successive refinement code where

lim
n→∞

R(n)
i = Ri for all i,

lim
n→∞

ε(n) = 0.

For some special cases, both decoders can achieve the point-to-point optimum
rates simultaneously.

Definition 2. Let Ri(Di) denote the rate-distortion function of the i-th decoder for i ∈ {1, 2}. If the
rate-distortion tuple (R1(D1), R2(D2), D1, D2) is achievable, then we say the source is successively refinable
at (D1, D2). If the source is successively refinable at (D1, D2) for all D1, D2, then we say the source is
successively refinable.

The following theorem provides a necessary and sufficient condition of successive
refinable sources.

Theorem 1 ([7,8]). A source is successively refinable at (D1, D2) if and only if there exists a conditional
distribution pX̂1,X̂2|X such that X− X̂2 − X̂1 forms a Markov chain and

Ri(Di) = I(X; X̂i)

E
[
di(X, X̂i)

]
≤ Di

for i ∈ {1, 2}.

Note that the above results of successive refinability can easily be generalized to the case of
k decoders.

2.2. Logarithmic Loss

Let X be a set of discrete source symbols (|X | < ∞), andM(X ) be the set of probability measures
on X . Logarithmic loss ` : X ×M(X )→[0, ∞] is defined by

`(x, q) = log
1

q(x)

for x ∈ X and q ∈ M(X ). Logarithmic loss between n-tuples is defined by

`n(xn, qn) =
1
n

n

∑
i=1

log
1

qi(xi)
,

i.e., the symbol-by-symbol extension of the single letter loss.
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Let Xn be the discrete memoryless source with distribution pX . Consider the lossy compression
problem under logarithmic loss where the reconstruction alphabet is M(X ). The rate-distortion
function is given by

R(D) = inf
pQ|X :E[`(X,Q)]≤D

I(X; Q)

=H(X)− D.

The following lemma provides a property of the rate-distortion function achieving
conditional distribution.

Lemma 1. The rate-distortion function achieving conditional distribution pQ? |X satisfies

pX|Q?(·|q) =q (1)

H(X|Q?) =D (2)

for pQ? almost every q ∈ M(X ). Conversely, if pQ|X satisfies (1) and (2), then it is a rate-distortion function
achieving conditional distribution, i.e.,

I(X; Q) =R(D) = H(X)− D

E [`(X, Q)] =D.

The key idea is that we can replace Q by pX|Q(·|Q), and have lower rate and distortion, i.e.,

I(X; Q) ≥I(X; pX|Q(·|Q))

E [`(X, Q)] ≥E
[
`(X, pX|Q(·|Q)

]
,

which directly implies (1).
Interestingly, since the rate-distortion function in this case is a straight line, a simple time sharing

scheme achieves the optimal rate-distortion trade-off. More precisely, the encoder losslessly compresses
only the first H(X)−D

H(X)
fraction of the source sequence components. Then, the decoder perfectly recovers

those losslessly compressed components and uses pX as its reconstruction for the remaining part.
The resulting scheme obviously achieves distortion D with rate H(X)− D.

Furthermore, this simple scheme directly implies successive refinability of the source. For
D1 > D2, suppose the encoder losslessly compresses the first H(X)−D2

H(X)
fraction of the source. Then,

the first decoder can perfectly reconstruct H(X)−D1
H(X)

fraction of the source with the message of rate
H(X)−D1 and distortion D1 while the second decoder can achieve distortion D2 with rate H(X)−D2.
Since both decoders can achieve the best rate-distortion pair, it follows that any discrete memoryless
source under logarithmic loss is successively refinable.

We can formally prove successive refinability of discrete memoryless source under logarithmic
loss using Theorem 1. I.e., by finding random probability mass functions Q1, Q2 ∈ M(X ) that satisfy

I(X; Q1) =H(X)− D1, E [`(X, Q1)] = D1, (3)

I(X; Q2) =H(X)− D2, E [`(X, Q2)] = D2, (4)

where X−Q2 −Q1 forms a Markov chain.
Let ex be a deterministic probability mass function (pmf) in M(X ) that has a unit mass at x.

In other words,
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ex(x̃) =

1 if x̃ = x

0 otherwise.

Then, consider random pmfs Q1, Q2 ∈ {ex : x ∈ X} ∪ {pX}. Since the support of Q1 and Q2 is
finite, we can define the following conditional pmfs.

pQ2|X(q2|x) =


H(X)−D2

H(X)
if q2 = ex

D2
H(X)

if q2 = pX

0 otherwise

pQ1|Q2
(q1|q2) =



H(X)−D1
H(X)−D2

if q1 = q2 = ex for some x
D1−D2

H(X)−D2
if q1 = pX and q2 = ex for some x

1 if q1 = q2 = pX

0 otherwise.

It is not hard to show that the above conditional pmfs satisfies (3) and (4).

3. Successive Refinability

Main Results

Consider the successive refinement problem with a discrete memoryless source as described in
Section 2.1. Specifically, we are interested in the case where the first decoder is under logarithmic loss
and the second decoder is under some arbitrary distortion measure d(·, ·). We only have a following
benign assumption that if d(x, x̂1) = d(x, x̂2) for all x, then x̂1 = x̂2. This is not a hard restriction
since if x̂1 and x̂2 have the same distortion values for all x, then there is no reason to have both
reconstruction symbols.

The following theorem shows that any discrete memoryless source is successive refinable as long
as the weaker link is under logarithmic loss. This implies an universal property of logarithmic loss in
the context of successive refinement.

Theorem 2. Let the source be arbitrary discrete memoryless. Suppose the distortion criterion of the first decoder
is logarithmic loss while that of the second decoder is an arbitrary distortion criterion d : X × X̂→[0, ∞]. Then
the source is successively refinable.

Proof. The source is successively refinable at (D1, D2) if and only if there exists a X− X̂−Q such that

I(X; Q) =R1(D1), E [`(X, Q)] ≤ D1

I(X; X̂) =R2(D2), E
[
d(X, X̂)

]
≤ D2.

Let pX̂? |X be the conditional distribution for the second decoder that achieves the informational
rate-distortion function R2(D2). i.e.,

I(X; X̂?) = R2(D2), E
[
d(X, X̂?)

]
= D2.

Since the weaker link is under logarithmic loss, we have R1(D1) ≤ R2(D2). This implies
that H(X)− D1 ≤ H(X)− H(X|X̂?). Thus, we can assume H(X|X̂?) ≤ D1 throughout the proof.
For simplicity, we further have a benign assumption that there is no x̂ such that pX(x) = pX|X̂?(x|x̂)
for all x. (See Remark 1 for the case where such x̂ exists.)
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Without loss of generality, suppose X̂ = {0, 1, . . . , s − 1}. Consider a random variable
Y ∈ Y = {0, 1, . . . , s} with the following pmf for some 0 ≤ ε ≤ 1:

pY(y) =

(1− ε)pX̂?(y) if y ≤ s− 1

ε if y = s.

The conditional distribution is given by

pX̂? |Y(x̂|y) =


1 if x̂ = y ≤ s− 1

0 if x̂ 6= y ≤ s− 1

pX̂?(x̂) if y = s.

The joint distribution of X, X̂?, Y is given by

pX,X̂? ,Y(x, x̂, y) = pX,X̂?(x, x̂)pY|X̂?(y|x̂).

It is clear that H(X|Y) = H(X|X̂?) if ε = 0 and H(X|Y) = H(X) if ε = 1. Since H(X|X̂?) ≤ D1,
there exists an 0 ≤ ε ≤ 1 such that H(X|Y) = D1.

We are now ready to define the Markov chain. Let Q = pX|Y(·|Y) and q(y) = pX|Y(·|y) for all
y ∈ Y . The following lemma implies that there is a one-to-one mapping between q and y.

Lemma 2. If pX|Y(x|y1) = pX|Y(x|y2) for all x ∈ X , then y1 = y2.

The proof of lemma is given in Appendix A. Since Q = pX|Y(·|Y) is a one-to-one mapping,
we have

I(X; Q) =I(X; Y) = H(X)− D1 = R1(D1).

Also, we have

E [`(X, Q)] =E
[

log 1
pX|Y(X|Y)

]
= H(X|Y) = D1.

Furthermore, X− X̂? −Q forms a Markov chain since X− X̂? −Y forms a Markov chain. This
concludes the proof.

The key idea of the theorem is that (1) is the only loose required condition for the rate-distortion
function achieving conditional distribution. Thus, for any distortion criterion in the second stage,
we are able to choose an appropriate distribution pX,X̂,Q that satisfies both (1) and the condition for
successive refinability.

Remark 1. The assumption pX|X̂?(·|x̂) 6= pX(·) for all x̂ is not necessary. Appendix B shows another joint
distribution pX,X̂? ,Y that satisfies conditions for successive refinability when the above assumption does not hold.

The distribution in the above proof is one simple example that has a single parameter ε, but we can always
find other distributions that satisfy the condition for successive refinability. In the next section, we propose
totally different distribution that achieves a Markov chain X− X̂? −Y with H(X|Y) = D1. This implies that
the above proof does not rely on the assumption.

Remark 2. In the proof, we used random variable Y to define Q = pX|Y(·|Y). On the other hand, if the
joint distribution pX,X̂? ,Q satisfies conditions of successive refinability, there exists a random variable Y where
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X − X̂? − Y forms a Markov chain and Q = pX|Y(·|Y). This is simply because we can set Y = Q, which
implies pX|Y(·|Y) = pX|Q(·|Q) = Q.

Theorem 2 can be generalized to successive refinement problem with K intermediate decoders.
Consider random variables Yk ∈ Y for 1 ≤ k ≤ K such that X− X̂? −YK − · · · −Y1 forms a Markov
chain and the joint distribution of X, X̂?, Y1, . . . , YK is given by

pX,X̂? ,Y1,...,YK
(x, x̂, y1, . . . , yK)

= pX,X̂?(x, x̂)pY1|X̂?(y1|x̂)
K−1

∏
k=1

pYk+1|Yk
(yk+1|yk)

where H(X|Yk) = Dk. Similar to the proof of Theorem 2, we can show that Qk = pX|Yk
(·|Yk) for all

1 ≤ k ≤ K satisfy the condition for successive refinability (where posterior distributions pX|Yk
(·|yk)

should be distinct for all yk ∈ Y to guarantee one-to-one correspondence). Thus, we can conclude that
any discrete memoryless source with K intermediate decoders is successively refinable as long as all
the intermediate decoders are under logarithmic loss.

4. Toward Lossy Compression with Low Complexity

As we mentioned in Remark 1, the choice of joint distribution pX,X̂? ,Q in the proof of Theorem 2 is
not unique. In this section, we propose another joint distribution pX,X̂? ,Q that satisfies the conditions
for successive refinability. It naturally suggests a new lossy compression algorithm which we will
discuss in Section 4.3.

4.1. Rate-Distortion Achieving Joint Distribution: Small D1

Recall that H(X|X̂?) ≤ D1. We first consider the case where D1 is not too large so that D1 is close
to H(X|X̂?). We will clarify this later. For simplicity, we further assume that pX̂?(0) ≥ · · · ≥ px̂?(s− 1).

Consider a random variable Z(s)
ε ∈ X̂ with the following pmf for some 0 ≤ ε ≤ (s− 1)minx̂ pX̂?(x̂)

p
Z(s)

ε
(z) =

1− ε if z = 0

ε
s−1 if 1 ≤ z ≤ s− 1.

If it is clear from context, we simply use Z ≡ Z(s)
ε for the sake of notation. We further define a

random variable Y that is independent to Z such that X̂? = Y⊕s Z, where ⊕s denotes a sum modulo s.
This can be achieved by following pmf and conditional pmf.

pY(y) =
pX̂?(y)− ε

s−1
1− s

s−1 ε
(5)

pX̂? |Y(x̂|y) =

1− ε if x̂ = y
ε

s−1 if x̂ 6= y.

If ε = 0, we have H(X|Y) = H(X|X̂?). Also, it is clear that H(X|Y) increases as ε increases. Since
we assume that D1 is not too large, there exists 0 ≤ ε ≤ (s− 1)min pX̂?(x̂) such that H(X|Y) = D1.
We will discuss about the case of general D1 in Section 4.2. The joint distribution of X, X̂?, Y is given by

pX,X̂? ,Y(x, x̂, y) = pX,X̂?(x, x̂)pY|X̂?(y|x̂).
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We are now ready to define the Markov chain. Let Q = pX|Y(·|Y) and q(y) = pX|Y(·|y) for all
y ∈ Y where Y = X̂ = {0, 1, . . . s− 1}. For simplicity, we assume that pX|Y(·|y1) and pX|Y(·|y2) are
not the same for all y1 6= y2. Since Q = pX|Y(·|Y) is a one-to-one mapping, we have

I(X; Q) =I(X; Y) = H(X)− D1 = R1(D1).

Also, we have

E [`(X, Q)] =E
[

log 1
pX|Y(X|Y)

]
= H(X|Y) = D1.

Furthermore, X− X̂? −Q forms a Markov chain since X− X̂? −Y forms a Markov chain. Thus,
the above construction of joint distribution pX,X̂? ,Q satisfies the conditions for successive refinability.

4.2. Rate-Distortion Achieving Joint Distribution: General D1

The joint distribution in the previous section only works for small D1. It is because ε has a
natural upper-bound from (5) which is ε ≤ (s − 1)min pX̂?(x̂). In this section, we generalize the
proof in the previous section for general D1. The key observation is that if we pick the maximum
ε = (s − 1)min pX̂?(x̂), then pY(s − 1) = 0. This implies that we can focus on the smaller set of
reconstruction alphabet Y = {0, 1, . . . s− 2}.

Let Us = X̂?, and define random variables {Uk : 1 ≤ k ≤ s− 1} recursively. More precisely, we
define the random variable Uk−1 based on Uk for 2 ≤ k ≤ s.

Uk =Uk−1 ⊕k Z(k)
εk

p
Z(k)

εk
(z) =

1− εk if z = 0
εk

k−1 if 1 ≤ z ≤ k− 1

where

εk = (k− 1)min
u

pUk (u).

Similar to the definition of Y, we assume Uk−1 and Z(k)
εk are independent, and ⊕k denotes modulo

k sum. Each time step, the alphabet size of Uk decreases by one. Thus, we have 0 ≤ Uk ≤ k− 1, and
therefore U1 = 0 with probability 1. Furthermore, we have

H(X|Us) ≤ H(X|Us−1) ≤ · · · ≤ H(X|U1) = H(X).

For H(X|X̂?) ≤ D1 < H(x), there exists k such that H(X|Uk) > D1 ≥ H(X|Uk−1). Thus, there
exists Y that satisfies H(X|Y) = D1 and Uk = Y⊕k Z(k)

ε for some 0 ≤ ε ≤ εk. This implies that

X̂? = Z(s)
εs ⊕s

[
Z(s−1)

εs−1 ⊕s−1 · · ·
(

Z(k+1)
εk+1 ⊕k+1

(
Z(k)

ε ⊕k Y
))]

.

Similar to the previous section, we assume that pX|Y(·|y1) 6= pX|Y(·|y2) if y1 6= y2. Then, we can
set Q = pX|Y(·|Y) which satisfies the conditions for successive refinability.

4.3. Iterative Lossy Compression Algorithm

The joint distribution from the previous section naturally suggests a simple successive refinement
scheme. Consider the lossy compression problem where the source is i.i.d. ∼ pX and the distortion
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measure is d : X × X̂→[0, ∞). Let D be the target distortion, and R > R(D) be the rate of the scheme
where R(D) is the rate-distortion function. Let pX,X̂? be the rate-distortion achieving distribution.

For block length n, we propose a new lossy compression scheme that mimics successive refinement
with s− 1 decoders. Similar to the previous section, let εk = (k− 1)minu pUk (u) and

X̂? = Us =Us−1 ⊕s Z(s)
εs

Us−1 =Us−2 ⊕s−1 Z(s−1)
εs−1

...

U2 =U1 ⊕2 Z(2)
ε2 .

We further let Rk−1 > I(X; Uk)− I(X; Uk−1) for 2 ≤ k ≤ s that satisfy R = ∑s
k=2 Rk−1. Now, we

are ready to describe our coding scheme. Generate a sub-codebook C1 = {zn(1, m) : 1 ≤ m ≤ eR1}
where each sequence is generated according to Zn ∼ i.i.d. p

Z(2)
ε2

for all m. Similarly, generate

sub-codebooks Ck = {zn(k, m) : 1 ≤ m ≤ enRk} for 2 ≤ k ≤ s− 1 where each sequence is generated
according to Zn ∼ i.i.d. p

Z(k+1)
εk+1

for all m.

Upon observing xn ∈ X n, the encoder finds m1 ∈ C1 that minimizes d1(xn, zn(1, m1)) where the
distortion measure d1(·, ·) is defined as follows.

d1(xn, zn) =
1
n

n

∑
i=1

log
1

pX|U2
(xi|zi)

.

Note that d1(x, z) is simply the logarithmic loss between x and pX|U2
(·|z).

Similarly, for 2 ≤ k ≤ s − 1, the encoder iteratively finds mk ∈ Ck that minimizes
dk (xn, [[zn(1, m1)⊕3 · · · ⊕k zn(k− 1, mk−1)]⊕k+1 zn(k, mk)]) where

dk(xn, zn) =
1
n

n

∑
i=1

log
1

pX|Uk+1
(xi|zi)

.

Upon receiving m1, m2, . . . , ms−1, the decoder reconstructs

x̂n = [[zn(1, m1)⊕3 zn(2, m2)]⊕ · · · ⊕s zn(s− 1, ms−1)] .

Suppose R1 ≈ R2 ≈ · · · ≈ Rs−1 ≈ R
s−1 , and L = s− 1. Similar to [12,14], this scheme has two

main advantages compare to naive random coding scheme. First, the number of codewords in the
proposed scheme is L · enR/L, while the naive scheme requires enR codewords. Also, in each iteration,
the encoder finds the best codeword among enR/L sub-codewords. Thus, the overall complexity is
L · enR/L as well. On the other hand, the naive scheme requires enR complexity.

Remark 3. The proposed scheme constructs X̂n from binary sequences. The reconstruction after each stage can
be viewed as

un
k (m1, . . . mk−1) = [[zn(1, m1)⊕3 · · · ]⊕k zn(k− 1, mk−1)]

where 0 ≤ uk ≤ k− 1. Thus, the decoder starts from binary sequence un
2 (m1), and the alphabet size increases

by 1 at each iteration. After (s− 1)-th iteration, it reaches the final reconstruction X̂n where the size of alphabet
is s.
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5. Conclusions

To conclude our discussion, we summarize our main contributions. In the context of successive
refinement problem, we showed another universal property of logarithmic loss that any discrete
memoryless source is successively refinable as long as the intermediate decoders operate under
logarithmic loss. We applied the result to the point-to-point lossy compression problem and proposed
a lossy compression scheme with lower complexity.

Funding: This work was supported by 2017 Hongik University Research Fund.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Proof of Lemma 2

For y ≤ s− 1,

pX|Y(x|y) = ∑̂
x

pX|X̂?(x|x̂)pX̂? |Y(x̂|y)

=pX|X̂?(x|y).

On the other hand, for y = s,

pX|Y(x|y) = ∑̂
x

pX|X̂?(x|x̂)pX̂? |Y(x̂|y)

= ∑̂
x

pX|X̂?(x|x̂)pX̂?(x̂)

=pX(x).

Let X(x, D) be d-tilted information [15]:

X(x, D) = log
1

E
[
exp{λ?D− λ?d(x, X̂?)}

] .

where λ? = −R′(D) and the expectation is with respect to marginal distribution pX̂? . Csiszár [16]
showed that for pX̂? -almost every x̂,

X(x, D) = log
pX,X̂?(x, x̂)

pX(x)pX̂?(x̂)
+ λ?d(x, x̂)− λ?D

= log
pX|X̂?(x|x̂)

pX(x)
+ λ?d(x, x̂)− λ?D.

If pX|X̂?(x|x̂1) = pX|X̂?(x|x̂2) for all x, it implies that d(x, x̂1) = d(x, x̂2) for all x which contradicts
our assumption. On the other hand, if pX|X̂?(x|x̂1) = pX(x) for all x, it also contradicts our assumption.
Thus, pX|Y(·|y) are different from each other for all 0 ≤ y ≤ s.

Appendix B. Proof of the Special Case of Theorem 2

Similar to the main proof of Theorem 2, we assume X̂ = Y = {0, 1, . . . , s− 1}. Suppose there
exists x̂ such that pX|X̂?(x|x̂) = pX(x) for all x. Without loss of generality, we assume x̂ = 0, i.e.,
pX|X̂?(x|0) = pX(x) for all x.

Consider a random variable Y ∈ Y with the following conditional pmf for some 0 ≤ ε ≤ 1:
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pY|X̂?(y|x̂) =



1 if x̂ = y = 0

ε if x̂ 6= 0 and y = 0

1− ε if x̂ = y 6= 0.

0 otherwise.

It is clear that H(X|Y) = H(X|X̂?) if ε = 0 and H(X|Y) = H(X) if ε = 1. Since H(X|X̂?) ≤ D1,
there exists an 0 ≤ ε ≤ 1 such that H(X|Y) = D1. We also have Q = pX|Y(·|Y) and q(y) = pX|Y(·|y)
for all y ∈ Y . The following lemma implies the one-to-one mapping between q and y.

Lemma A1. If pX|Y(x|y1) = pX|Y(x|y2) for all x ∈ X , then y1 = y2.

Proof. If y = 0, the conditional distribution pX̂? |Y(x̂|y) is given by

pX̂? |Y(x̂|y) =


pX̂? (0)

(1−ε)pX̂? (0)+ε
if x̂ = 0

ε·pX̂? (x̂)
(1−ε)pX̂? (0)+ε

if x̂ 6= 0.

Then,

pX|Y(x|y) = ∑̂
x

pX|X̂?(x|x̂)pX̂? |Y(x̂|0)

=pX|X̂?(x|0)
pX̂?(0)

(1− ε)pX̂?(0) + ε
+ ∑

x̂ 6=0
pX|X̂?(x|x̂)

ε · pX̂?(x̂)
(1− ε)pX̂?(0) + ε

=pX|X̂?(x|0)
(1− ε) · pX̂?(0)
(1− ε)pX̂?(0) + ε

+ pX(x)
ε

(1− ε)pX̂?(0) + ε

=pX|X̂?(x|0)

where the last equality is because pX|X̂?(x|0) = pX(x) for all x. In other words, pX|Y(x|0) = pX|X̂?(x|0).
On the other hand, if y 6= 0, the conditional distribution pX̂? |Y(x̂|y) is given by

pX̂? |Y(x̂|y) =

1 if x̂ = y

0 otherwise.

Then,

pX|Y(x|y) = ∑̂
x

pX|X̂?(x|x̂)pX̂? |Y(x̂|y)

=pX|X̂?(x|y).

As we have seen in Appendix A, pX|X̂?(·|x̂1) cannot be equal to pX|X̂?(·|x̂2) if x̂1 6= x̂2. Since
pX|Y(x|y) = pX|X̂?(x|y) for all x, we can say that pX|Y(x|y1) = pX|Y(x|y2) for all x implies y1 = y2.

The remaining part of the proof is exactly the same as the main proof.
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