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Abstract: Quantum communication and quantum computation form the two crucial facets of
quantum information theory. While entanglement and its manifestation as Bell non-locality have
been proved to be vital for communication tasks, contextuality (a generalisation of Bell non-locality)
has shown to be the crucial resource behind various models of quantum computation. The practical
and fundamental aspects of these non-classical resources are still poorly understood despite decades
of research. We explore non-classical correlations exhibited by some of these quantum as well as
super-quantum resources in the n-cycle setting. In particular, we focus on correlations manifested by
Kochen–Specker–Klyachko box (KS box), scenarios involving n-cycle non-contextuality inequalities
and Popescu–Rohlrich boxes (PR box). We provide the criteria for optimal classical simulation of a
KS box of arbitrary n dimension. The non-contextuality inequalities are analysed for n-cycle setting,
and the condition for the quantum violation for odd as well as even n-cycle is discussed. We offer a
simple extension of even cycle non-contextuality inequalities to the phase space case. Furthermore,
we simulate a generalised PR box using KS box and provide some interesting insights. Towards the
end, we discuss a few possible interesting open problems for future research. Our work connects
generalised PR boxes, arbitrary dimensional KS boxes, and n-cycle non-contextuality inequalities and
thus provides the pathway for the study of these contextual and nonlocal resources at their junction.

Keywords: KS Box; PR Box; Non-contextuality inequality

1. Introduction

The quantum mechanical description of nature is incompatible with any local hidden
variable theory and consequently is said to exhibit Bell non-locality [1]. This counter-intuitive
phenomenon finds applications in various quantum information processing tasks such as randomness
certification [2], self-testing [3–6] and distributed-computing [7]. The Bell non-locality can be thought
of as a particular case of another under-appreciated phenomenon, referred to as contextuality [8–10].
Recently, contextuality has been shown to be useful for quantum cryptography [11,12], self-testing [13]
and various models of quantum computing [14,15]. These non-classical correlations are not only
present in quantum theory, but post-quantum theories as well [9,16]. It is still not clear if the quantum
theory is the only physical theory despite decades of research which makes it pertinent to understand
these resources for not only quantum theory but also post-quantum theories, for fundamental as well
as practical manifestations [9,17]. In this light, we study some of the relatively less explored nonlocal
and contextual resources and discuss possible inter-connections among themselves.

Our focus revolves around the correlations manifested by three different objects from quantum
and post-quantum theories with underlying structure governed by the n-cycle graph. In particular, we
explore the correlations manifested by Kochen–Specker–Klyachko box (KS box), Popescu–Rohlrich
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boxes (PR box) and scenarios involving n-cycle non-contextuality inequalities. The KS box was first
introduced by Bub et al. in 2009 [18] who analysed it for a five-dimensional case. The box has a
tunable parameter (denoted by p), which determines the nature of box namely classical, quantum
and post-quantum. Bub et al. showed that it is impossible to simulate the KS box statistics for p = 1

3
using any classical strategy. For the aforementioned value of p, the best classical strategy has a success
probability of approximately 0.94667 [18] . The authors showed that the KS box is sturdy enough to
simulate the famous PR box—the most nonlocal no-signalling box for the simplest Bell non-locality
scenario [16]. It is important to note that PR box has played a crucial role in the understanding of
concepts from communication complexity and provide the primary test bed to check against the
physical principles to single out quantum theory, which further demands a careful study of these
no-signalling nonlocal boxes [17,19,20]. For p = 1

2 , KS box efficiently simulates the PR box [18].
Now, we turn to the last object of our study. The Bell nonlocal nature of theories can be

witnessed via the violation of certain inequalities, referred to as Bell inequalities and non-contextuality
inequalities in the general case of contextuality [9]. In their seminal paper, Cabello, Severini and Winter
showed that certain graph-theoretic numbers give the bounds on these inequalities for classical,
quantum and more general theories, namely independence number, Lovász theta number and
fractional packing number, respectively [8]. Using the tools from the aforementioned work, Araújo
et al. [21] provided the construction for the maximal violation of the odd cycle generalisation of the
well-known Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequality for qutrits [22,23] and even cycle
generalisation of Clauser–Horne–Shimony–Holt (CHSH) inequality for two-qubits [24]. Note that the
even cycle generalisation of CHSH inequality is similar to Braunstein–Caves inequalities [25], which
have been heavily investigated in the literature. For the four cycle case, a simple extension of these
even cycle non-contextuality inequalities to the phase space case was provided by Arora et al. [26].

It is important to observe the connections among KS box, non-contextuality inequalities and
PR boxes.

1. The KS boxes were motivated by KCBS non-contextuality inequality [18].
2. The KCBS non-contextuality inequality belongs to the same family of inequalities as the CHSH

inequality [9].
3. The maximum value of CHSH inequality for no-signalling theories is provided by PR boxes [16].
4. The PR box can be simulated by KS box for p = 1

2 [18].

In this paper, we further explore the interconnections among the generalised versions of the
aforementioned objects, namely generalised PR boxes, arbitrary dimensional KS boxes and n-cycle
non-contextuality inequalities. Our work provides the pathway for the study of these generalised
contextual and nonlocal resources at their junction.

Paper Structure

In Section 2, we start with studying KS box for the n-dimensional case and provide the optimal
classical strategy as well as corresponding success probability for simulating the box using classical
resources. Our results provide the minimum gap between the optimal classical strategy and the KS
box based strategies for arbitrary p and n. We observe that the optimal success probability for classical
simulation decreases monotonically with the dimension of the KS box.

In Section 3, we study the n-cycle contextuality scenario and the corresponding
non-contextuality inequalities. We explore the odd cycle generalisation of the well-known
Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequality [22,23] and even cycle generalisation
of Clauser–Horne–Shimony–Holt (CHSH) inequality [24]. Following the construction provided by
Araújo et al. [21], we discuss the necessary and sufficient condition for the violation of the generalised
KCBS inequality in Section 3.4 and necessary condition for the violation of even-cycle generalisation of
CHSH inequality in Section 3.4. Furthermore, we provide a simple phase space extension of even cycle
generalisation of CHSH inequality by harnessing the techniques provided by Arora et al. [26].
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Within no-signalling theories, the maximum violation of CHSH inequality is obtained by
Popescu–Rohlrich box, also known as PR box [16]. The PR box and its analogue for even-cycle
generalisation of CHSH inequality are the contents of Section 4. In their seminal work [18], Bub et al.
studied the simulation of a PR box using KS box. We extend the idea to arbitrary dimensional KS
box and PR box. We study the joint probability distribution for the KS box and find the criteria for
the violation of even-cycle generalisation of CHSH inequality. Given the even cycle generalisation of
CHSH inequality, we provide the bound on p (tunable parameter) for the KS box required to saturate
classical, quantum and no-signalling bounds.

Finally, we conclude in Section 5. We discuss the implications of our study and some interesting
open problems for future work.

2. Simulating KS Box

A Kochen–Specker–Klyachko box or KS box is a bipartite no-signalling box with two inputs and
two outputs (depicted in Figure 1). No-signalling means that the inputs of one sub-part of the box
are independent of the output of the complementary part. The outputs are always binary; however,
the inputs depend on the dimensionality of the box.

x y

a b

Figure 1. KS box is a bipartite no-signalling box. The value of a does not depend on y and similarly b
does not depend on x. The box exhibits nonlocal correlations.

Formally speaking, no-signalling enforces the following constraints:

∑
b

P(a, b|x, y) = ∑
b

P(a, b|x, y′), (1)

∑
a

P(a, b|x, y) = ∑
a

P(a, b|x′, y), (2)

where P(a, b|x, y) denotes the probability of getting a and b, when x, y are the input. One can define
the box formally as following.

Definition 1. An N-dimensional Kochen–Specker–Klyachko box or KS box, defined in [18] is a no-signalling
resource with two inputs, x, y ∈ {1, 2, · · · , N} and two outputs a, b ∈ {0, 1}, which satisfies the
following constraints:

1. a = b if x = y, and
2. a.b = 0 if x 6= y.

A KS box with marginal probability p for the output “1” is referred to as KSp box. For example,
the fraction of “1”s in a KS 1

5
box is 1

5 . We refer to the KS box condition corresponding to a.b = 0 for
unequal inputs as ⊥. Given two parties, e.g., Alice and Bob, who are space-like separated, it is not
possible to simulate the KS box statistics with full accuracy for arbitrary p using classical resources only
(for example, some shared randomness) [18] . We want to find the probability of successful simulation
of KS box statistics for various strategies. This is an important question because any classical strategy
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will only produce the best Bell-local statistics and thus the amount by which it fails to simulate a
Bell-nonlocal resource such as KS can can be used to quantify the Bell non-locality of KS box.

To capture the essence of classical strategies, we use the language from graph theory. Consider an
N-gon with a 0/1 assignment to its vertices. A 0/1 assignment with M “1s” for a given N-gon
corresponding to an N-dimensional KS box is referred to as a chart of degree M, in short CM.
For example, chart C1 for a five-dimensional KS box will assign “1” to one of the vertices and “0” to the
rest. Please refer to Figure 2, for a pictorial understanding. To simulate the statistics corresponding to
KS box, the spatially separated parties (Alice and Bob) will use their pre-shared strategy. The possible
strategies can be captured using the charts discussed before. No-communication is allowed between
Alice and Bob once the simulation starts. The only classical resource they share is the access to such
charts and some shared randomness to decide which chart to use. The shared randomness determines
the fraction of times a particular chart can be used in a strategy. For example, suppose they agree to
simulate P = 1

3 using charts C1 and C2. Then, they must use chart C1 with probability 1
3 and chart C2

with probability 2
3 . This can be achieved by using a biased coin which gives head with probability 2

3
and tail with probability 1

3 . Using chart C0 and C1 will always satisfy the ⊥ condition. All other charts
will violate the ⊥ condition up to varying proportion.

1

2

34

5

0

0 0

1 1

Figure 2. Chart C2 for a five-dimensional KS box corresponds to two “1s” and three “0s”. The red
entries correspond to inputs and the outputs are in green. The above chart fails to simulate the KS box
statistics when the inputs are 2 and 5.

Simulating a KSp box essentially requires the satisfaction of the ⊥ conditions along with the
marginal condition. The use of charts already guarantees equal outputs for same inputs.

Proposition 1. Given the chart CM, the probability of successful simulation of the ⊥ condition is given by

P⊥ (CM) =
N2 −M2 + M

N2 . (3)

Proof. For an N-dimensional KS box, the total number of possible input pairs for Alice and Bob are
N2. If they use the chart CM to simulate the KS box, then the probability of failure corresponds to the
probability of choosing different inputs with output 1. The number of such edges (with ordering)
whose vertices correspond to output 1 is M(M− 1). Thus, the probability of successful simulation is

1− M(M− 1)
N2 =

N2 −M2 + M
N2 . (4)

This completes the proof.

For p ≤ 1
N , Alice and Bob can use chart C0 and C1 to simulate the KS box. However, we observe

that, to satisfy the marginal constraints for p > 1
N , one needs to use charts of higher degree, which

in turn violates the ⊥ conditions. Therefore, perfect classical simulation of the KSp box only exists
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for p ≤ 1
N . We now fix a p ≤ 0.5 and compute the optimal classical simulation probability of the KSp

box. Now, we present our result concerning the optimal probability of successful simulation for an
N-dimensional KSp box for arbitrary p.

Theorem 1. For a given p ≤ 0.5, the charts CM−1 and CM (only chart CM in case Np is an integer) are
optimal for simulating N-dimensional KSp box, where M = [Np] (ceiling integral value) and the optimal
probability of simulation is given by

Poptimal (M, N, p) = 1− (2Np−M)(M− 1)
N2 .

Proof. Assume that Alice and Bob play the charts Ci with probability pi, for i ∈ Z≥, i.e., the set
of non-negative integers. For a given probability distribution {pi} over charts, the probability of
successful simulation of KSp box is given by ∑i piP⊥ (Ci) . Hence, the optimal simulation probability
is given by the following linear program:

max
{pi}

∑
i

piP⊥ (Ci) (success probability)

s.t ∑
i

pii = Np (mean condition)

∑
i

pi = 1, pi ≥ 0 ∀i (valid probability)

Now, observe that the objective function is

∑
i

piP⊥ (Ci) =
1

N2 ∑
i

pi

(
N2 − i2 + i

)
= 1 +

p
N
− 1

N2 ∑
i

pii2,

where in the second equality we used the mean condition along with the valid probability condition.
Hence, maximising the objective function corresponds to minimising the variance term with respect to
the probability distribution {pi}. The optimisation problem of minimising the variance of a random
variable defined on a set of non-negative integral points, over all possible probability distributions,
for a fixed given mean, has support size at most two. A simple proof for this is given in Appendix A
Proposition A1. Specifically, if the mean (Np) is an integer (e.g., = M), the least variance solution
will be pM = 1 and pi = 0, ∀i 6= M. For the case when the mean is not an integer, the least variance
solution corresponds to a support containing M− 1 and M, with M = [Np], which follows from simple
convexity arguments. With this support, we can compute pM−1 and pM using the mean condition,
which evaluates to pM−1 = M− Np and pM = Np−M + 1. Plugging this into the success probability
function gives us the optimal simulation probability of the KSp box

Poptimal (M, N, p) =
1

N2

(
2Np− 2NpM + N2 + M2 −M

)
= 1− (2Np−M)(M− 1)

N2

This completes the proof.

Let us have a look at the simulation efficiency in a bit detail. Numerical evidence (refer to Figure 3)
suggests that the simulation efficiency decreases with the dimension of the KS box. Please refer to
Table 1 for the specific case of p = 0.4 .
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Figure 3. The simulation efficiency has been plotted here as a function of the dimension of the KS
box for various marginal probabilities, p. It can be seen that the simulation efficiency decreases with
dimension for a particular p.

For a particular value of p, the nonlocal nature of KS box increases with dimension of the box and
hence the simulation efficiency for the optimal classical strategy decreases. Moreover, for a KS box
with fix dimension, its nonlocal nature increases with increase in p.

Table 1. The simulation efficiency decreases with the dimension of the KS box.

Dimension Marginal Probability Simulation Efficiency

5 0.4 0.92

7 0.4 0.893878

9 0.4 0.881481

11 0.4 0.87438

13 0.4 0.869822

15 0.4 0.866667

17 0.4 0.862976

Having studied the KS box, we move next to the n-cycle non-contextuality inequalities.

3. Analysing n-Cycle Non-Contextuality Inequalities

Before we analyse the n-cycle generalisation of KCBS and CHSH inequalities, we would like to
discuss the prior art briefly required to understand our work.

3.1. KCBS Inequality

The observables in quantum mechanics are represented as Hermitian matrices. Unlike real or
complex numbers, matrices do not commute in general. More importantly, it is possible to have three
observables A, B and C such that [A, B] = 0, [A, C] = 0 but [B, C] 6= 0. The maximal set of commuting
observables defines a context. In the previous example, the observable A lies in two contexts defined
by the sets {A, B} and {A, C}. Since the observables in a context commute among themselves, they
can be measured simultaneously. Given a theory, if the value of an observable in the experiment
depends on the context in which it has been measured, the theory is called contextual, otherwise
non-contextual. Quantum mechanics is a contextual theory [10]. The experimental tests which can
be used to probe the contextual nature of a theory are referred to as contextuality tests. These tests
can be often written in terms of an algebraic inequality whose violation witnesses contextuality of the
underlying theory. Klyachko–Can–Binicioğlu–Shumovsky (KCBS) inequality is one of the extensively
studied state-dependent non-contextuality inequality [8,22,23]. The violation of KCBS inequality by
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any probabilistic theory rules out its possible completion by a non-contextual hidden variable model.
To understand this and the KCBS inequality, let us have a look at the following algebraic quantity
(related to KCBS inequality):

K = A1 A2 + A2 A3 + A3 A4 + A4 A5 + A5 A1, (5)

where all the Ai can be either +1 or −1. Now, in any theory, where the values of all the Ai are
predetermined (such is the case in a non-contextual hidden variable theory i.e., the probability theories
which can have a non-contextual completion), the average value of Equation (5) is lower bounded by
−3. Formally, the KCBS non-contextuality inequality is given by

〈K〉 ≥ −3, (6)

where 〈K〉 refers to expectation value of K. Now, it is possible to have a theory which violates the
bound in Equation (6). For example, quantum theory achieves up-to 5− 4

√
5, which is approximately

−3.94427 and hence less than −3. This proves that quantum mechanics is a contextual theory [22].
The measurement setting and the state corresponding to optimal violation of KCBS inequality withIn
quantum theory is given by

Ai = 2|vi〉〈vi| − I, (7)

|vi〉 =
(

sin (θ) cos
(

4πi
5

)
, sin (θ) sin

(
4πi

5

)
, cos (θ)

)T
, (8)

|ψ〉 = (0, 0, 1)T , (9)

where I refers to identity, i ∈ 1, 2, 3, 4, 5 and cos2 (θ) =
cos( π

5 )
1+cos( π

5 )
. By doing a basis transformation, one

can view the KCBS inequality as a state-dependent non-contextuality inequality with five dichotomic
measurements with 0/1 outcome. Explicitly,

Pi =
1 + Ai

2
,

transforms Ai with ±1 outcome space to Pi with 0/1 outcome space such that

• Pi and Pi + 1 are compatible and
• Pi and Pi+1 are exclusive.

Here, addition is taken modulo 5 and exclusivity means that Pi and Pi+1 cannot have outcome 1.
This exclusivity corresponding to projective measurements and their outcomes can be captured using a
graph, known as “exclusivity graph”. The exclusivity graph approach to contextuality has been studied
extensively in the literature and it is important to review the basics of this framework [8]. The nodes
of an exclusivity graph correspond to event where an event is constituted by the combination of
measurement and corresponding outcome. For example, (a|i) is an event which corresponds to getting
outcome “a” for measurement “i”. Let us represent the probability of getting outcome “1” given the
input was “i” as P (1|i). The events follow exclusivity relation according to the exclusivity graph
(a pentagon in the case of KCBS). The exclusivity relation induces following constraint:

P (1|i) + P (1|j) ≤ 1, (10)

∀i, j ∈ E, where E corresponds to the edge set of the exclusivity graph. The KCBS inequality
corresponds to sum of probabilities assigned to five events of the kind (1|i) with exclusivity relation
following a pentagon (refer to Figure 4).
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1

2

34

5

Figure 4. The exclusivity graph corresponding to the KCBS inequality is a pentagon. The inequality
involves five events of type (1|i) where i ∈ {1, 2, 3, 4, 5}. The bound on the inequality for non-contextual
hidden variable theories is 2. Quantum theory achieves up to

√
5 and thus manifests the contextual

nature of quantum theory.

Given a non-contextuality inequality, the upper bound for non-contextual hidden variable (NCHV)
theories is given by independence number of the underlying exclusivity graph, denoted by α(G) [8].
The upper bound for quantum theories is given by Lovász theta number, represented as ϑ(G) [8].
Formally, in graph theoretic language, the KCBS inequality is given by

5

∑
i=1

P (1|i) ≤ α(C5), (11)

where C5 represents pentagon and α(C5) is equal to 2. The quantum bound corresponds to ϑ(C5) and
is equal to

√
5. Since ϑ(C5) > α(C5), it witnesses the contextual nature of quantum theory [8,22].

3.2. CHSH Inequality

CHSH inequality is a special case of non-contextuality inequality where the context is provided by
space-like separation of parties involved, e.g., Alice and Bob. The scenario corresponding to inequality
corresponds to four measurements, two for each party. Each of Alice’s measurements are compatible
with Bob’s measurements and vice versa. Suppose Alice’s measurements are given by A1, A2 and
Bob’s measurements are given by B1, B2. The outcomes corresponding to the measurements are either
+1 or −1. The CHSH inequality is given by

〈C4〉 = 〈A1B1〉+ 〈A1B2〉+ 〈A2B1〉 − 〈A2B2〉 ≤ 2. (12)

The local hidden variable theories respect the bound in (12), however quantum theory achieves
up-to 2

√
2 with appropriate measurement settings and state [24]. These optimal measurement settings

and state corresponding to maximal quantum violation are given by,

A1 = Z⊗ I, A2 = X⊗ I, (13)

B1 = I⊗ −Z− X√
2

, B2 = I⊗ Z− X√
2

, (14)

|ψ〉 = |01〉 − |10〉√
2

, (15)

where X and Z are Pauli matrices, I is identity and |ψ〉 is a Bell state.
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3.3. Analysing the Generalised KCBS Inequality

The inequality in Equation (11) has been further extended to general odd cycle, which is

n

∑
i=1

P (1|i) ≤ n− 1
2

. (16)

The odd cycle generalisation of KCBS inequality has been studied extensively in
literature [13,21,23,27]. Surprisingly, n−1

2 corresponds to independence number of the graph for
odd cycle case [8,23,28]. The maximum quantum violation for generalised KCBS inequality corresponds

to Lovász theta number (denoted by ϑ (G)), which is
n cos( π

n )
1+cos( π

n )
.

We represent the density matrices in the standard basis {|i〉} with matrix elements given by
ρij = 〈i|ρ|j〉. For the odd n-cycle generalisation of KCBS inequality, the projectors corresponding to the
optimal quantum violation are given by

Πj = |ψj〉〈ψj|

where

|ψj〉 =
(

sin (θ) cos
(

jπ (n− 1)
n

)
, sin (θ) sin

(
jπ (n− 1)

n

)
, cos (θ)

)T

and cos2 (θ) =
cos( π

n )
1+cos( π

n )
. Now, we present the condition under which a qutrit will violate the

generalised KCBS inequality for the above measurement settings.

Proposition 2. A qutrit violates the odd n-cycle generalisation of KCBS non-contextuality inequality if and

only if ρ33 ≥
(

cos( π
n )(n−1)−1

n(2 cos( π
n )−1)

)
.

Proof. The generalised KCBS operator for the odd n-cycle scenario can be defined as

Kn =
n

∑
j=1

Πj.

Adding all the projectors (Πjs), we get

Kn =
3

∑
i=1

ki|φi〉〈φi|

where

|φ1〉 =

1
0
0

 , |φ2〉 =

0
1
0

 , |φ3〉 =

0
0
1


and

k1 =
1

1 + cos
(

π
n
) n

∑
j=1

cos2
(

jπ (n− 1)
n

)

k2 =
1

1 + cos
(

π
n
) n

∑
j=1

sin2
(

jπ (n− 1)
n

)

k3 = n cos2 (θ) =
n cos

(
π
n
)

1 + cos
(

π
n
) .

Since ∑j cos2
(

jπ(n−1)
n

)
= ∑j sin2

(
jπ(n−1)

n

)
= n

2 , we get
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k1 = k2 =
n

2
(
1 + cos

(
π
n
))

k3 =
n cos

(
π
n
)

1 + cos
(

π
n
)

The odd n-cycle non-contextuality inequality is written as

〈Kn〉 ≤
n− 1

2
,

where 〈Kn〉 corresponds to the expectation value of the generalised KCBS operator with respect to the
underlying preparation. In terms of quantum expectation, the inequality is given by

Tr (Knρ) ≤ n− 1
2

.

Note that the generalised KCBS operator is diagonal in standard basis and leads to the following
simplification:

n
2
(
1 + cos

(
π
n
)) [ρ11 + ρ22] +

n cos
(

π
n
)

1 + cos
(

π
n
) [ρ33] ≤

n− 1
2

.

Since the trace of a density matrix is always 1, the condition for the violation of odd n-cycle
non-contextuality inequality becomes;

ρ33 >
(n− 1)

(
1 + cos

(
π
n
))
− n

n
(
2 cos

(
π
n
)
− 1
) .

Simplifying the above expression, we get

ρ33 >
cos

(
π
n
)
(n− 1)− 1

n
(
2 cos

(
π
n
)
− 1
) . (17)

This completes the proof.

Remark 1. We can see that the set of quantum states for qutrits, which can violate odd n-cycle non-contextuality
inequality, shrinks as we increase n (See Figure 5). In the infinite n scenario, the only qutrit which violates the
inequality is the pure state |ψ〉 = (0, 0, 1)T!
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Figure 5. The condition for the quantum violation of the odd n-cycle generalisation of KCBS inequality
is computed. Lower bound on ρ33 for odd n-cycle graph has been plotted as a function of n. The set of
states which can violate the KCBS inequality corresponding to optimal measurement setting shrinks as
we increase n.
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3.4. Analysing Chained Bell Inequalities

The n-cycle generalisation of CHSH inequality is referred to as chained Bell inequality [21,25].
The even n-cycle scenario has n measurements i.e., {X1, X2, · · · , Xn}. All of these are dichotomic
measurements with possible outcomes ±1. The chained Bell inequality of cycle n is given by

n−1

∑
j=1

〈
XjXj+1

〉
− 〈XnX1〉 ≤ n− 2. (18)

The optimal construction [21] for violation of this inequality corresponds to Xj = X̃j ⊗ I for even
j and Xj = I⊗ X̃j for odd j, where

X̃j = cos
(

jπ
n

)
σx + sin

(
jπ
n

)
σz. (19)

We now provide the necessary condition for the quantum violation of a chained Bell inequality
corresponding to optimal quantum measurement settings.

Proposition 3. For a given two qubit state, the necessary condition for the quantum violation of chained Bell
inequality of cycle n is given by the difference of its extremal eigenvalues i.e.,

λ1 − λ4 >
n− 2

n
. (20)

Proof. For even j,

XjXj+1 = X̃j ⊗ X̃j+1

=

[
cos

(
jπ
n

)
σx + sin

(
jπ
n

)
σz

]
⊗
[

cos
(
(j + 1)π

n

)
σx + sin

(
(j + 1)π

n

)
σz

]
. (21)

Similarly for odd j,

XjXj+1 =

[
cos

(
(j + 1)π

n

)
σx + sin

(
(j + 1)π

n

)
σz

]
⊗
[

cos
(

jπ
n

)
σx + sin

(
jπ
n

)
σz

]
. (22)

Further,
XnX1 = X̃n ⊗ X̃1

= − cos
(π

n

)
σx ⊗ σx − sin

(π

n

)
σx ⊗ σz. (23)

Using Equations (21)–(23) and basic arithmetics, the n-cycle chained Bell inequality for quantum
systems transforms as

n
2

cos
(π

n

)
〈σx ⊗ σx〉+

n
2

cos
(π

n

)
〈σz ⊗ σz〉+

n
2

sin
(π

n

)
〈σx ⊗ σz〉 −

n
2

sin
(π

n

)
〈σz ⊗ σx〉 ≤ n− 2,

which further simplifies to

cos
(π

n

)
[〈σx ⊗ σx〉+ 〈σz ⊗ σz〉] + sin

(π

n

)
[〈σx ⊗ σz〉 − 〈σz ⊗ σx〉] ≤

2 (n− 2)
n

.
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For a two qubit density matrix ρ, this translates into

Tr (Onρ) ≤ 2 (n− 2)
n

, (24)

where On = cos
(

π
n
)
[σx ⊗ σx + σz ⊗ σz] + sin

(
π
n
)
[σx ⊗ σz − σz ⊗ σx] .

The condition for violation of n-cycle chained Bell inequality becomes

Tr (Onρ) >
2 (n− 2)

n
(25)

The eigenvalues of On are 2, 0, 0,−2. Suppose the eigenvalues of ρ are λ1 ≥ λ2 ≥ λ3 ≥ λ4, then

Tr (Onρ) ≤ 2 (λ1 − λ4) . (26)

Using Equations (26) and (25), the necessary condition for the violation of n-cycle chained Bell
inequality turns out to be

λ1 − λ4 >
n− 2

n
. (27)

This completes the proof.

The set of quantum states form a convex set. Since the non-contextuality inequality in Equation (18)
is a linear inequality, its maximum over quantum sets is attained at the extreme points i.e., for pure
states. Mixed-ness may lead to non-violation of the aforementioned linear inequality. In this light, it is
necessary to study the upper bound on λ4 (if any).

Since the system under consideration is a two qubit density matrix. We have the following
constraints on the eigenvalues:

0 ≤ λi ≤ 1 ∀i ∈ {1, 2, 3, 4} (28)

and
4

∑
i=1

λi = 1. (29)

The constraints in Equations (28) and (29) imply that

λ1 + λ4 ≤ 1. (30)

Using Equations (20) and (30), we get

λ4 ≤
1
n

. (31)

The Equation (31) provides an upper bound on λ4.

Remark 2. It is easy to see that set of two-qubit quantum states that can violate chained Bell inequality shrinks
as we increase n (See Figure 6). In the infinite n scenario, the only two qubit state that violates the inequality is
a Bell state!
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Figure 6. Here, we plot the lower bound on the difference of extremal eigenvalues of a two qubit
density matrix as a function of even values of n. The set of two qubit quantum states, which could
potentially violate chained Bell inequality (as our is necessary and not sufficient), shrinks as we increase
n. In the infinite n scenario, the only two qubit state that might violate the inequality is Bell state!

The even cycle non-contextuality inequalities can be extended to phase space case quite easily
following the work of Arora et al. [26], where the authors provided the phase space extension for n = 4.
We have already discussed the construction corresponding to the maximal violation of inequality

in Equation (18). The inequality is maximally violated by
(

0, 1/
√

2,−1/
√

2, 0
)T

and the maximum
violation is n cos (π/n) . We define the following non-contextuality operator in this regard,

Cn =
n−1

∑
j=1

XjXj+1 − XnX1. (32)

We know that

exp (ιθn.σ)σ exp (−ιθn.σ) = σ cos (2θ) + n× σ sin (2θ) + n n.σ (1− cos (2θ)) (33)

For σ = σx x̂ and n = ẑ,

exp (ιθσz) σx exp (−ιθσz) = σx cos (2θ) + σy sin (2θ) (34)

Let us look back at the operator in Equation (19) more closely. This can be thought of as σx rotated
around z-axis with angle

(
jπ
2n

)
. To get the phase space representation, let us start with the quantum

mechanical translational operator exp
(
−ιpL

h̄

)
, which translates a particle by distance L. This operator

is not Hermitian and hence we introduce the following symmetric combination to make it Hermitian,

X (0) ≡ e−ιpL/h̄ + eιpL/h̄

2
= cos

(
pL
h̄

)
. (35)

Let U(φ) = exp
(

ιZφ
2

)
where Z = sgn

(
sin
( qπ

L
))

. One can easily see that X (φ) ≡

U† (φ)X (0)U† (φ) and X̃j = X
(

jπ
n

)
.

Let φ (q) = 〈q|φ〉 be the localised quantum state symmetric about q = L
2 , for some length scale L.

and φn (q) ≡ φ (q− nL) . Using this construction, the following states are defined:

|ψ0〉 ≡
1√
M

n= M−1
2

∑
n=−M

2

|φ2n+1〉 (36)
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|ψ1〉 ≡
1√
M

n= M−1
2

∑
n=−M

2

|φ2n〉 (37)

Let |ψ+〉 ≡ |ψ0〉+|ψ1〉√
2

and |ψ−〉 ≡ |ψ0〉−|ψ1〉√
2

. Interestingly, for N = 2M,

〈ψ+|X |ψ+〉 =
(

N − 1
N

)
, (38)

and

〈ψ−|X |ψ−〉 = −
(

N − 1
N

)
. (39)

The appropriate entangled state which shows the violation is

|ψ〉 ≡ |ψ+〉1|ψ−〉2 − |ψ−〉1|ψ+〉2√
2

. (40)

The quantum violation for the state in Equation (40) corresponds to the maximum quantum
violation i.e., n cos

(
π
n
)

for large N. The experimental implementation of the phase space extension is
quite simple and follows directly from the work of Arora et al. [26].

4. Simulating PR Box

The KS box is a powerful resource which can be used to efficiently simulate the most non-local
no-signalling box, i.e., PR box [16]. The PR box has initially been defined as the box which allows
maximum violation of the CHSH inequality in no-signalling theories. One can generalise the notion of
PR box corresponding to chained Bell inequalities.

Definition 2. A PR box is a no-signalling resource with input pair x, y and corresponding output pair a, b
where each of these variables takes their values from the set {0, 1} . The statistics of the PR box follows the
following relation:

xy = a⊕ b, (41)

which means that the outputs are different if and only if the inputs are x = y = 1, otherwise the outputs are
same. The PR box can be generalised for input pair (x, y) ∈ {1, 2, · · · , n}2 and output from the set {0, 1}
such that outputs are same when inputs are anything except {1, 1}. When inputs are {1, 1}, the outputs must
be different.

Now, suppose Alice and Bob are equipped with an arbitrary dimensional KS box. Table 2 gives
the joint probabilities for an n-dimensional KSp box.

KS box is more powerful than PR box and can be used to simulate the same [18]. We ask whether
Alice and Bob can simulate a generalised PR box (as defined before) using KSp box. The answer is in
the affirmative, and we provide a simple strategy to do so.

Proposition 4. A PR box of dimension (number of inputs for each party) n can be simulated efficiently using a
KS box of dimension 2n− 1 with marginal value of p = 1

2 .
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Proof. To prove our claim, we provide the following strategy: Alice relabels her inputs for PR box
as follows:

1→ 1, 2→ 2, 3→ 4, 4→ 6 · · · , n→ 2n− 2.

Similarly, Bob relabels his inputs as follows:

1→ 1, 2→ 3, 3→ 5, 4→ 7 · · · , n→ 2n− 1.

The relabelled inputs are used as fresh input for the KS 1
2

box. Alice outputs what she gets as
output from the KS 1

2
. Bob flips his output from KS 1

2
box in every round and outputs the resultant

value. This strategy simulates the statistics corresponding to generalised PR box.

Table 2. The table displays the joint probabilities for an n-dimensional KSp box. Note that each of the
blocks along the diagonal are same and similarly all the off diagonal blocks are same. Within a block,
the top left element is the probability of getting (0, 0), top right signifies the probability of getting (0, 1),
bottom left indicates the corresponding value for (1, 0) and, the probability for (1, 1) is indicated by the
bottom right entry.

x 1 2 . . . n
y

1 1− p 0 1− 2p p
. . . 1− 2p p

0 p p 0 p 0

2 1− 2p p 1− p 0
. . . 1− 2p p

p 0 0 p p 0

...
. . .

. . .
. . .

. . .

n 1− 2p p 1− 2p p
. . . 1− p 0

p 0 p 0 0 p

Given the even cycle generalisation of CHSH inequality, the marginal probabilities p in the KSp

required to saturate classical bound, quantum bound and no-signalling bound are given by

pc ≤
n− 2

2(n− 1)
,

pq ≤
n
(
cos

(
π
n
)
+ 1
)
− 2

4(n− 1)

and
pNS ≤

1
2

(42)

respectively.

Remark 3. For a large value of n, all the above probability expressions tend to one half. However, the quantum
probability approaches the PR box limit of 1

2 significantly faster than the classical probability.For large n, all
these probabilities approach 1

2 (see Figure 7).
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Figure 7. We look at KS box probabilities in various regimes. Note that the quantum probability
approaches the PR box limit faster than classical probability as we increase the number of cycles.

5. Conclusions

We studied arbitrary dimensional KS box, generalised PR box and n-cycle non-contextuality
inequalities in this work. We provided the optimal classical strategy and the corresponding success
probability for classically simulating the KS box. For future work, it is worth exploring the optimal
quantum strategy for this purpose. We provided the sufficient condition for the violation of the
generalised KCBS inequality and necessary condition for the violation of even-cycle generalisation
of CHSH inequality. We also discussed the phase space extension of even-cycle generalisation of
CHSH inequality. We leave the phase space extension of KCBS and generalised KCBS inequality for
future work. We also studied the strategy for simulating a generalised PR box using KS box. It is also
interesting to explore further how the generalised PR box, arbitrary dimensional KS box and n-cycle
non-contextuality inequalities are related to each other and their implications.

Our work helps quantify the Bell non-locality of KS box in terms of impossibility of classical
simulation for general n-dimensional case. We also provided the sufficient condition for violation of
odd n-cycle non-contextuality inequalities. Since contextuality is the chief resource behind various
models of quantum computation, our result can help select the resources required to get necessary
quantum speed-up. Moreover, our phase space extension of chained Bell inequalities make them
suitable for experimental purposes and also harness the underlying Bell non-locality for various
quantum communication tasks such as secure key distribution for example.
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Appendix A

Proposition A1. The optimisation problem of minimising the variance of a random variable defined on a set of
non-negative integral points, over all possible probability distributions, for a fixed given mean, say = m has
support size at most two.

Proof. We make use of the Karush–Kuhn–Tucker (KKT) conditions for deriving necessary optimality
conditions. KKT conditions ensure that the gradient of the objective function is perpendicular to the
constrained set and the constraints are satisfied. Note that these KKT conditions are just extensions of
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the Lagrange multiplier method, where now we also have inequality constraints. The Lagrangian for
the above optimisation problem is given by

L(p, λ, µ, ν) = ∑
i

i2 pi − λ

(
∑

i
pi − 1

)
+ µ

(
∑

i
ipi −m

)
−∑

i
νi pi,

where λ and νi ≥ 0 for all i, are the KKT multiplier corresponding to the valid probability constraint,
and µ is the KKT multiplier corresponding to the fixed mean condition. A necessary condition
for optimality is derived by taking the partial derivative of the Lagrangian with respect to pi and
setting it to zero, thus getting i2 − λ + µi = νi. Another necessary KKT condition for optimality
is the complementary slackness, which implies νi pi = 0, for all i. These two conditions give us
pi
(
i2 − λ + µi

)
= 0, for all i. The term inside the brackets is a quadratic expression in terms of i,

implying that it can be equal to zero for at most two distinct values of i. This, in turn, tells us that
pi = 0, for at least all but two i, or, in other words, p has support size at most 2.
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