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Abstract: Today, four-dimensional chaotic systems are attracting considerable attention because of 

their special characteristics. This paper presents a non-equilibrium four-dimensional chaotic 

system with hidden attractors and investigates its dynamical behavior using a bifurcation diagram, 

as well as three well-known entropy measures, such as approximate entropy, sample entropy, and 

Fuzzy entropy. In order to stabilize the proposed chaotic system, an adaptive radial-basis function 

neural network (RBF-NN)–based control method is proposed to represent the model of the 

uncertain nonlinear dynamics of the system. The Lyapunov direct method-based stability analysis 

of the proposed approach guarantees that all of the closed-loop signals are semi-globally uniformly 

ultimately bounded. Also, adaptive learning laws are proposed to tune the weight coefficients of 

the RBF-NN. The proposed adaptive control approach requires neither the prior information about 

the uncertain dynamics nor the parameters value of the considered system. Results of simulation 

validate the performance of the proposed control method. 

Keywords: Non-equilibrium four-dimensional chaotic system; entropy measure; adaptive 

approximator-based control; neural network; uncertain dynamics. 
 

1. Introduction 

A variety of chaotic systems with various features, such as multistability [1–3], extreme 

multistability [4,5], and multi-scroll attractors [6,7], have been introduced in recent years for 

investigating nonlinear dynamical systems. Dynamical systems can be categorized based on 

self-excited and hidden attractors [8]. From 1994, when the first non-equilibrium chaotic flow was 

reported in literature [9], almost 20 years have passed before another chaotic systems with 

non-equilibrium was introduced [10–15]. It can be easily concluded that the chaotic attractor in such 
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systems is hidden. Given the fact that systems without equilibrium have unexpected responses to 

perturbations, these systems have become attractive systems for researchers. 

However, all the aforementioned systems with no-equilibria are described by 3D differential 

equations. So, the question is if there is any 4D system with no-equilibria. The first 4D chaotic system 

was found by Rössler in 1979 [16], which was the first step in designing a 4D chaotic system. In the 

last few years, only a few works related with 4D chaotic dynamical systems with no-equilibria have 

been reported. In 2014, Wei et al. presented a new four-dimensional hyperchaotic system with 

no-equilibria developed by extension of the generalized diffusionless Lorenz equations [17]. In 2015, 

a no-equilibrium chaotic system with multiwing butterfly attractors constructed using a state 

feedback controller was proposed by Tahir et al. [18]. Motivated by complex dynamical behaviors of 

chaotic systems and unusual features of hidden attractors, a novel no-equilibrium chaotic system 

with an exponential nonlinearity was also proposed by Pham et al. in 2015 [19]. In 2016, Pham et al. 

introduced a novel four-dimensional continuous-time autonomous system with a cubic nonlinear 

term, which does not have equilibria [20]. In 2017, Bao et al. presented a memristive system, which 

does not display any equilibrium but can exhibit hyperchaotic, chaotic, and periodic dynamics as 

well as transient hyperchaos [21]. Furthermore, in 2018, Zhang et al. introduced a 4D chaotic 

composed of nine terms including only one constant term having also a line of equilibrium points or 

no equilibrium points [22]. 

In order to suppress the chaotic behavior of the nonlinear systems, several control methods 

have been implemented. Mobayen and Ma introduced a combination of finite-time robust-tracking 

theory and composite nonlinear feedback approach [23]. Shukla and Sharma designed a 

backstepping controller and analyzed the stability of the designed controller for a class of 

three-dimensional chaotic systems [24]. To name just a few, fuzzy controller [25–29], sliding mode 

controller [30–34], and hybrid controllers [35–39] are some other controllers that are implemented to 

control and synchronize the chaotic systems. 

Artificial intelligence methods have been used widely to successfully solve a wide range of 

problems [40–44]. Designing the controllers based on the Neural network, as one of the most used 

artificial intelligence-based controllers (especially when dealing with complex nonlinear systems), is 

used extensively. Neural network–based control procedure can provide an efficient solution to the 

control of the complex, uncertain, and ill-defined systems. Some interesting results on using neural 

network to control and synchronize of complex systems have been studied in [45–48]. Yadmellat and 

Nikravesh have proposed a neural network–based output-feedback control method for nonlinear 

chaotic systems [49]. In another paper, Sarcheshmeh et al. designed two neural controllers to 

synchronize two master and slave chaotic satellites [50]. In order to suppress the disturbances in the 

chaotic systems, it is necessary to design an adaptive controller. In this regard, Fang et al. proposed a 

hybrid of an adaptive neural synchronization algorithm and a backstepping technique to 

synchronize a class of uncertain chaotic systems [51]. Shao et al. developed an adaptive neural 

network–based synchronization control strategy to stabilize a general form of unknown chaotic 

systems in the presence of unknown disturbances [52]. 

This paper focuses on the control of an uncertain four-dimensional chaotic system, which 

presents completely uncertain and chaotic nonlinear dynamics, such as an entropy analysis 

corroborates. Three well-known entropy-based metrics are computed from the time series generated 

by the system, thus highlighting different levels of complexity for different conditions. Since neural 

network is a universal approximator and it has a powerful tool for learning and approximating 

arbitrarily functions. Therefore, in this work, RBF-NN as a linear-in-parameter approximator has 

been chosen to approximate the uncertain nonlinear dynamics of the four-dimensional chaotic 

system. Moreover, no prior knowledge about system parameters is available. Then, the proposed 

indirect adaptive technique is proposed by using the developed RBF-NN-based model. Stability 

analysis shows that all of the closed-loop signals are semi-globally uniformly ultimately bounded 

and by proper choice of the design parameters the tracking error converges to the small vicinity of 

the origin. Also, weights of the RBF-NN are calibrated using the adaptive laws derived using the 
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Lyapunov direct method. Simulation results verify the effectiveness of the proposed approach in 

control of the uncertain chaotic system with hidden attractors. 

The paper is organized as follows. In Section 2, the four-dimensional chaotic system is 

described. In Section 3, the entropy analysis of the proposed system is presented. The RBF-NN and 

the design of the suggested control strategy are introduced in Section 4. In this section, the stability 

analysis of presented control algorithm is also discussed. The final section concludes the paper. 

2. Four-dimensional Chaotic System 

The general form of the proposed four-dimensional chaotic system is described as follows: 

Let x , y , z , and w  be the state variables of the system. Then, 

x y  

y z  

z w  

2 2w aw bx cy exy fxz g        

(1)

where a , b , c , e , f , and g  are system parameters. The behavior of the system depends on the 

numerical value of its parameters. The equilibrium states are found by setting the left-hand side of 

(1) to zero. Equation (1) gives 0y z w   , while 2bx g . If b  and g  are both nonzero with the 

same signs, then there are no equilibria. If 0g  , then Equation (1) gives 0x  , so there is the trivial 

equilibrium (0,0,0,0) . If 0bg  , there exist two equilibrium points  / ,0,0,0g b  . The chaos of 

the dynamical system can be characterized by the Lyapunov exponent, which can be used to 

characterize the sensitivity of the system to the initial values. Considering Lyapunov exponents as 

1L , 2L , 3L , and 4L  such that 1 2 3 4L L L L    and assuming 1 0L  , 2 0L  , 3 0L  , and 4 0L  , 

the dynamical behavior of the system (1) is chaotic. Taking 1.05a  , 0.7b  , 0.19c  , 1.37e  , 

1.79f  , Figure 1 shows a bifurcation diagram which exhibits a periodic-doubling route to chaos of 

the peak of x  ( x  max) of the system (1) versus parameter g , which is varied from –4 to 1.2. There 

are also some periodic windows in the chaotic region. 

 

Figure 1. A bifurcation diagram exhibiting a periodic-doubling route to chaos of the peak of x  ( x  

max) of system (1) versus parameter g . 

The system (1) exhibits periodic and chaotic behavior for different value of g . When 1.15g  , 

the Lyapunov dimension can be calculated by the Kaplan-Yorke dimension. In this case, by taking 

1.05a  , 0.7b  , 0.19c  , 1.37e  , and 1.79f  , the Lyapunov exponent are as 1 0.185L  , 

2 0L  , 3 0.195L  , and 4 1.034L  . So, the system shows a chaotic behavior. The phase portrait of 

the chaotic behavior of the system (1) is shown by Figure 2. 
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(a) (b) 

  
(c) (d) 

Figure 2. The three-dimensional (3D) chaotic portrait for system (1) in (a) x-y-z space, (b) x-y-w space, 

(c) x-z-w space, and (d) y-z-w space. 

The largest Lyapunov exponent of the system (1) for 4 1.2g   , 1.05a  , 0.7b  , 0.19c  , 

1.37e  , and 1.79f   is shown by Figure 3. 

 

Figure 3. The largest Lyapunov exponent of the system (1). 

Now, for a better understanding of the dynamic characteristics of system (1), its entropy has 

been analyzed by numerical simulation. 

3. Entropy Analysis 

As well as the positive largest Lyapunov exponent, entropy has been widely used to 

characterize chaotic systems [53]. This measure focuses on estimating seemingly unpredictable time 
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evolution of chaotic systems and consequently tries to flesh out chaos in terms of randomness [54]. 

Thus, higher entropy indicates less predictability and a closer approach to stochastic behavior [55]. 

Although this information can be obtained through theoretical measures, such as Kolmogorov-Sinai 

entropy, they are often difficult to estimate from a finite data set [56]. Hence, some practical 

measures to estimate entropy of an underlying system from observed data have been developed in 

the last years, such as the well-established approximate entropy (ApEn) [57]. This metric has been 

widely used to characterize dynamical systems [58,59] because it is able to deal with short and noise 

data with outliers [60]. Briefly, ApEn quantifies times series regularity by computing repetitiveness 

of similar patterns and provides larger positive values for more irregular data. Hence, considering a 

N sample-length time series         1 , 1 , ,x n x x x N  , this metric computation requires the 

following steps: 

1. Form 1N m   m-sample length vectors,    1 , , 1m m N m  X X , defined by 

        , 1 , , 1m i x i x i x i m    X , for 1 1i N m    . Each vector contains m 

consecutive points from the ith sample. 

2. Compute the Chebyshev distance for any pair of vectors  m iX  and  m jX . This distance 

is defined as the maximum absolute magnitude of the differences between coordinates, i.e., 

    
0, , 1
maxm

ij
k m

d x i k x j k
  

     (2)

3. Estimate the number of pairs of vectors,  m jX , whose distance with  m iX  is less than or 

equal to r, i.e., 

   
1

1

1
Θ

1

N m
m m
i ij

j

C r r d
N m

 



 
 

  (3)

 Θ z  being the Heaviside function, i.e.,  Θ 1z   for 0z   and  Θ 1z   for 0z  . 

4. Calculate the global probability that any two sequences of size m present a distance lower 

than r, i.e., 

   
1

1

1
ln

1

N m
m m

i
i

r C r
N m

 



 
 

  (4)

5. Recompute the steps 1-4 for vectors with m+1 samples in length. In this case, Equations (3) 

and (4) should be replaced by 

   1 1

1

1
Θ

N m
m m
i ij

j

C r r d
N m


 



 


  and    1 1

1

1
ln

N m
m m

i
i

r C r
N m


 



 


 , (5)

respectively. 

6. Finally, ApEn can be computed by the difference 

     1ApEn , , m mm r n r r    (6)

It is well known that this metric presents two limitations, such as it lacks relative consistency 

and is strongly dependent on the data length [61]. Indeed, when short times series are analyzed 

ApEn often provides lower values than expected [62]. These limitations have been overcome in its 

modified version proposed by Richman & Moorman and named sample entropy (SampEn) [61]. 

This new index presents two main differences from ApEn, i.e.,: (i) self-matches are excluded and (ii) 

a template-wise strategy is not used. Consequently, N m  vectors of size m and m+1, for 

1 i N m   , are analyzed to compute SampEn, such that new Equations (3)–(5) can be expressed as 

   
1,

1
Θ

1

N m
m m
i ij

j j i

C r r d
N m



 

 
 

 ,    
1

1 N m
m m

i
i

r C r
N m





 


 , (7)
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   1 1

1,

1
Θ

1

N m
m m
i ij

j j i

C r r d
N m


 

 

 
 

 , and    1 1

1

1 N m
m m

i
i

r C r
N m


 



 


 , (8)

respectively. As a final step, SampEn can be estimated as 

 
 
 

1

SampEn , , ln
m

m

r
m r N

r

 
   

  
.  (9)

Chen et al. [63] have proposed a modification of SampEn to avoid a poor statistical stability in 

some cases due to the binary classification of vectors achieved by the Heaviside function. This new 

index, named Fuzzy entropy (FuzzEn), considers a smoother definition of a vector match by using a 

family of exponential functions     , exp /
km m

ij ijD r k d r  . To quantify the similarity degree among 

patterns. Thus, Equations (7) and (8) are redefined as 

   
1,

1
, ,

1

N m
m m
i ij

j j i

C r k D r k
N m



 


 

 , and    1 1

1,

1
, ,

1

N m
m m
i ij

j j i

C r k D r k
N m


 

 


 

 ,  (10)

respectively. Additionally, the mean from each vector 
 m iX

 is removed to highlight the local 

features of the data [63], thus resulting in 

          
1

*

0

1
, 1 , , 1 1

m

l

i x i x i x i m x i
m





      Xm  (11)

Clearly, the selection of parameters m  and r  has a strong impact on the entropy estimates 

obtained by these three indices. Although no widespread rules exist for their optimal choice, some 

previous works have recommended the use of 1m   or 2 and r between 0.05 and 0.25 times the 

standard deviation of the data [57,61]. Thus, making use of 2m  , 0.15r  , and 2k  , the values 

of ApEn, SampEn, and FuzzEn computed from the times series  x n  of the system (1) with length 

3000N   are displayed in Figure 4. As can be seen, the three entropy measures provided similar 

results. In fact, no perceptible differences can be noticed between ApEn and SampEn. Moreover, 

although FuzzEn revealed lower values than ApEn and SampEn, the same trend can be observed as 

a function of g. To this last respect, entropy shows low values when the system is in a stable state 

(i.e., for g ≤ −1.2) and, contrarily, high values when the system is in a chaotic state (i.e., for g > −1.2). 

The higher the entropy, the higher the degree of uncertainty in the time series, thus requiring more 

level of information to keep system (1) in a stable state. Note that the large differences between 

values of ApEn/SampEn and FuzzEn are provoked by their different ways of estimating vector 

match. Thus, whereas all pairs of vectors presenting a distance larger than r do not contribute to 

entropy computation in ApEn/SampEn [61], FuzzEn always considers the degree of similarity 

between these patterns, thus obtaining more continuous and smooth entropy estimates [63]. 

 

Figure 4. Values of ApEn, SampEn, and FuzzEn computed from �(�) of the system (1) with respect 

to parameter g. 
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4. Brief Review of the RBF-NNs 

The objective of control method is to derive the control input for stabilizing the 

four-dimensional chaotic system (1). Due to their inherent functional approximation and learning 

capabilities, RBF-NNs have recently received significant attention for approximation and modeling 

nonlinear functions [46,47]. According to the universal approximation property of the RBF-NN, it 

can approximate any continuous function ( ) : if R Rx  with an arbitrary accuracy   in the 

following form: 

( ) ( ) ( ) ( )Tf     x θ φ x x x  (12)

where lRθ  represents the ideal weight vector, ( ) x  denotes the approximation error, and l  is 

the number of neurons. In (12), the ideal parameter vector lRθ  satisfies 

 ˆ

ˆarg min sup ( ) ( )
l

T

R
f

 

 
θ x

θ x θ φ x  (13)

where 
1 2

ˆ ˆ ˆ ˆ
T

l
l R        is the estimate of the ideal weight vector θ , and 

 1 2( ) ( ) ( ) ( ) l
l R   φ x x x x  represents the vector of the basis functions. 

It is worthwhile to note that the approximation error ( ) x  is not known, but it is bounded, i.e., 

( ) x . 

In the RBF-NNs, the following well-known Gaussian functions are chosen as the basis functions 

( )j x  for 1, 2, ...,j N  

   
2

( )

T

j j

j

j e




   
 
 
 

x c x c

x  
(14)

where ,1 ,2 ,

T

j j j j Nc c c   c   and j  denote the center and width of the Gaussian functions, 

respectively. Figure 5 shows the architecture of the NN. 

 

Figure 5. Architecture of the neural network. 

Assumption 1. This work assumes that the ideal weight vector has bounded norm, i.e., θ . 

However, its bound is unknown. 

Remark 1. Assumption 1 is only required for the stability analysis and design procedures of the control 

law does not need  . 

4.1. Proposed Adaptive RBF-NN Controller 

This section presents the proposed adaptive RBF-NN controller to suppress chaos in the 

considered system in (1). In the proposed method, all parameters of the system are as unknown as 

nonlinear dynamics and no prior knowledge about them is available. In order to handle the 

 
1( )x

 
1( )x

 
2( )x  

 
1

 
1

 
2
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uncertain nonlinearity, the RBF-NN is invoked to model it. Then, the controller is designed by 

assuming that the RBF-NN-based model represents the true model of the system. Finally, adaptive 

learning laws based on the Lyapunov direct method are proposed to tune the adaptive parameters 

(weights coefficients) of the network. 

Before designing the controller, let us rewrite the description of the four-dimensional chaotic 

system in (1) as follows: 

 ( )A f u  ζ ζ b ζ  (15)

where   4 1
1 2 3 4

T
R     ζ  is the state vector, and 1 x  , 2 y  , 3 z  , and 3 w  ; also, 

2 2
4 1 2 1 2 1 3 )(f ga b c e f            ζ  denotes the uncertain nonlinear dynamics, and 4 4A R   

and 4 1R b  are constant matrices as 

0 1 0 0 0

0 0 1 0 0
,

0 0 0 1 0

0 0 0 0 1

A

   
   
    
   
   
   

b  (16)

Now, the control input is proposed as 

(4)ˆ ( ) T
du f y   ζ k e  (17)

where 1 de y   is the tracking error,   4 1T
e e e e R    e  represent the error vector and 

  4 1
4 3 2 1, , ,

T
k k k k R  k  denotes the design parameters that are selected such that all roots of the 

characteristic polynomial 
4 3 2

1 2 3 3 4( )s s k s k s k s k       are in the open left-half of the complex 

plane. 

Now substituting (6) and (7) in (5), we will have 

(4) (4)

(4)

ˆ( ) ( )

( )

T
d

T T
d

f f y k

y k





   

   

ζ ζ e

θ φ ζ e
 (18)

where ˆ θ θ θ  denotes the parameter approximation error, and adaptive parameters θ  are tuned 

by using the proposed adaptive laws as follows: 

ˆ ( )T Pθ e bφ ζ


 (19)

where 0   is the learning rate, and 4 4P R   represents a positive definite/semi definite matrix 

which satisfies the following Riccati-like equation: 

0T T
c cA P PA P P Q     (20)

where 
4 4Q R   is a positive definite matrix, and 0   is a design parameter. 

Before presenting stability analysis, the error dynamics is obtained by considering (15) and (18) 

as 

(T
cA   e e bθ φ ζ  (21)

Where 

4 3 2 1

0 1 0 0

0 0 1 0

0 0 0 1cA

k k k k

 
 
 
 
 
 

 (22)
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Now, stability analysis of the proposed controller is presented by considering the following 

Lyapunov function: 

1 1

2 2
T TV P


 e e θ θ   (23)

Differentiating (21) with respect to time, results in 

1 1 1 ˆ
2 2

T T TV P P


  e e e e θ θ
    (24)

Substitution of (19) in (23), results in 

   

   

1 1 1 ˆ( ) ( )
2 2

1 1 ˆ ( )
2

T T T T T T T
c c

T T T T
c c

V A P P A

A P PA P P

 


 


      

    

e φ ζ θb e e e bθ φ ζ θ θ

e e θ θ e bφ ζ e

  


 (25)

Again, substituting the proposed adaptive learning law (19) in (25), yields 

 

  2

2 2

1

2

1 1

2 2

1 1 1 1
( )

2 2 2 2

T T
c c

T T T
c c

T T

V A P PA P

A P PA P P

Q Q



 


  
 

  

   

     

e e e

e e

e e e e



 (26)

where ( )Q  denotes to the minimum eigenvalue of matrix Q . As it is obtained from (26), the 

condition 2 e  results in 0V  . This inequality shows that all of the closed-loop signals 

(i.e., e  and θ ) are semi-globally uniformly ultimately bounded [48]. 

Remark 2. The design parameter   in the Riccati-like Equation (20) has been proposed to 

attenuate the inevitable effects of the approximation error on V . 

Remark 3. It should be noted that the proposed controller does not require any off-line learning 

phase. 

4.2. Simulation Results 

This section presents some simulation results to investigate the effectiveness of the proposed 

adaptive RBF-NN-based controller. A typical chaotic behavior of the uncontrolled system was 

discussed in Section 2. Now, the control objective is to stabilize the considered unknown chaotic 

system in (1) and to derive it to the equilibrium point. 

To design the proposed controller, one RBF-NN composed of 50 neurons was constructed. The 

center of the membership functions and initial weights of the network were set at 1. For simulation, 

i  and   were set to 0.01, and 0.5, respectively, and the initial conditions were chosen as 

 (0) 0 1 0 1.5
T

  ζ . As mentioned before, the proposed approach does not require any training 

data and any off-line learning phase. After the construction of the RBF-NN, it is used to model the 

uncertain function ( )f ζ and then the control input (17) is applied. The design parameters 1 2 3, ,k k k

and 4k  in the control input (17) are chosen such that the all roots of the characteristic polynomial 

( )s  remain in the open left-half of the complex plane. For simulation, these parameters were 

chosen as 1 20k  , 2 24k  , 3 25k  , and 4 22k  . Also, by solving the Riccati-like equation (20), the 

following matrix P  was obtained: 
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5 0 0 0

0 5 0 0

0 0 5 0

15 25 20 10

P

 
 
 
 
 
 

 (27)

Also, adjustable parameters 
50ˆ Rθ  was adjusted based on the proposed adaptive learning law in 

(19). 

Figures 6–10 depicts the simulation results. To highlight the performance of the proposed 

approach, at first the control input was set as zero, then after 50t  second the proposed control 

method was activated. As obtained from the depicted results in Figure 6, before the activation of the 

proposed controller, the system has chaotic behavior but after the activation of it, the chaos was 

suppressed, and the desired behavior is obtained. 

 

Figure 6. The state variables when the proposed control input is activated at 50t  second. 
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Figure 7. The state variables in the presence of the proposed control method. 

The state variables of the system by using the proposed controller are shown in Figure 7. Also, 

norm of the estimated weight coefficients is shown in Figure 8. The obtained result in Figure 8 shows 

that the norm of the adjustable parameters is bounded. Figures 9 and 10 depict the phase portraits 

and the three-dimensional behavior of the controlled system, respectively. The reported results 

demonstrate the ability of the proposed approach to stabilize the considered non-equilibrium 

four-dimensional chaotic system with hidden attractors. 

 

Figure 8. Norm of the weights of the RBF-NN. 

 

Figure 9. Phase portraits of the controlled system. 
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Figure 10. The 3-D behavior of the controlled system. 

5. Conclusions 

In this study, a new adaptive radial basis function-neural network-based control scheme was 

proposed to stabilize a specific four-dimensional chaotic system, which shows a periodic-double and 

low-entropy route preceding high-entropy chaotic states. The proposed controller design requires 

neither any initial information about the dynamics of the chaotic system nor its parameters. The 

uncertain dynamics of the considered four-dimensional system is approximated by using the 

RBF-NN, and then the proposed indirect adaptive control law is proposed based on the developed 

model. Stability analysis is presented, and adaptive learning law is derived for calibrating weights of 

the RBF-NN. Simulation results verify the acceptable performance of the proposed method for 

stabilizing the considered chaotic system. 
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