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Abstract: Attribute reduction as an important preprocessing step for data mining, and has become a
hot research topic in rough set theory. Neighborhood rough set theory can overcome the shortcoming
that classical rough set theory may lose some useful information in the process of discretization for
continuous-valued data sets. In this paper, to improve the classification performance of complex
data, a novel attribute reduction method using neighborhood entropy measures, combining algebra
view with information view, in neighborhood rough sets is proposed, which has the ability of dealing
with continuous data whilst maintaining the classification information of original attributes. First,
to efficiently analyze the uncertainty of knowledge in neighborhood rough sets, by combining
neighborhood approximate precision with neighborhood entropy, a new average neighborhood
entropy, based on the strong complementarity between the algebra definition of attribute significance
and the definition of information view, is presented. Then, a concept of decision neighborhood
entropy is investigated for handling the uncertainty and noisiness of neighborhood decision systems,
which integrates the credibility degree with the coverage degree of neighborhood decision systems
to fully reflect the decision ability of attributes. Moreover, some of their properties are derived and
the relationships among these measures are established, which helps to understand the essence
of knowledge content and the uncertainty of neighborhood decision systems. Finally, a heuristic
attribute reduction algorithm is proposed to improve the classification performance of complex
data sets. The experimental results under an instance and several public data sets demonstrate
that the proposed method is very effective for selecting the most relevant attributes with great
classification performance.

Keywords: rough sets; neighborhood rough sets; attribute reduction; neighborhood entropy; classification

1. Introduction

Attribute reduction in rough set theory has been recognized as an important feature selection
method, aimed to select the most representative attribute subset with a high resolution by eliminating
redundant and unimportant attributes [1]. The attribute reduction methods can be widely implemented
in the fields of data classification, data mining, machine learning, and pattern recognition [2–6]. Due to
the development of the internet, the scale of data becomes bigger and bigger. Even thousands of
attributes may be acquired in some real-world databases. In order to shorten the processing time and
obtain better generalization, the attribute reduction problem attracts more and more attention in recent
years [5,7,8].

In the classical rough set theory, there are two forms of definition for attribute reduction. The one is
the algebra definition based on approximate precision, which determines whether certain conditional
attributes can be removed according to the variation of approximate precision and considers the
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effect of attributes on the deterministic subsets in the field. The other is the definition of information
view based on information entropy, which determines whether certain conditional attributes can be
removed according to the changes of conditional entropy and considers the effect of attributes on the
indeterminate subsets in the field [9]. Many attribute reduction algorithms are based on the algebra
definition so far. Mi et al. [10] introduced the concepts of a lower distribution reduct and an upper
distribution reduct based on the variable precision rough sets, and obtained an approach for knowledge
reduction in variable precision rough sets. Syau et al. [11] provided the characterizations of lower and
upper approximations for the connection between the concepts of variable precision generalized rough
set model and neighborhood systems by introducing minimal neighborhood systems. What is more,
as a measure to evaluate the uncertainty of discrete sample spaces, information entropy is a significant
tool for characterizing the distinguishment information of attributes subsets [12]. Information entropy
based on neighborhood systems has been established, and the extension of information entropy
and its variants are adapted for attribute reduction. Gao et al. [13] developed a heuristic attribute
reduction algorithm based on the maximum decision entropy in the decision-theoretic rough set
model. Dai et al. [14] proposed a framework for attribute reduction in interval-valued data from the
information view. It is known that there is a strong complementarity between the algebra view and
the information view of attribute importance, and the two views can be combined to produce a more
comprehensive measurement mechanism [15]. Wang [15] summarized the reduct in rough sets from
algebra view and information view. This inspires the authors to investigate new attribute reduction
methods from algebra view and information view in this paper.

The classical rough set theory is established on the equivalence approximate space and only
compatible for discrete data set, and it could be useless for continuous numerical data [13,15,16].
In general, it needs to discretize when processing continuous numerical data, which will lead to the
loss of information (including the neighborhood structure information and order structure information
in real spaces) [17,18]. To overcome this drawback, many extensions of classical rough set theory have
been presented [19–26], such as fuzzy rough set [21,22], tolerance approximate models [23], similarity
rough approximate model [24], covering approximation model [25], and neighborhood granular
model [26]. Among all the extensions, Hu et al. [18] developed a neighborhood rough set model to
process both numerical and categorical data sets via neighborhood relation. Then, the neighborhood
rough set model can process both numerical and discrete data sets via neighborhood parameters.
Wang et al. [27] presented a local neighborhood rough set combining the neighborhood rough set and
local rough set, to be applied to rough data analysis in big data. Fan et al. [28] designed an attribute
reduction algorithm based on the max-decision neighborhood rough set model. Chen et al. [29]
investigated approaches to attribute reduction in parallel using dominance-based neighborhood rough
sets. Therefore, this paper studies an attribute reduction algorithm based on neighborhood rough sets
by making full use of the advantages for rough sets.

It is noted that the reduction calculation of decision neighborhood systems is a key problem
in neighborhood rough set theory. In addition, the reducts of an information system need to be
achieved to further extract rule-like knowledge from information systems [29]. In practical application
of decision-making, both the certainty factor and the object coverage factor of rule are two important
standards of evaluating the decision ability of decision systems [30,31]. However, some of these
existing knowledge reduction methods cannot reflect the change of decision ability for classification
objectively. It is known that the credibility degree and the coverage degree can efficiently reflect the
classification ability of conditional attributes with respect to the decision attribute [30]. The conditional
attributes with higher credibility and coverage degrees are more important with respect to the decision
attribute. Therefore, it is necessary to investigate a new uncertainty measure and an effective heuristic
search algorithm. Sun et al. [32] proposed a concept of decision degree based on the notions of
the certainty factor and the coverage factor of rule in rough sets, which includes the degree of
sufficiency of a proposition and the degree of its necessity. Until now, the works are not considered
in neighborhood rough sets. This inspires the authors to investigate a new measure to effectively
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illustrate the classification ability and the decision ability of neighborhood decision systems. Based on
this idea, the concepts of coverage and credibility degrees are introduced into neighborhood decision
systems as measures to reflect the classification ability of conditional attributes, with respect to decision
attributes in this paper. In order to fully reflect the decision ability of attributes, the credibility degree
and the coverage degree based on neighborhood rough sets are integrated into neighborhood entropy
measures. Then, a heuristic attribute reduction method based on decision neighborhood entropy is
presented to address the uncertainty and noisiness of complex data sets in neighborhood rough sets.

The remainder of this paper is organized as follows: Section 2 reviews some basic concepts of
rough sets, information entropy measures, and neighborhood rough sets. In Section 3, some uncertainty
measures based on neighborhood entropy in neighborhood decision systems are investigated, their
properties are derived, and the relationships among these measures are established. An attribute
reduction algorithm based on decision neighborhood entropy with complexity analysis is designed.
Section 4 analyzes the classification experiments conducted on several public data sets. Finally,
Section 5 summarizes the study.

2. Previous Knowledge

In this section, we briefly review several basic concepts of rough sets, information entropy
measures and neighborhood rough sets in [12,13,18,33–35].

2.1. Rough Sets

Given a decision system DS = (U, C, D, V, f ), usually written more simply as DS = (U, C, D), where
U = {x1, x2, · · · , xn} is a sample set named universe, C = {a1, a2, · · · , am} is a conditional attribute set
that describes the samples, D is a set of classification attributes, f : U × {C∪D}→V is an information
function which associates a unique value of each attribute with every object belonging to U, and f (a, x)
represents the value of x ∈ U on attribute a ∈ C∪D. For any B⊆C, two samples x, y ∈ U, the equivalence
relation is described as

IND(B) = {(x, y)|∀a ∈ B, f (a, x) = f (a, y)}. (1)

Then, U/IND(B) is called a partition that is composed of the equivalence classes, and for any sample
x ∈ U, [x]B = {y| y ∈ U, (x, y) ∈ IND(B)} is an equivalence class of x.

In a decision system DS = (U, C, D) with B⊆C and X⊆U, the lower approximation set and the
upper approximation set of X with respect to B can be expressed, respectively, as

B(X) = {x|[x]B ⊆ X, x ∈ U}, (2)

B(X) = {x|[x]B ∩ X 6= ∅, x ∈ U}. (3)

2.2. Information Entropy Measures

Given a decision system DS = (U, C, D) with B⊆C, and U/B = {X1, X2, · · · , XN}, then the
information entropy of B is described as

H(B) = −
N

∑
i=1

p(Xi) log p(Xi), (4)

where p(Xi) =
|Xi |
|U| is the probability of Xi⊆U/B, and |Xi| denotes the cardinality of the equivalence

class Xi.
Given a decision system DS = (U, C, D) with B1, B2⊆C, U/B1 = {X1, X2, · · · , XN}, and U/B2 = {Y1,

Y2, · · · , YM}, then the joint entropy of B1 and B2 is denoted as

H(B1 ∪ B2) = −
N

∑
i=1

M

∑
j=1

p(Xi ∩Yj) log p(Xi ∩Yj), (5)
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where p
(
Xi ∩Yj

)
=
|Xi∩Yj|
|U| , i = 1, 2,···, N, and j = 1, 2,···, M.

Given a decision system DS = (U, C, D) with B1, B2⊆C, U/B1 = {X1, X2, · · · , XN}, and U/B2 = {Y1,
Y2, · · · , YM}, then the conditional information entropy of B2 with respect to B1 is defined as

H(B2|B1) = −
N

∑
i=1

p(Xi)
M

∑
j=1

p(Yj
∣∣Xi) log p(Yj

∣∣Xi) , (6)

where p
(
Yj
∣∣Xi
)
=
|Yj∩Xi|
|Xi |

, i = 1, 2, · · · , N, and j = 1, 2, · · · , M.
Given a decision system DS = (U, C, D) with B1, B2⊆C, the mutual information between B1 and

B2 is defined as
I(B1; B2) = H(B2) − H(B2|B1). (7)

Given a decision system DS = (U, C, D) with B1, B2⊆C, the mutual information has the
following properties:

(1) I(B1; B2) ≥ 0,
(2) I(B1; B2) = I(B2; B1),
(3) I(B1; B2) = H(B1) + H(B2) − H(B1∪B2),
(4) I(B1; B2) = H(B1) − H(B1|B2) = H(B2) − H(B2|B1).

Given a decision system DS = (U, C, D) with B⊆C, if I(B; D) = I(C; D) and I(B − {a}; D) < I(B; D)
for any a∈B, then B is a reduct of C with respect to D.

2.3. Neighborhood Rough Sets

Given a neighborhood decision system NDS = (U, C, D, V, f, ∆, δ), usually written more simply as
NDS = (U, C, D, δ), where U = {x1, x2, · · · , xn} is a sample set named universe, C = {a1, a2, · · · , am} is a
conditional attribute set that describes the samples, D = {d} is a decision attribute set that contains only
one decision attribute, V = ∪D}Va, Va is a value set of attribute a, f : U × {C∪D}→V is a map function,
∆→[0, ∞) is a distance function, and δ is a neighborhood parameter with 0 ≤ δ ≤ 1.

For any samples x, y, z∈U on a subset B, the distance function ∆B(x, y) satisfies the following
three conditions: ∆B(x, y) ≥ 0, ∆B(x, y) = ∆B(y, x), and ∆B(x, y) + ∆B(y, z) ≥ ∆B(x, z).

It is well known that there are three classical metrics including Manhattan, Euclidean,
and Chebychev distance functions, where the Euclidean distance function effectively reflects the
basic information of the unknown data [33]. Given a neighborhood decision system NDS = (U, C, D, δ)
with B⊆C, for any x, y∈U, the Euclidean distance function between x and y is expressed as

∆B(x, y) =

√√√√ |B|

∑
k=1
| f (ak, x)− f (ak, y)|2. (8)

Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, the similarity relation
resulting by B is defined as

NRδ(B) = {(x, y) ∈ U ×U|∆B(x, y) ≤ δ}. (9)

Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, for any x ∈ U,
the neighborhood class of x with respect to B is described as

nδ
B(x) = {y|x, y ∈ U, ∆B(x, y) ≤ δ}. (10)
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Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C and X⊆U, the neighborhood
lower approximation set and the neighborhood upper approximation set of X with respect to B are
described, respectively, as

Bδ(X) =
{

xi

∣∣∣nδ
B(xi) ⊆ X, xi ∈ U, i = 1, 2, · · · , n

}
, (11)

Bδ(X) =
{

xi

∣∣∣nδ
B(xi) ∩ X 6= ∅, xi ∈ U, i = 1, 2, · · · , n

}
. (12)

Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C and X⊆U, Bδ(X) is the
neighborhood lower approximation set of X with respect to B, and Bδ(X) is the neighborhood upper
approximation set of X with respect to B, then the approximate precision of X with respect to B is
described as

pB(X) =
|Bδ(X)|∣∣Bδ(X)

∣∣ . (13)

Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, U/D = {X1, X2, · · · , XN},
then the neighborhood lower approximation set and the neighborhood upper approximation set of D
with respect to B are described respectively as

Bδ(D) =
N
∪

i=1
Bδ(Xi), (14)

Bδ(D) =
N
∪

i=1
Bδ(Xi), (15)

where Bδ(Xi) respects the neighborhood lower approximation set of Xi with respect to B, Bδ(Xi)

respects the neighborhood upper approximation set of Xi with respect to B, and i = 1, 2, · · · , N.
Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, then the neighborhood

approximate precision of D with respect to B is described as

pB(D) =
|Bδ(D)|∣∣Bδ(D)

∣∣ . (16)

The neighborhood approximate precision can be used to reflect the complete degree of the
knowledge of a set, but this precision measure does not take into account the size of the particles that
are included in the lower approximation set completely. Therefore, it is not sufficient to only consider
attribute reduction from the algebra view.

3. Attribute Reduction Method Using Neighborhood Entropy Measures in Neighborhood
Decision Systems

Attribute reduction is a core part of the rough set theory [13]. In the classical rough set theory,
there are two forms of definition for attribute reduction: One is the algebra definition based on set
theory; the other is the definition of information view based on information entropy. There is a
strong complementarity between the algebra definition of attribute significance and the definition
of information view. The former considers the influence of attributes on the defined subset in the
domain of theory, while the latter considers the influence of attributes on the uncertain subset in
the domain of theory. Therefore, the two views can be combined to produce a more comprehensive
measurement mechanism. In rough sets, the equivalence classes-based information entropy does
not work for numerical data. Then, for continuous data sets, a discretization should be performed
before further processing. However, the discretization may result in information loss, and it is
difficult to employ mutual information in attribute evaluation due to the difficulty in estimating
the probability density of attributes [36]. To address this issue, the concept of neighborhood can be
combined with information theory to extend Shannon entropy, and then some correlative concepts of
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neighborhood entropy are defined to measure the uncertainty of numerical data. Then, some concepts
of neighborhood entropy-based uncertainty measures are presented to measure the uncertainty of
knowledge in neighborhood decision systems, some important properties and relationships of these
measures are deduced respectively as well, and a heuristic attribute reduction algorithm is investigated
to improve the classification performance of complex data sets.

3.1. Neighborhood Entropy-Based Uncertainty Measures

Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, nδ
B(xi) is a neighborhood

class of xi ∈ U, then Hu et al. [37] described the neighborhood entropy of xi as

Hxi
δ (B) = − log

∣∣nδ
B(xi)

∣∣
|U| . (17)

Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, Hu et al. [37] and
Chen et al. [33] computed the average neighborhood entropy of the sample set as

Hδ(B) = − 1
|U|

|U|

∑
i=1

log

∣∣nδ
B(xi)

∣∣
|U| . (18)

The concept of neighborhood entropy is defined based on the information entropy theory,
which granulates the space of the domain by neighborhood relation and is used to measure the
uncertainty and classification ability of the numerical knowledge classification system [38]. In this
paper, the neighborhood approximate precision is combined with the neighborhood entropy to reflect
the uncertainty of knowledge, and then a new average neighborhood entropy is defined as follows.

Definition 1. Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, a new average neighborhood
entropy of the sample set is defined as

Hδ(B) = − pB(D)

|U|

|U|

∑
i=1

log

∣∣nδ
B(xi)

∣∣
|U| . (19)

From Definition 1, the average neighborhood entropy combines the neighborhood precision
with the average neighborhood entropy, and it can make full use of the advantages of algebra and
information view, and overcomes the drawbacks of traditional precision measurement.

Property 1. Given a neighborhood decision system NDS = (U, C, D, δ) with xi∈U, then 0 ≤ Hδ (C) ≤ log|U|.

Proof. It follows from Equation (10) that nδ
C(xi)⊆U for any xi∈U, then one has that 1

|U| ≤
|nδ

C(xi)|
|U| ≤ 1.

From Equation (16), it is obtained that 0 ≤ pB(D) ≤ 1, and then 0 ≤ pB(D)
|U| ≤

1
|U| . Thus, it is obvious

from Definition 1 that 0 ≤ Hδ (C) ≤ log|U|. �

Proposition 1. Given a neighborhood decision system NDS = (U, C, D, δ) with xi∈U, if B1⊆B2⊆C, then
Hδ(B2) ≥ Hδ(B1).

Proof. Suppose that B1⊆B2⊆C, and similar to the proof of Proposition 1 in [33], one has that nδ
B1
(xi) ⊇

nδ
B2
(xi). Then,

∣∣∣nδ
B1
(xi)

∣∣∣ ≥ ∣∣∣nδ
B2
(xi)

∣∣∣ holds. It follows from Equations (11) and (12) that B1δ
(X) ⊆

B2δ
(X) and B1δ(X) ⊇ B2δ(X). By Equation (16), one has that pB1(D) ≤ pB2(D). Hence, it can be

obtained from Equation (19) that Hδ(B2) ≥ Hδ(B1). �
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Definition 2. Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, nδ
B(xi) is a neighborhood

class of xi∈U generated by NRδ(B), and [xi]D is an equivalence class of xi∈U generated by IND(D), then a
decision neighborhood entropy of B and D is defined as

Hδ(D, B) = − pB(D)

|U|

|U|

∑
i=1

log(

∣∣nδ
B(xi) ∩ [xi]D

∣∣2
|U||[xi]D|

). (20)

In a decision system DS = (U, C, D) with any xi∈U, Pawlak et al. [34] and Wang et al. [30] express
a decision rule as dxi : des([xi]C)⇒ des([xi]D)(βxi , λxi ) , where des([xi]C) and des([xi]D) are the

descriptions of xi under the equivalence relations IND(C) and IND(D), respectively. βxi =
|[xi ]C∩[xi ]D |
|[xi ]C |

is

called the credibility degree of decision rule dxi , and λxi =
|[xi ]C∩[xi ]D |

|U| is called the coverage degree
of decision rule dxi . Wang et al. [30] declared that the credibility degree and the coverage degree can
reflect the classification ability of conditional attributes with respect to the decision attribute, and the
conditional attributes with higher credibility and coverage degrees are more important with respect
to the decision attribute. Furthermore, Tsumoto [31] emphasized that the credibility degree indicates
the adequacy of the proposition, and the coverage degree describes the necessity of the proposition.
Then, in order to fully reflect the decision ability and the classification ability of neighborhood decision
systems, this paper investigates some neighborhood entropy-based uncertainty measures by combining
the credibility degree with the coverage degree in neighborhood rough sets.

Property 2. Given a neighborhood decision system NDS = (U, C, D, δ), if βxi =
|nδ

B(xi)∩[xi ]D|
|[xi ]D |

and λxi =

|nδ
B(xi)∩[xi ]D|
|U| for any xi∈U, then one has that Hδ(D, B) = − pB(D)

|U|

|U|
∑

i=1
log(βxi λxi ).

Proof. It follows immediately from Definition 2 that

Hδ(D, B) = − pB(D)
|U|

|U|
∑

i=1
log( |n

δ
B(xi)∩[xi ]D|

2

|U||[xi ]D |
)

= − pB(D)
|U|

|U|
∑

i=1
log( |n

δ
B(xi)∩[xi ]D|
|U| · |n

δ
B(xi)∩[xi ]D|
|[xi ]D |

)

= − pB(D)
|U|

|U|
∑

i=1
log(βxi λxi ). �

Property 2 shows that the decision neighborhood entropy of B and D combines the credibility
degree and the coverage degree in the neighborhood decision system, which can fully reflect the
decision ability of the neighborhood decision system.

Proposition 2. Given a neighborhood decision system NDS = (U, C, D, δ) with B1⊆B2⊆C, then Hδ(D, B1) ≤
Hδ(D, B2), where the equal sign holds if and only if nδ

B1
(xi) = nδ

B2
(xi) for any xi∈U.

Proof. Suppose that B1⊆B2⊆C, it follows from Proposition 1 that nδ
B1
(xi) ⊇ nδ

B2
(xi). Then, it is obvious

that U ⊇ nδ
B1
(xi) ∩ [xi]D ⊇ nδ

B2
(xi) ∩ [xi]D ⊇ {xi}. It is easily obtained that |U| ≥

∣∣∣nδ
B1
(xi) ∩ [xi]D

∣∣∣ ≥∣∣∣nδ
B2
(xi) ∩ [xi]D

∣∣∣ ≥ |{xi}| = 1. Thus, one has that |U|2
|U||[xi ]D |

≥
∣∣∣nδ

B1
(xi)∩[xi ]D

∣∣∣2
|U||[xi ]D |

≥
∣∣∣nδ

B2
(xi)∩[xi ]D

∣∣∣2
|U||[xi ]D |

≥

1
|U||[xi ]D |

. So, log( |U||[xi ]D |
) ≥ log(

∣∣∣nδ
B1
(xi)∩[xi ]D

∣∣∣2
|U||[xi ]D |

) ≥ log(

∣∣∣nδ
B2
(xi)∩[xi ]D

∣∣∣2
|U||[xi ]D |

) ≥ log( 1
|U||[xi ]D |

) obviously holds.

In addition, from Equations (11) and (12), it follows that B1δ
(X) ⊆ B2δ

(X) and B1δ(X) ⊇ B2δ(X).
According to Equation (16), one has that pB1(D) ≤ pB2(D). Hence, it can be obtained from Definition 2
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that Hδ(D, B1) ≤ Hδ(D, B2). When nδ
B1
(xi) = nδ

B2
(xi) for any xi∈U, it is obvious that

∣∣∣nδ
B1
(xi)∩[xi ]D

∣∣∣2
|U||[xi ]D |

=∣∣∣nδ
B2
(xi)∩[xi ]D

∣∣∣2
|U||[xi ]D |

, and one has pB1(D) = pB2(D). From Definition 2, it follows that Hδ(D, B1) = Hδ(D, B2).
Therefore, Hδ(D, B1) ≤ Hδ(D, B2) holds. �

The monotonicity is one of the most important properties for an effective uncertainty measure
of attribute reduction. According to Proposition 2, it is quite obvious that the decision neighborhood
entropy is monotonic, decreasing when adding the condition attributes, which validates the
monotonicity of the proposed uncertainty measure.

Proposition 3. Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C, then Hδ (D, B) ≥ Hδ (B).

Proof. It follows immediately from Definitions 1 and 2 that:

Hδ(D, B)− Hδ(B)

= − pB(D)
|U|

|U|
∑

i=1
log( |n

δ
B(xi)∩[xi ]D|

2

|U||[xi ]D |
) + pB(D)

|U|

|U|
∑

i=1
log |n

δ
B(xi)|
|U|

= − pB(D)
|U|

|U|
∑

i=1
log( |n

δ
B(xi)∩[xi ]D|

2

|U||[xi ]D |
· |U|
|nδ

B(xi)| )

= − pB(D)
|U|

|U|
∑

i=1
log( |n

δ
B(xi)∩[xi ]D|

2

|[xi ]D ||nδ
B(xi)| )

= − pB(D)
|U|

|U|
∑

i=1
log( |n

δ
B(xi)∩[xi ]D|
|[xi ]D |

· |n
δ
B(xi)∩[xi ]D|
|nδ

B(xi)| ).

Since there exists 0 ≤ |βB(D)|
|U| ≤ 1

|U| , it follows that nδ
B(xi) ∩ [xi]D ⊆ nδ

B(xi) and nδ
B(xi) ∩ [xi]D ⊆

[xi]D. Then, it is easily obtained that
∣∣nδ

B(xi) ∩ [xi]D
∣∣ ≤ ∣∣nδ

B(xi)
∣∣ and

∣∣nδ
B(xi) ∩ [xi]D

∣∣ ≤ |[xi]D|. Thus,

obviously, |n
δ
B(xi)∩[xi ]D|
|nδ

B(xi)| ≤ 1 and |n
δ
B(xi)∩[xi ]D|
|[xi ]D |

≤ 1 hold. Therefore, Hδ(D, B) − Hδ(B) ≥ 0 can be

obtained, in essence, Hδ(D, B) ≥ Hδ(B). �

Definition 3. Given a neighborhood decision system NS = (U, C, D, δ) with B⊆C, and any a∈B, if Hδ(D, B)
≤ Hδ(D, B−{a}), then a is redundant in B with respect to D; otherwise, a is indispensable in B with respect to D.
B is dependent if any attribute in B with respect to D is indispensable. B is called a reduct of C with respect to D
if it satisfies the following two conditions:

(1) Hδ(D, B) = Hδ(D, C);
(2) Hδ(D, B − {a}) < Hδ(D, B), where any a∈B.

Obviously, a reduct of C with respect to D is the minimal attribute subset to retain the decision
neighborhood entropy of C with respect to D.

Definition 4. Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C and any attribute a∈B,
then the significance measure of a in B with respect to D is defined as

Sigin(a, B, D) = Hδ(D, B)− Hδ(D, B− {a}). (21)

Definition 5. Given a neighborhood decision system NDS = (U, C, D, δ) with B⊆C and any attribute a∈C −
B, then the significance measure of a with respect to D is defined as

Sigout(a, B, D) = Hδ(D, B ∪ {a})− Hδ(D, B). (22)
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When B = ∅, Sigout(a, B, D) = Hδ(D, {a}). From Definition 5, the significance of attribute a is the
increment of the distinguishing information after adding a into B. The larger the value of Sig(a, B, D) is,
the greater the importance of attribute a for B with respect to D is.

3.2. Attribute Reduction Algorithm Based on Decision Neighborhood Entropy

The process of the attribute reduction method for classification is shown in Figure 1.
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To support efficient knowledge reduction, an attribute reduction algorithm based on decision
neighborhood entropy (ARDNE) is constructed and described as Algorithm 1.

Algorithm 1

Input: A neighborhood decision system NDS = (U, C, D, δ)
Output: A reduction attribute subset R
1. Initialize R = ∅.
2. while Sig(S, R, D) = 0 do
3. Let Agent = R, and h = 0.
4. for any a∈(S − R) do
5. Compute Hδ(D, R∪{a}).
6. if Hδ(D, R∪{a}) > h then
7. Let Agent = R∪{a}, and h = Hδ(D, B∪{a}).
8. end if
9. end for
10. Let R = Agent.
11. end while
12. Let r = |R|.
13. for i = 1 to r do
14. Select ai∈R.
15. Calculate Hδ(D, R − {ai}).
16. if Hδ(D, R − {ai}) ≥ Hδ(D, C) then
17. Let R = R − {ai}.
18. end
19. Return a reduction attributes subset R.
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3.3. Complexity Analysis of ARDNE Algorithm

From Algorithm 1, the decision neighborhood entropy and the neighborhood classes induced
by the conditional attributes need to be frequently calculated in the computation of the attribute
significance measure. The above computational process largely affects the time complexity of selecting
attributes. Suppose that the number of attributes is m, and the number of samples is n. The complexity
of calculating neighborhood classes is O(mn), and the computational complexity of calculating decision
neighborhood entropy is O(n). Since O(n) < O(mn), the computational complexity of calculation
of significance measure is O(mn). There are two loops in step 2 through step 11, then the worst
time complexity of ARDNE is O(m3n). Suppose that the number of selected attributes is mR, for the
calculation of the neighborhood classes, only the candidate attributes are considered instead of the
entire attribute set. Then, the time complexity of achieving neighborhood classes is O(mRn). The outer
loop times are mR, and the inner loop times are m − mR. Thus, the time complexity of this part is
O(mR(m − mR)mRn). Similar to the last steps, the time complexity of step 12 through step 18 is O(mRn).
It is well known that mR � m in most cases. Therefore, the time complexity of ARDNE is close to
O(mn). So far, ARDNE appears to be more efficient than some of the existing algorithms for attribute
reduction in [33,39–41] in neighborhood decision systems. Furthermore, its space complexity is O(mn).

3.4. An Illustrative Example

In the following, the performance of the ARDNE algorithm is shown through an illustrative
example in [42]. A neighborhood decision system NDS = (U, C, D, δ) is employed, where U = {x1, x2,
x3, x4}, C = {a, b, c}, D = {d}, and δ = 0.3, as shown in Table 1.

Table 1. A neighborhood decision system.

U a b c d

x1 0.12 0.41 0.61 Y
x2 0.21 0.15 0.14 Y
x3 0.31 0.11 0.26 N
x4 0.61 0.13 0.23 N

For Table 1, an example for attribute reduction using Algorithm 1 is given. Then, the neighborhood
class of each attribute in Table 1 is calculated by using the Euclidean distance function as follows.

For an attribute subset {a}, one has that ∆{a}(x1, x2) = 0.09, ∆{a}(x1, x3) = 0.19, ∆{a}(x1, x4) = 0.49,
∆{a}(x2, x3) = 0.1, ∆{a}(x2, x4) = 0.4, and ∆{a}(x3, x4) = 0.3. Then, the neighborhood classes of any
xi∈U can be computed by nδ

{a}(x1) = {x1, x2, x3}, nδ
{a}(x2) = {x1, x2, x3}, nδ

{a}(x3) = {x1, x2, x3, x4},
and nδ

{a}(x4) = {x3, x4}.
Due to D = {d} in Table 1, it follows that U/{d} = {X1, X2} = {{x1, x2}, {x3, x4}}. Then, from

Equation (20), one has that Hδ(D, {a}) = − 1
4×4 (log( 22

4×2 ) + log( 22

4×2 ) + log( 22

4×2 ) + log( 22

4×2 )) = 0.0753.
Similarly, Hδ(D, {b}) = 0.0753, Hδ(D, {c}) = 0.1505, Hδ(D, {a, b}) = 0.0753, Hδ(D, {a, c}) = 0.1505,

Hδ(D, {b, c}) = 0.1505, and Hδ(D, {a, b, c}) = 0.1505.
From the above calculated results, it can be observed that Hδ(D, {c}) > Hδ(D, {a}) = Hδ(D, {b}). Since

the decision neighborhood entropy of {c} and D is maximum, the attribute c should be added to the
candidate attribute set (i.e., R = {c}). By computing, one has that Sig(C, R, D) = Hδ(D, C) − Hδ(D, {c}) = 0,
which satisfies the termination criterion. Thus, a selected attribute subset {c} is achieved.

4. Experimental Results and Analysis

4.1. Experiment Preparation

It is known that the objective of an attribute reduction algorithm usually has two aspects: One is to
select a small attribute subset and the other is to maintain high classification accuracy. To demonstrate
the classification performances of our proposed attribute reduction algorithm described in Section 3.2
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on several public data sets, the more comprehensive results of all contrasted algorithms should be
achieved and analyzed. The selected four UCI (University of California at Irvine) Machine Learning
Repository data sets with low-dimensional attributes include Ionosphere, Wisconsin Diagnostic Breast
Cancer (Wdbc), Wisconsin Prognostic Breast Cancer (Wpbc), and Wine, which were downloaded
from https://archive.ics.uci.edu/ml/datasets.html. The selected seven microarray gene expression
data sets with high-dimensional attributes included Brain_Tumor1, Diffuse Large B Cell Lymphoma
(DLBCL), Leukemia, Small Round Blue Cell Tumor (SRBCT), Colon, Lung, and Prostate, where the
four gene expression data sets (Brain_Tumor1, DLBCL, Leukemia and SRBCT) can be downloaded
at http://www.gems-system.org, the Colon gene expression data set can be downloaded at http:
//eps.upo.es/bigs/datasets.html, the Lung data set can be downloaded at http://bioinformatics.
rutgers.ed/Static/Supple-mens/CompCancer/datasets, and the Prostate gene expression data set
can be downloaded at http://www.gems-system.org. All of the data sets above are summarized in
Table 2.

Table 2. Description of the eleven public data sets.

No. Data Sets Samples Attributes Classes Reference

1 Ionosphere 351 33 2

Fen et al. [28]
2 Wdbc 569 31 2
3 Wine 178 13 3
4 Wpbc 198 33 2

5 Brain_Tumor1 90 5920 5 Huang et al. [43]

6 Colon 62 2000 2 Mu et al. [44]

7 DLBCL 77 5469 2 Wang et al. [45]

8 Leukemia 72 7129 2 Dong et al. [46]

9 Lung 181 12,533 2
Sun et al. [47]10 Prostate 136 12,600 2

11 SRBCT 63 2308 4 Tibshirani et al. [48]

Wdbc—Wisconsin Diagnostic Breast Cancer; Wpbc—Wisconsin Prognostic Breast Cancer; DLBCL—Diffuse Large B
Cell Lymphoma; and SRBCT—Small Round Blue Cell Tumor.

The experiments were performed on a personal computer running Windows 7 with an Intel(R)
Core(TM) i5-3470 CPU operating at 3.20 GH, and 4 GB memory. All the simulation experiments were
implemented in MATLAB R2014a, and the k-nearest neighbors (KNN) classifier and the support vector
machine (SVM) classifier were selected to verify the classification accuracy in WEKA software, where
the parameter k in KNN was set to 3 and the linear kernel functions were selected in SVM. All of the
following experimental comparisons for classification on the selected attributes are implemented using
a 10-fold cross-validation with all the test data sets, where every data set is first randomly divided into
ten portions which are the same size subset of data each other, one data subset is used as the testing
data set, the rest nine data subsets are used as the training data set, and each of the ten data subsets
only is employed exactly once as the testing data set; secondly, the operation of the cross-validation is
repeated ten times; finally, the average of ten test results is as the obtained classification accuracy.

4.2. Effect of Different Neighborhood Parameter Values

Since the value of neighborhood parameter decides the granularity of data manipulation, which
affects both the cardinality of the data set and the classification accuracy of the attribute subset, in this
subsection, our experiments concern the number of selected attributes and the classification accuracy
with the different neighborhood parameter values. Following the experimental techniques designed by
Chen et al. [33], the number of selected attributes and the classification accuracy of selected attribute
subset for the different neighborhood parameter values is discussed to obtain a suitable neighborhood
parameter value and a better attribute subset. The classification results of the data sets given in Table 2

https://archive.ics.uci.edu/ml/datasets.html
http://www.gems-system.org
http://eps.upo.es/bigs/datasets.html
http://eps.upo.es/bigs/datasets.html
http://bioinformatics.rutgers.ed/Static/Supple-mens/CompCancer/datasets
http://bioinformatics.rutgers.ed/Static/Supple-mens/CompCancer/datasets
http://www.gems-system.org
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were obtained by using the ARDNE algorithm with the different neighborhood parameters, shown in
Figure 2, where the horizontal coordinates denotes the neighborhood parameters with δ ∈ [0.05, 1]
at intervals of 0.05, and the left and right vertical axes represent the classification accuracy and the
number of selected attributes, respectively.
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Figure 2. The number of selected attributes and the classification accuracy of the eleven data sets with
the different neighborhood parameter values. (a) Ionosphere data set; (b) Wdbc data set; (c) Wine data
set; (d) Wpbc data set; (e) Brain_Tumor1 data set; (f) Colon data set; (g) DLBCL data set; (h) Leukemia
data set; (i) Lung data set; (j) Prostate data set; (k) SRBCT data set.
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Figure 2a–k show the number of selected attributes and the classification accuracy of eleven
data sets with the different neighborhood parameter values. For the Ionosphere data set in Figure 2a,
the classification accuracy reached its maximum when the parameter was 0.3. As the parameter value
continued to increase, the number of selected attributes decreased, resulting in a rapid decrease in
classification accuracy. For the Wdbc data set in Figure 2b, when the parameter took values in the
interval [0.05, 0.15], there was little change in the classification accuracy, and the number of selected
attributes was less when the parameter was 0.15. For the Wine data set in Figure 2c, the classification
accuracy reached its maximum when the parameter was 0.15. Similarly, for the Wpbc data set in
Figure 2d, the classification accuracy reached its maximum when the parameter was 0.2. For the
Brain_Tumor1 data set in Figure 2e, the classification accuracy achieved the maximum when the
parameter was set as 0.15. For the Colon data set in Figure 2f, as the parameter value continued
to increase, the number of selected attributes increased first and in turn decreased, and then the
classification accuracy reached its maximum when the parameter was 0.05. For the DLBCL data set in
Figure 2g, when the parameter took the values in the interval [0.15, 0.3], there was a slight difference in
the classification accuracy, and then the number of selected attributes was less when the parameter was
0.15. For the Leukemia, Lung, Prostate, and SRBCT data sets in Figure 2h–k, the classification accuracy
reached their maximum when the parameters were 0.1, 0.3, 0.5, and 0.25, respectively. In addition,
when the neighborhood parameter was about 0.5, the number of selected attributes would be close to
zero. Therefore, the appropriate neighborhood parameters of eleven data sets should take values in
the interval [0.05, 0.5].

4.3. Classification Results of ARDNE Algorithm under Different Neighborhood Parameter Values

In this part of our experiments, by using the above selected neighborhood parameters in
Section 4.2, the classification results of the raw data and the reduced data using Algorithm 1 on
the eleven gene expression data sets in Table 2 could be obtained. Then, the number of the attributes
selected by the ARDNE algorithm and the corresponding classification accuracy with SVM and KNN
based on 10-fold cross validation are shown in Table 3, respectively. The corresponding neighborhood
parameter values are listed in the last column.

Table 3. The number of selected attributes and the classification accuracy under the SVM and KNN
classifiers on the raw data and the reduced data with Algorithm 1.

Data Sets
Raw Data Reduced Data using Algorithm 1

δ
Attributes SVM KNN Attributes SVM KNN

Ionosphere 33 0.874 0.857 11 0.909 0.893 0.3
Wdbc 31 0.538 0.896 10 0.959 0.959 0.15
Wine 13 0.401 0.69 7 0.959 0.96 0.15
Wpbc 33 0.667 0.752 6 0.772 0.753 0.2
Brain_Tumor1 5920 0.86 0.783 13 0.83 0.897 0.15
DLBCL 2000 0.965 0.896 10 0.993 0.998 0.05
Colon 5469 0.811 0.776 5 0.808 0.818 0.15
Lung 7129 0.979 0.975 6 0.99 0.99 0.1
Leukemia 12,533 0.973 0.842 6 0.967 0.981 0.3
Prostate 12,600 0.916 0.796 3 0.829 0.858 0.5
SRBCT 2308 0.984 0.808 6 1 1 0.25

Average 4369.9 0.815 0.825 7.5 0.911 0.919

SVM—support vector machine and KNN—k-nearest neighbors.

From Table 3, it can be found that our proposed algorithm can greatly reduce the attributes for all
the data sets without loss of classification accuracy, and most of the redundant attributes are reduced.
In the four low-dimensional data sets, the classification accuracy of the SVM and KNN classifiers
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were higher. In the seven high-dimensional gene expression data sets, the classification accuracy of
the KNN classifier was higher than that of the raw data, while there were some differences in the
classification accuracy of SVM classifier. On the KNN classifier, the classification accuracy of all the
data sets was higher than that of the raw data. On the SVM classifier, the classification accuracy of
the Brain_Tumor1 data set was 3% less than that of the raw data, and the classification accuracy of
the Colon and Leukemia data sets were slightly lower than that of the raw data. It shows that the
reduced attribute set can maintain the classification accuracy of the raw data. However, on the SVM
classifier, for the Prostate data set, the classification accuracy was 8.7% less than that of the raw data.
The reason is that some attributes with important information during reduction are lost. What is
more, for the average classification accuracy, our ARDNE algorithm obtained 91.04% and 91.86%
on the SVM and KNN classifiers, respectively, which was higher by 10% than that of raw data sets.
Therefore, the proposed ARDNE algorithm was efficient in dimension reduction of low-dimensional
and high-dimensional data sets.

4.4. Classification Results of UCI Data Sets with Low-Dimensions

This portion of our experiments was to evaluate the performance of our proposed algorithm
in terms of classification accuracy, and the classification performance of the ARDNE algorithm was
compared with those of the other four related state-of-the-art attribute reduction algorithms on the
four UCI data sets, selected from Table 2. The algorithms used in the comparison included: (1) The
classical rough set algorithm (RS) [34], (2) the neighborhood rough set algorithm (NRS) [49], (3) the
covering decision algorithm (CDA) [50], and (4) the max-decision neighborhood rough set algorithm
(MDNRS) [28]. Table 4 gives the numbers of selected attributes in the reduced data with the four
different algorithms. Tables 5 and 6 show the comparison results of classification accuracy using the
four different methods.

Table 4. The number of selected attributes of the five reduction algorithms on the four UCI data sets.

Data Sets RS NRS CDA MDNRS ARDNE

Ionosphere 17 8 9 8 11
Wdbc 8 2 2 2 10
Wine 5 3 2 4 7
Wpbc 7 2 2 4 6

Average 9.25 3.75 3.75 4.5 8.5

RS—classical rough set algorithm; NRS—neighborhood rough set algorithm; CDA—covering decision algorithm;
MDNRS—max-decision neighborhood rough set algorithm; and ARDNE— attribute reduction algorithm based on
decision neighborhood entropy.

Table 5. Classification accuracy of the five reduction algorithms on the four UCI data sets with KNN.

Data Sets RS NRS CDA MDNRS ARDNE

Ionosphere 0.866 0.859 0.848 0.891 0.893
Wdbc 0.911 0.923 0.923 0.930 0.959
Wine 0.863 0.752 0.727 0.911 0.960
Wpbc 0.743 0.738 0.738 0.761 0.753

Average 0.846 0.818 0.809 0.873 0.891

Table 6. Classification accuracy of the five reduction algorithms on the four UCI data sets with SVM.

Data Sets RS NRS CDA MDNRS ARDNE

Ionosphere 0.881 0.872 0.878 0.870 0.909
Wdbc 0.589 0.595 0.595 0.861 0.959
Wine 0.640 0.402 0.643 0.910 0.959
Wpbc 0.778 0.757 0.757 0.692 0.772

Average 0.722 0.657 0.718 0.833 0.900
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From Table 4, comparing the numbers of selected attributes, the NRS, CDA, MDNRS, and ARDNE
algorithms were all superior to the RS algorithm, but the ARDNE algorithm was slightly inferior to
NRS, CDA, and MDNRS algorithms. From Tables 5 and 6, it is obvious that the classification accuracy
of the proposed ARDNE algorithm outperformed that of the other algorithms on most of UCI data
sets, except for the Wpbc data set. Furthermore, the average classification accuracy of the ARDNE
was the highest and greatly improved on the SVM and KNN classifiers. For the Wpbc data set, the
number of attributes selected by the ARDNE algorithm was six, which was not far from the MDNRS
algorithm, and its classification accuracy was 0.8% lower than the MDNRS algorithm on KNN, while
the accuracy was 8% higher than the MDNRS algorithm on SVM. Meanwhile, for the Wpbc data set,
the number of attributes selected by the RS was seven, and its classification accuracy was 1% lower
than the ARDNE algorithm on KNN, while the accuracy was 0.6% higher than the ARDNE algorithm
on SVM. For the RS, NRS, and CDA algorithms, the classification accuracy of the Wdbc and Wine
data sets were unstable. The classification accuracy of the Wine data sets only was 40.23% on the
SVM classifier, and the average classification accuracy of the NRS model was the lowest. It can be
obtained that the classification accuracy of the ARDNE algorithm on the SVM and KNN classifiers
were relatively steady. Based on the results in Table 4, it can be seen that some important information
attributes were lost in the process of reduction for the RS, NRS, and CDA algorithms, resulting in the
decrease of classification accuracy of the reduced data sets with fewer attributes. The experimental
results show that our attribute reduction algorithm could greatly remove the redundant attributes,
and improve the classification accuracy for most of the data sets.

4.5. Classification Results of Microarray Data Sets with High-Dimensions

This subsection of our experiments continued testing the classification performance of the ARDNE
algorithm, compared with those of the other three state-of-the-art entropy-based attribute reduction
algorithms on the five microarray gene expression data sets with high-dimensional attributes, selected
from Table 2. The algorithms used in the comparison included: (1) The mutual entropy-based
attribute reduction algorithm (MEAR) [50], (2) the entropy gain-based attribute reduction algorithm
(EGAR) [33], and (3) the average decision neighborhood entropy-based attribute reduction algorithm
(ADNEAR) [42]. The objective of these further experiments was to show the classification power of
the proposed approach to gene selection. Tables 7 and 8 show the number of selected genes and the
classification accuracy of the five high-dimensional gene expression data sets with the KNN and SVM
classifiers, respectively.

From Tables 7 and 8 the ARDNE algorithm obtained 93.8% and 91.9% average classification
accuracy on the KNN and SVM classifiers, respectively. The classification accuracy of genes selected
by the MEAR, EGAR, and ADNEAR algorithms were far lower than that with the ARDNE algorithm.
For the MEAR algorithm, since the process of discretization generally results in loss of extensive useful
gene information, the MEAR algorithm acquired the lower classification accuracy. For the number
of selected genes, there was no significant difference among the EGAR, ADNEAR, and ARDNE
algorithms. However, the classification accuracy of the ARDNE algorithm was superior to the EGAR
and ADNEAR algorithms. It shows that the proposed ARDNE algorithm was able to find the most
informative genes for classification. For the Colon data set, the classification accuracy of ARDNE was
80.8%, which was slightly less than that of the MEAR algorithm. So, it indicates that MDNRS algorithm
was greatly affected by the data set, and the classification results were not as stable as the ARDNE
algorithm. For the SRBCT data set, the classification accuracy of the ARDNE algorithm was obviously
higher than those of other algorithms, and its number of selected genes only was six. The result of the
further experiments shows that the proposed method had significant classification ability on the five
microarray gene expression data sets.
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Table 7. Classification results of the four entropy-based reduction algorithms with KNN.

Data Sets
MEAR EGAR ADNEAR ARDNE

Genes Accuracy Genes Accuracy Genes Accuracy Genes Accuracy

Brain_Tumor1 2 0.683 8 0.667 9 0.711 13 0.897
Colon 5 0.77 5 0.540 5 0.555 5 0.817

DLBCL 2 0.765 20 0.752 7 0.757 10 0.998
Leukemia 3 0.928 3 0.587 3 0.587 6 0.981

SRBCT 4 0.537 8 0.503 8 0.503 6 1

Average 3.2 0.737 8.2 0.610 6.4 0.622 8 0.938

MEAR—mutual entropy-based attribute reduction algorithm; EGAR—entropy gain-based attribute reduction
algorithm; and ADNEAR—average decision neighborhood entropy-based attribute reduction algorithm.

Table 8. Classification results of the four entropy-based reduction algorithms with SVM

Data Sets
MEAR EGAR ADNEAR ARDNE

Genes Accuracy Genes Accuracy Genes Accuracy Genes Accuracy

Brain_Tumor1 2 0.691 8 0.666 9 0.666 13 0.830
Colon 5 0.849 5 0.643 5 0.643 5 0.808

DLBCL 2 0.777 20 0.862 7 0.862 10 0.993
Leukemia 3 0.920 3 0.536 3 0.536 6 0.967

SRBCT 4 0.539 8 0.535 8 0.535 6 1

Average 3.2 0.755 8.2 0.648 6.4 0.648 8 0.919

4.6. Classification Results of Dimensionality Reduction Methods on Gene Expression Data Sets

To further verify the classification performance of our proposed method, the eight methods were
employed to evaluate the number of selected genes and the classification accuracy on the four gene
expression data sets selected from Table 2. The ARDNE algorithm was compared with the seven
related state-of-the-art dimensionality reduction methods, which included: (1) The sequential forward
selection algorithm (SFS) [51], (2) the sparse group lasso algorithm (SGL) [52], (3) the adaptive sparse
group lasso based on conditional mutual information algorithm (ASGL-CMI) [53], (4) the Spearman’s
rank correlation coefficient algorithm (SC2) [44], (5) the gene selection algorithm based on fisher linear
discriminant and neighborhood rough set (FLD-NRS) [39], (6) the gene selection algorithm based on
locally linear embedding and neighborhood rough set algorithm (LLE-NRS) [40], and (7) the RelieF
algorithm [41] combined with the NRS algorithm [49] (RelieF+NRS). The SVM classifier in the WEKA
tool was used to do some simulation experiments. The number of selected genes and the classification
accuracy are shown in Tables 9 and 10 respectively, where the symbol (–) denotes no results obtained
for Leukemia using the SGL and ASGL-CMI algorithms.

Table 9. The number of selected genes of the eight reduction algorithms on the four gene expression
data sets.

Data Sets SFS SGL ASGL-CMI SC2 FLD-NRS LLE-NRS RelieF+NRS ARDNE

Colon 19 55 33 4 6 16 9 5
Leukemia 7 - - 5 6 22 17 6

Lung 3 43 32 3 3 16 23 6
Prostate 3 34 29 5 4 19 16 3
Average 8 44 31.3 4.25 4.75 18.25 16.25 5

SFS—sequential forward selection algorithm; SGL—sparse group lasso algorithm; ASGL-CMI— adaptive sparse
group lasso based on conditional mutual information algorithm; SC2—Spearman’s rank correlation coefficient
algorithm; FLD-NRS—gene selection algorithm based on fisher linear discriminant and neighborhood rough set;
LLE-NRS—gene selection algorithm based on locally linear embedding and neighborhood rough set algorithm, and
RelieF+NRS—RelieF algorithm combined with NRS algorithm.
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Table 10. The classification accuracy of the eight reduction algorithms on the four gene expression
data sets.

Data Sets SFS SGL ASGL-CMI SC2 FLD-NRS LLE-NRS RelieF+NRS ARDNE

Colon 0.521 0.826 0.851 0.805 0.88 0.84 0.564 0.81
Leukemia 0.969 - - 0.852 0.828 0.868 0.563 0.967

Lung 0.833 0.827 0.841 0.806 0.889 0.907 0.919 0.987
Prostate 0.840 0.834 0.858 0.795 0.8 0.711 0.642 0.858
Average 0.791 0.829 0.85 0.815 0.849 0.832 0.672 0.898

According to the experimental results in terms of the number of selected genes and the
classification accuracy in Tables 9 and 10, the differences among the eight methods could be clearly
identified. For the SGL and ASGL-CMI methods, the number of selected genes was obviously higher
than that the other six algorithms, and then the classification accuracy of the SGL and ASGL-CMI
methods was not ideal. For some methods, such as the SFS, SC2, FLD-NRS, and ARDNE algorithms,
the average number of selected genes was less than 10. It follows that our proposed ARDNE algorithm
selected fewer genes than the SFS, LLE-NRS, and RelieF+NRS algorithms, and it was roughly the
same as SC2 and FLD-NRS. For the Colon data set, the classification accuracy of the ARDNE algorithm
was 81% which was slightly lower than the SGL, ASGL-CMI, FLD-NRS, and LLE-NRS methods,
but for the Leukemia, Lung, and Prostate data sets, the classification accuracy of the ARDNE algorithm
were 96.7%, 98.7%, and 85.8%, respectively, which were higher than the other methods. For the
SFS, SC2, LLE-NRS, and RelieF+NRS algorithms, their classification results were not as stable as
the ARDNE algorithm. Thus, the classification effect of the algorithm for the four gene expression
data sets would be slightly different, but the average classification ability of the ARDNE algorithm
would not be affected. As for the average classification accuracy, the ARDNE algorithm obtained
the highest accuracy. Therefore, our method was an efficient dimensionality reduction technique for
high-dimensional, large-scale microarray data sets.

4.7. Statistical Analysis

The final part of our experiments was to further demonstrate the statistical significance of the
results, and the Friedman test [53] and the Bonferroni–Dunn test [54] are employed in this paper.

The Friedman statistic is described as follows

χ2
F =

12N
k(k + 1)

(
k

∑
i=1

R2
i −

k(k + 1)2

4
), (23)

FF =
(N − 1)χ2

F
N(k− 1)− χ2

F
, (24)

where k is the number of algorithms, N is the number of data sets, and Ri is the average ranking of
algorithm i over all the data sets. And the critical distance [55] is denoted as

CDα = qα

√
k(k + 1)

6N
. (25)

where qα is the critical tabulated value for the test and α is the significant level of Bonferroni–Dunn test.
In the following, based on the classification performance of the five attribute reduction algorithms

in Tables 4, 11 and 12 show the rankings of the five algorithms under the KNN and SVM classifiers.
The values of the different evaluation measures under the KNN and SVM classifiers are shown in
Table 13. Tables 14 and 15 show the rankings of the four algorithms in Table 7 under the KNN and SVM
classifiers. The values of the different evaluation measures under the KNN and SVM classifiers are
shown in Table 16. Similarly, Table 17 shows the rankings of the eight attribute reduction algorithms
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in Table 10 under the SVM classifier. The values of the different evaluation measures under the SVM
classifiers are shown in Table 18.

Table 11. Ranking of the five attribute reduction algorithms with KNN.

Data Sets RS NRS CDA MDNRS ARDNE

Ionosphere 3 4 5 2 1
Wdbc 5 3.5 3.5 2 1
Wine 3 4 5 2 1
Wpbc 3 4.5 4.5 1 2

Average 3.5 4 4.5 1.75 1.25

Table 12. Ranking of the five attribute reduction algorithms with SVM.

Data Sets RS NRS CDA MDNRS ARDNE

Ionosphere 2 4 3 5 1
Wdbc 5 3.5 3.5 2 1
Wine 4 5 3 2 1
Wpbc 1 3.5 3.5 5 2

Average 3 4 3.25 3.5 1.25

Table 13. FF Values for the two classifiers.

KNN SVM

χ2
F 13 7

FF 13 2.33

FF—Iman-Davenport test and χ2
F—Friedman statistics.

Tables 11–18 show that the proposed ARDNE algorithm was statistically superior to the other
algorithms in summary. It can be easily seen from Table 13, Table 16, and Table 18 that the values of FF
were 13 and 23.78 under the KNN classifier, respectively, and those of FF were 2.33, 6.31, and 0.9 under
the SVM classifier, respectively. When the significant level α = 0.1, the critical value of F(4,12) was 2.48,
F(3,12) was 2.61, and F(7,7) was 2.78. The critical value q0.1= 2.241 can be found in [55], and it could be
easily calculated from Equation (25) that the values of CD were 2.506, 1.83, and 1.093, respectively.

Table 14. Ranking of the four attribute reduction algorithms with KNN.

Data Sets MEAR EGAR ADNEAR ARDNE

Brain_Tumor1 3 4 2 1
Colon 2 4 3 1

DLBCL 2 4 3 1
Leukemia 2 3.5 3.5 1

SRBCT 2 3.5 3.5 1
Average 2.2 3.8 3 1

Table 15. Ranking of the four attribute reduction algorithms with SVM.

Data Sets MEAR EGAR ADNEAR ARDNE

Brain_Tumor1 2 3.5 3.5 1
Colon 1 3.5 3.5 2

DLBCL 4 2.5 2.5 1
Leukemia 2 3.5 3.5 1

SRBCT 2 3.5 3.5 1
Average 2.2 3.3 3.3 1.2
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Table 16. FF Values for the two classifiers.

KNN SVM

χ2
F 12.84 9.18

FF 23.78 6.31

Table 17. Ranking of the eight attribute reduction algorithms with SVM.

Data Sets SFS SGL ASGL-CMI SC2 FLD-NRS LLE-NRS RelieF+NRS ARDNE

Lung 6 7 5 8 4 3 2 1
Prostate 3 4 1.5 6 5 7 8 1.5
Average 4.5 5.5 3.25 7 4.5 5 5 1.25

Table 18. FF Values for the two classifiers.

SVM

χ2
F 6.63

FF 0.9

5. Conclusions

Attribute reduction is one of the important steps in data mining and classification learning.
A number of measures for calculating the distinguishment ability of attribute subsets have been
developed in recent years. Considering its effectiveness, neighborhood entropy is widely employed
and discussed to evaluate attributes in neighborhood rough sets. In this paper, an attribute reduction
method using neighborhood entropy measures in neighborhood rough sets is proposed. With the
strong complementarity between the algebra definition of attribute importance and the definition of
information view, some neighborhood entropy-based uncertainty measures in neighborhood decision
systems are studied. Then, the significance measure is presented by combining the credibility degree
with the coverage degree to analyze the classification ability of the selected attribute subset. On the
basis of these theories, a heuristic attribute reduction algorithm is developed for the dimensionality
reduction task to solve the practical problem. On the four UCI data sets with low-dimensional attributes
and the seven microarray gene expression data sets with high-dimensional attributes, a series of
experiments are carried out for verifying the effectiveness of the proposed method. The experimental
results indicate that our algorithm is effective to remove the most redundant attributes without loss of
classification accuracy. Comparing with the other related reduction algorithms, the reduction ability
and the classification accuracy are more superior for knowledge reduction.
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