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Abstract: In the research field of river dynamics, the thickness of bed-load is an important parameter
in determining sediment discharge in open channels. Some studies have estimated the bed-load
thickness from theoretical and/or experimental perspectives. This study attempts to propose the
mathematical formula for the bed-load thickness by using the Tsallis entropy theory. Assuming the
bed-load thickness is a random variable and using the method for the maximization of the entropy
function, the present study derives an explicit expression for the thickness of the bed-load layer as
a function with non-dimensional shear stress, by adopting a hypothesis regarding the cumulative
distribution function of the bed-load thickness. This expression is verified against six experimental
datasets and are also compared with existing deterministic models and the Shannon entropy-based
expression. It has been found that there is good agreement between the derived expression and
the experimental data, and the derived expression has a better fitting accuracy than some existing
deterministic models. It has been also found that the derived Tsallis entropy-based expression has
a comparable prediction ability for experimental data to the Shannon entropy-based expression.
Finally, the impacts of the mass density of the particle and particle diameter on the bed-load thickness
in open channels are also discussed based on this derived expression.
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1. Introduction

In the context of river dynamics, the investigation of the physical mechanism of non-cohesive
sediment transport in open channels is a fundamental subject that has gained great attention from
researchers (e.g., [1–3]). There are two different sediment movement forms: bed load and suspended
load. Bed-load refers to sediment particles that roll or slide on the bed or jump from the bed but
rapidly drop back to the bed within a short distance [4]. The transport of bed-load is achieved via
the main flow of the turbulent flow. In contrast, suspended load refers to those small-sized sediment
particles that are suspended in the flow and are transported from the upstream of the river to the
downstream [4]. The transport of suspended load is achieved by the fluctuating part of the turbulent
flow. For bed-load discharge and suspended load discharge, completely different formulae have been
developed for estimation [4,5]. However, it could be vital to determine suspended load and bed-load
before estimating the total sediment discharge [4,5]. A common method is to estimate the bed-load
thickness (e.g., [1,2,4,5]), defined by the saltation height of a particle, as schematically shown in Figure 1.
Above this thickness, sediment transport could be estimated as suspended load, whereas sediment
transport could be evaluated as bed-load below this thickness [4,5].
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Figure 1. A diagram of the thickness of the bed load layer in open channel; δ denotes this thickness 
(the height of the saltation of a sediment particle near the bed). 

Some studies have examined the bed-load thickness in a sediment-laden flow by virtue of 
theoretically study and/or laboratory observation technique. Einstein [6] defined bed-load thickness 
as two grain diameters. Van Rijin [7] presented a mathematical expression of bed-load thickness, and 
it was related to the diameter of the particle and the capacity of flow transport. Wilson [8] put forward 
an analytical model for thickness as a function of dimensionless shear stress. Furthermore, by 
considering hydrodynamic diffusion effect due to the interactions among particles, Cheng [1] 
proposed an expression of the bed-load thickness, which depends on the dimensional diameter of 
the particle and non-dimensional shear stress. Ghoshal and Pal [2] theoretically derived an expression 
of the bed-load thickness as a function of the viscous coefficient of the sediment-laden flow, impact 
coefficient, diameter of particle, sediment density, maximum particle concentration and non-
dimensional shear stress. Additionally, experimental observation and numerical works have been 
adopted to investigate the process of the saltation of single and/or multiple sediment particles on the 
bed (e.g., [9–11]). Further introduction into the developed formulae for the movement of the bed load 
layer can be found in the paper of Ghoshal and Pal [2]. 

As Singh et al. [12] showed, probabilistic methods by using the entropy theory have been 
extensively adopted to study some hydraulic problems. For example, entropy-based methods have 
been adopted to study the one-dimensional and two-dimensional velocity distribution of open 
channels (e.g., [13–17]), suspended sediment concentration [18–20], shear stress distribution [21,22], 
and sediment flocculation [23]. In these works, the authors showed that the entropy-based method 
could agree with experimental data well, indicating that the probability method by using the entropy 
theory could be a good addition to some existing deterministic models for tackling hydraulic 
engineering problems.  

Recently, Kumbhakar et al. [3] adopted the Shannon entropy concept to estimate the bed-load 
thickness in open channels, which motivates us to investigate the possibility of another more general 
form of entropy, Tsallis entropy, for evaluating the thickness of the bed-load layer. Therefore, this 
study attempts to propose an entropy-based formula for the bed-load layer thickness in open 
channels by adopting Tsallis entropy. The derived expression for the bed-load thickness is verified 
against collected experimental data. Furthermore, a comparison among the derived expression and 
other developed deterministic expressions and the Shannon entropy-based expression is also 
presented.  
  

Figure 1. A diagram of the thickness of the bed load layer in open channel; δ denotes this thickness
(the height of the saltation of a sediment particle near the bed).

Some studies have examined the bed-load thickness in a sediment-laden flow by virtue of
theoretically study and/or laboratory observation technique. Einstein [6] defined bed-load thickness
as two grain diameters. Van Rijin [7] presented a mathematical expression of bed-load thickness,
and it was related to the diameter of the particle and the capacity of flow transport. Wilson [8] put
forward an analytical model for thickness as a function of dimensionless shear stress. Furthermore,
by considering hydrodynamic diffusion effect due to the interactions among particles, Cheng [1]
proposed an expression of the bed-load thickness, which depends on the dimensional diameter
of the particle and non-dimensional shear stress. Ghoshal and Pal [2] theoretically derived an
expression of the bed-load thickness as a function of the viscous coefficient of the sediment-laden
flow, impact coefficient, diameter of particle, sediment density, maximum particle concentration and
non-dimensional shear stress. Additionally, experimental observation and numerical works have been
adopted to investigate the process of the saltation of single and/or multiple sediment particles on the
bed (e.g., [9–11]). Further introduction into the developed formulae for the movement of the bed load
layer can be found in the paper of Ghoshal and Pal [2].

As Singh et al. [12] showed, probabilistic methods by using the entropy theory have been
extensively adopted to study some hydraulic problems. For example, entropy-based methods
have been adopted to study the one-dimensional and two-dimensional velocity distribution of open
channels (e.g., [13–17]), suspended sediment concentration [18–20], shear stress distribution [21,22],
and sediment flocculation [23]. In these works, the authors showed that the entropy-based method
could agree with experimental data well, indicating that the probability method by using the entropy
theory could be a good addition to some existing deterministic models for tackling hydraulic
engineering problems.

Recently, Kumbhakar et al. [3] adopted the Shannon entropy concept to estimate the bed-load
thickness in open channels, which motivates us to investigate the possibility of another more general
form of entropy, Tsallis entropy, for evaluating the thickness of the bed-load layer. Therefore, this study
attempts to propose an entropy-based formula for the bed-load layer thickness in open channels by
adopting Tsallis entropy. The derived expression for the bed-load thickness is verified against collected
experimental data. Furthermore, a comparison among the derived expression and other developed
deterministic expressions and the Shannon entropy-based expression is also presented.

2. Methodology for Determination of the Bed-Load Thickness

In Figure 1, δ denotes the bed-load thickness (i.e., the height of the saltation of a particle).
Assuming the dimensionless bed-load layer thickness, δ, defined by δ/d, where d is the particle
diameter, to be a random variable, this study attempts to derive the mathematical formula for the
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thickness of the bed-load layer based on the Tsallis entropy theory. The Tsallis entropy theory to
determine the bed-load layer thickness entails the procedures as follows: (1) definition of Tsallis
entropy function, (2) constraint conditions, (3) maximization of the entropy function, (4) estimation of
two Lagrange multipliers, (5) hypothesis of the cumulative distribution function, and (6) estimation of
a bed-load thickness expression.

2.1. Definition of the Tsallis Entropy

Assume the dimensionless bed-load thickness δ be a continuous random variable, and its
probability density function is f (δ). We can express the Tsallis entropy function of the dimensionless
bed-load thickness H(δ) as [24,25]:

H
(
δ
)
=

1
m− 1

{
1−

∫ δmax

δmin

[
f
(
δ
)]mdδ

}
(1)

where δmin and δmax are the lowest and largest bounds of δ, and m is the parameter for the Tsallis
entropy and is a real number not equal to 1. The expression f (δ)dδ represents the probability of
dimensionless bed-load thickness occurring between δ, and δ + δ.

2.2. Constraint Equations

The constraint equations are: ∫ δmax

δmin

f
(
δ
)
dδ = 1 (2)

∫ δmax

δmin

δ f
(
δ
)
dδ = δm (3)

where δm is the mean value of δ. Equation (3) is the mean constraint.

2.3. Maximization of Entropy

The maximum entropy principle developed by Jaynes [26–28] was adopted in this study to
determine among those probability density functions in accordance with the constraint conditions:
Equations (2) and (3). Thus, we adopted the Euler-Lagrange calculus technique [12]. The Lagrangian
function L is expressed as:

L = 1
m−1

{
1−

∫ δmax
δmin

[
f
(
δ
)]mdδ

}
− λ0

[∫ δmax
δmin

f
(
δ
)
dδ− 1

]
−λ1

[∫ δmax
δmin

δ f
(
δ
)
dδ− δm

] (4)

where λ0 and λ1 are the Lagrange multipliers. Taking the derivative of Equation (4) with respect to
f
(
δ
)

and letting it equal to zero could yield:

∂L
∂ f

= 0⇒ 1
m− 1

{
1−m

[
f
(
δ
)]m−1

}
− λ0 − λ1δ = 0 (5)

which results in the following expression for f
(
δ
)
:

f
(
δ
)
=

[
m− 1

m

(
1

m− 1
− λ0 − λ1δ

)] 1
m−1

(6)

Therefore, the cumulative distribution function (CDF) of δ could be calculated by its integration
from δmin to δ as follows:

F
(
δ
)
=
∫ δ

δmin
f
(
δ
)
dδ

=
(

m−1
m

) m
m−1 1

λ1

[(
1

m−1 − λ0 − λ1δmin

) m
m−1 −

(
1

m−1 − λ0 − λ1δ
) m

m−1
] (7)
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Substituting Equation (6) into Equation (1) could yield the maximum entropy function H(δ)
as follows:

H
(
δ
)
=

1
m− 1


(
δmax − δmin

)
+
(

m−1
m

) m
m−1 1

(2m−1)
1

λ1

∗
[(

1
m−1 − λ0 − λ1δmax

) 2m−1
m−1 −

(
1

m−1 − λ0 − λ1δmin

) 2m−1
m−1

]
 (8)

The two Lagrange multipliers, λ0 and λ1 could be determined as described below.

2.4. Estimation of Lagrange Multipliers

The two Lagrange multipliers, λ0 and λ1, could be estimated by substituting Equation (6) into the
constraint equations. Inserting Equation (6) into Equation (2) could lead to:

1
λ1

(
m− 1

m

) m
m−1
[(

1
m− 1

− λ0 − λ1δmin

) m
m−1
−
(

1
m− 1

− λ0 − λ1δmax

) m
m−1
]
= 1 (9)

Inserting Equation (6) in Equation (3) one could get:

δmax

(
1

m−1 − λ0 − λ1δmax

) m
m−1 − δmin

(
1

m−1 − λ0 − λ1δmin

) m
m−1

+ m−1
2m−1

1
λ1

[(
1

m−1 − λ0 − λ1δmax

) 2m−1
m−1 −

(
1

m−1 − λ0 − λ1δmin

) 2m−1
m−1

]
+λ1δm

( m
m−1

) m
m−1 = 0

(10)

These two equations can be solved numerically when the values of δmin, δmax, δm and m are known.

2.5. Hypothesis on Cumulative Distribution Function

In order to propose the mathematical expression for the dimensionless bed-load thickness in the
real (space) domain, a hypothesis regarding the CDF of the dimensionless bed-load thickness needs to
be made [12].

Previous studies have indicated that the thickness of the bed-load movement is largely related to
the dimensionless shear stress τ∗ [1,2,29,30]. Recently, Kumbhakar et al. [3] put forward the following
power-type hypothesis regrading CDF to be a good choice:

F(δ) =
(

τ∗ − τ∗min

τ∗max − τ∗min

)η

(11)

where τ∗max and τ∗min are upper and lower values of τ∗, and η is a real parameter.

2.6. Estimation of an Expression for Bed-Load Layer Thickness

By combining Equations (7), (9) and (11), the dimensionless thickness of the bed-load layer δ

could be expressed as:

δ = − 1
λ1


(

1
m−1 − λ0 − λ1δmin

) m
m−1−[(

1
m−1 − λ0 − λ1δmin

) m
m−1 −

(
1

m−1 − λ0 − λ1δmax

) m
m−1
](

τ∗−τ∗min
τ∗max−τ∗min

)η


m−1

m

− λ0
λ1

+ 1
λ1(m−1)

(12)

Equation (12) represents the Tsallis entropy-based expression for the bed-load layer thickness in
open channels.
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3. Comparison with Laboratory Data Sets and Discussion

3.1. Selection of Laboratory Data Sets

Six laboratory data sets collected from the literature are adopted in this study to check the accuracy
of the expression derived by the Tsallis entropy (Equation (12)). These include Sekine and Kikkawa [31],
a smooth bed studied by Hu and Hui [29], a rough bed studied by Hu and Hui [30], Sumer et al. [32],
Lee et al. [33] and Bhattacharyya et al. [34]. The laboratory data sets of the thickness of the bed-load
layer are fairly limited, possibly because there could be measurement limitations in tracking the entire
process of the saltation of the particles on the bed in the experiment [1]. When there are few sediment
particles on the bed, a camera imaging system could be adopted to track the saltation behaviour of a
particle on the bed in the laboratory, as shown in collected experimental data sets [29–34]; however,
for many sediment particles moving on the bed, some typical bed forms (such as ripples and dunes)
will be formed, for which there seems to lack some effective measurement techniques to track particle
movement [1]. The hydraulic conditions for six collected experimental data sets is summarized in
Table 1, and the collected data include the particle with different materials (sediment or plastic), diverse
particle size, and various shear stress conditions (a low shear stress environment, for example, τ∗ = 0.04,
0.05, in the work of Lee et al. [33] and Sekine and Kikkawa [31]; a strong shear condition, for example,
τ∗ = 2.50 in the work of Sumer et al. [32]). In the third column of this table, s is the specific gravity of
the particle, and it is the mass density of the particle divided by the density of the fluid. In the fourth

column, d∗ is the dimensionless diameter of the particle, given by the expression d∗ =
[
(s−1)g

ν2
f

]1/3

adopted by some studies [1,2,33], where g is the acceleration of the gravity, and ν f is the kinematic
viscosity of fluid. In the last column, τ∗ is the dimensionless shear stress as mentioned above, and is

calculated as τ∗ =
u2
∗

(s−1)gd , where u∗ is the shear velocity [1,29,30].

Table 1. Information on experimental data sets collected from the literature.

Data Series
The Diameter of

the Particle d
(mm)

Specific
Gravity s

Dimensionless
Diameter of the

Particle d*

Dimensionless
Shear Stress τ*

Range

Sekine and Kikkawa [31] 5 2.50 122.52 0.05–0.31
Hu and Hui [29] (smooth bed) 3 2.64 75.73 0.07–0.43
Hu and Hui [30] (rough bed) 4 2.64 100.98 0.10–0.70

Sumer et al. [32] 2.6 1.14 28.90 0.70–2.50
Lee et al. [33] 6 1.78 118.23 0.04–0.10

Bhattacharyya et al. [34] 2 2.65 50.57 0.04–0.16

An error analysis is used to determine the accuracy of the developed expressions with collected
laboratory data sets by calculating the average value of the relative error R in percent as:

100
N

[
N

∑
i=1

∣∣∣∣mi − oi
oi

∣∣∣∣
]

(13)

in which m and o are the estimated and observed points, respectively, and N is the total number of
data points. The fitting effect increases when R decreases.

3.2. Some Developed Deterministic Models

There have been many studies to predict the bed-load thickness from different perspectives.
Van Rijin [7] proposed that the saltation height δ of a sediment particle could be computed as:

δ

d
= 0.3d0.7

∗ T0.5
∗ (14)
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where d∗ is the non-dimensional diameter of the particle, as already mentioned, and T∗ is the
non-dimensional capacity of flow transport given by T∗ = τ∗−τ∗c

τ∗c
, where τ∗c is the dimensionless

critical shear stress. Wilson [8] analytically derived the expression of δ as:

δ

d
= 10τ∗ (15)

From the mechanical and stochastic perspectives, Hu and Hui [29,30] put forward the expressions
of δ for smooth and rough beds respectively as follows:

δ

d
= 3.65s1.05τ0.82

∗ , for smooth bed (16)

δ

d
= 1.78s0.86τ0.69

∗ , for rough bed (17)

Similar to Equation (14), researchers have proposed different expressions of δ, including
δ
d = 1.112d0.325

∗ T0.511
∗ in the work of Lee et al. [35], δ

d = 0.301d0.4522
∗ T0.3345

∗ in Lee et al. [33],
δ
d = 1.091d0.330

∗ T0.511
∗ in Wang et al. [36], and δ

d = 90d−0.66
∗ T−0.07

∗ in the study of Kharlamova and
Vlasak [37], respectively.

By considering the hydrodynamic diffusion effect because of the interactions among particles, Cheng [1]
derived an expression for the bed-load layer thickness. The derived expression of δ/d was given by:

δ

d
= τ∗

d3
∗(√

25 + 1.2d2∗ − 5
)1.5

(∫ cb

0

E∗
cµrωr

dc
)

(18)

In this expression, E∗ is the non-dimensional diffusion coefficient, c is the volumetric concentration
of the particle, cb is the maximum bed concentration, µr is the dynamic viscosity of the sediment-fluid
mixture divided by the fluid viscosity, and ωr is the settling velocity of a particle in the mixture divided
by that in the clear fluid. The parameters E∗, µr and ωr were given by:

E∗ = ai

(
c−

1
3 − 1

)−2
(19)

µr = exp
{

2.5
β

[
(1− c)−β − 1

]}
(20)

ωr =
µr

1 + ∆ ∗ c


√

25 + 1.2d2∗(1− c)
2
3 (1 + ∆ ∗ c)

2
3 µ
− 4

3
r − 5√

25 + 1.2d2∗ − 5

1.5

(21)

where ∆ = s− 1, ai is the impact coefficient and is taken to be 0.0041 as suggested by Ghoshal and
Pal [2], and the value of β is taken to be 2.5 by Cheng [1]. More details regarding Equation (18) are
found in the work of Cheng [1].

By analysing the impact shear stress because of the interactions among particles and viscous shear
stress because of the interaction between the particle and the surrounding fluid, Ghoshal and Pal [2]
analytically derived an expression for δ/d as follows:

δ

d
=

av

(Re) ∗ s

∫ cb

0

µrc
1
3(

c−
1
3 − 1

)
cωr

dc +
aiτ∗d3

∗
(Re)

∫ cb

0

1

µr

(
c−

1
3 − 1

)2
cωr

dc (22)

where Re (=ω0d/νf) is the Reynolds number of sediment particles (here ω0 is the settling velocity of
a particle in still and clear fluid), and aν is the proportionality constant called the viscous coefficient.
A more detailed introduction of this expression is found in the study of Ghoshal and Pal [2].
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In the models of Van Rijin [7], Lee et al. [35], Lee et al. [33], Wang et al. [36], and Kharlamova and
Vlasak [37], the determination of the value of τ∗c is required. To calculate it, we adopted the expression
τ∗c =

0.24
d∗

+ 0.055[1− exp(−0.02d∗)], suggested by Soulsby and Whitehouse [38].

3.3. Comparsion Results

For each laboratory data set, the two Lagrange multipliers in Equation (12), λ0 and λ1, could be
estimated by solving the non-linear equation system (Equations (9) and (10)) when the values of δmin,
δmax, δm and m are known are known from the laboratory data. By fitting Equation (11) with collected
laboratory data, the value for η could be estimated. Figure 2 shows the comparison of the proposed
Tsallis entropy-based expression (Equation (12)), and ten existing deterministic models, as well as
the Shannon entropy-based expression given by Kumbhakar et al. [3], with six laboratory data sets.
Table 2 lists the calculated R values between the Tsallis entropy based expression and each data set,
as well as the values of the Lagrange multipliers λ0 and λ1, and the fitting parameter η. Table 3
presents the comparison result (i.e., the calculated R value) among ten existing deterministic models,
the Shannon entropy-based expression given by Kumbhakar et al. [3] and each data set, as well as the
Tsallis entropy-based expression.

From the last column of Table 2, it can be seen that there is a low R value for each case: in
particular, the R values fall below 6 for experimental data for Hu and Hui [30] (rough bed), Lee et
al. [33], and Bhattacharyya et al. [34].This observation indicates that the Tsallis entropy expression
could agree with laboratory data well, considering that there is scattering in some experimental data
(for example Sumer et al. [32], and Sekine and Kikkawa [31]).

In each column of Table 3, the symbol *** corresponds to the minimum error. As seen, the Tsallis
entropy-based expression has the minimum fitting error in all real cases, except for the case of Hu
and Hui [30] (rough bed). For the experimental data from Hu and Hui [30] (rough bed), the formula
proposed by Hu and Hui [30] gives the best fitting result because this formula is completely derived
from the data points of Hu and Hui [30] on a rough sediment bed. For the case of Hu and Hui [29]
(smooth bed), the formula proposed by Hu and Hui [29] could be in good agreement with data points,
since it is derived from these data (R = 7.33), and the Tsallis entropy-based expression could have a
similarly good agreement (R = 7.31). Thus, this study shows that the derived expression by the Tsallis
entropy could have a better prediction accuracy for the bed-load thickness of the sediment particle
on the bed in the open channel than some existing deterministic models. Comparing the last two
rows of Table 3, it could be found that the derived Tsallis entropy-based expression has a comparable
prediction ability for experimental data to the Shannon entropy-based expression, considering some
uncertainty associated with the experimental data.

Table 2. Comparison result of the derived expression by the Tsallis entropy (Equation (12)) with
collected laboratory data sets.

Data Source
Parameter Estimation Fitting Result

λ0 λ1 η m R

Sekine and Kikkawa [31] −1.30 0.50 0.35 3 12.11
Hu and Hui [29] (for a smooth bed) 1.06 −0.26 1 3 7.31
Hu and Hui [30] (for a rough bed) −2.67 1.07 0.65 3 5.26

Sumer et al. [32] −0.18 0.06 0.5 3 8.94
Lee et al. [33] −17.90 6.48 0.65 3 5.33

Bhattacharyya et al. [34] −4.82 3.15 0.85 3 1.47
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Figure 2. Comparison of the derived expression by the Tsallis entropy (Equation (12)), ten existing
deterministic models, and the Shannon entropy-based expression with six laboratory data sets,
including Sekine and Kikkawa [31] (a), a smooth bed in Hu and Hui [29] (b), a rough bed in Hu and
Hui [30] (c), Sumer et al. [32] (d), Lee et al. [33] (e) and Bhattacharyya et al. [34] (f). Ten deterministic
models are the Van Rijin [7] model, Wilson [8] model, Hu and Hui [29] model for a smooth bed, Hu
and Hui [30] model for a rough bed, Lee et al. [35] model, Lee et al. [33] model, Wang et al. [36] model,
Kharlamova and Vlasak [37] model, Cheng [1] model and Ghoshal and Pal [2] model, as mentioned
above in the text.
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Table 3. Comparison among ten existing deterministic models, the Shannon entropy-based expression given by Kumbhakar et al. [3] and six experimental data sets
from literature using calculated R value, as well as Tsallis entropy-based expression. In each column, the symbol *** corresponds to the minimum error for each case.

Experimental Data Fitting Result: R Value

Sekine and
Kikkawa [32]

Hu and Hui [29]
(Smooth Bed)

Hu and Hui [30]
(Rough Bed)

Sumer et al.
[32]

Lee et al.
[33]

Bhattacharyya
et al. [34]

Van Rijin [7] model 294.17 305.29 881.50 131.04 174.93 302.16
Wilson [8] model 45.11 33.79 74.35 56.29 70.48 24.50

Hu and Hui [29] model for a smooth bed 25.32 7.33 112.73 38.39 68.32 30.73
Hu and Hui [30] model for a rough bed 60.29 50.40 2.88 *** 71.88 80.49 32.73

Lee et al. [35] model 147.78 198.67 557.56 152.62 72.19 246.15
Lee et al. [33] model 22.51 27.51 133.69 45.24 12.15 62.84

Wang et al. [36] model 147.42 197.46 548.35 142.91 73.02 244.97
Kharlamova and Vlasak [37] model 75.57 153.26 108.05 29.60 68.64 559.16

Cheng [1] model 266.08 131.53 503.15 138.30 88.09 87.75
Ghoshal and Pal [2] model 21.09 23.19 74.45 28.32 13.77 23.01

The Shannon entropy-based model 14.06 11.00 6.75 9.34 10.54 21.05
The Tsallis entropy-based model 12.11 *** 7.31 *** 5.26 8.94 *** 5.33 *** 7.59 ***
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3.4. Physical Interpretation

In the study of Kumbhakar et al. [3], the lower and upper limits of the bed-load thickness, δmin and
δmax are computed as follows:

δmin = 8.4823s−1.3598d−0.135
∗ (23)

and:
δmax = 420.36s−0.0534d−1.0112

∗ (24)

which shows a high correlation coefficient of fitting (above 0.98) with the experimental data.
Substituting Equations (23) and (24) in the Tsallis entropy-based expression (Equation (12)),
and adopting λ0 = –17.90 and λ1 = 6.48 as used for the experimental data of Lee et al. [34] as a
typical example, we attempt to analyse the impact of the variation of particle properties, including the
specific gravity of the particle s and the diameter of the particle d, on the thickness of the bed-load
layer in the open channel.

Fixing the value of the particle diameter, Figure 3 presents the effect of the specific gravity of
the particle on the bed-load thickness based on the Tsallis entropy-based expression (Equation (12)).
As observed from this figure, the bed-load thickness decreases as s increases. An increase in s leads
to the increase of the particle density. Thus the gravity of the particle could increase for a fixed
particle diameter. Therefore, under the same hydrodynamic condition of the flow in the open channel,
the heavy particle could jump vertically lower than the light particle. Consequently, the bed-load
thickness decreases.Entropy 2018, 20, x FOR PEER REVIEW  13 of 15 
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non-dimensional shear stress, under different values of specific gravity of the particle (d = 6 mm).

Fixing the value of the specific gravity of the particle, Figure 4 demonstrates the effect of particle
diameter on the bed-load thickness based on the Tsallis entropy-based expression (Equation (12)).
As seen from this figure, the thickness of the bed-load layer decreases as d increases. The physical
explanation is similar to that mentioned above. With the increase in particle diameter, the particle
gravity will increase for a fixed mass density of the particle, and the large particle could jump
vertically lower than the small particle on the bed under the same hydrodynamic condition in the open
channel. Consequently, the increase in particle diameter leads to the decrease of the thickness of the
bed-load layer. These conclusions are in accordance with the studies of Cheng [1] and Ghoshal and
Pal [2], and also with our understanding of the dynamic mechanisms of the bed load transport in an
open channel.



Entropy 2019, 21, 123 13 of 15

Entropy 2018, 20, x FOR PEER REVIEW  13 of 15 

 

 
Figure 3. Variation in the dimensionless thickness of the bed-load layer with respect to the non-
dimensional shear stress, under different values of specific gravity of the particle (d = 6 mm). 

 
Figure 4. Variation in the dimensionless thickness of the bed-load layer with respect to the non-
dimensional shear stress, with various particle diameter values (s = 1.78). 

Equation (12) could predict the bed-load thickness in the open channel with high accuracy, as 
shown by Figure 2, as long as the values of 𝛿୫̅୧୬, 𝛿୫̅ୟ୶ and 𝛿௠̅ are known. The mathematical form 
of this expression is simpler than the existing deterministic models (for example the Cheng [1] model 
and Ghoshal and Pal [2] model). Equation (12) provides a new expression for estimating the bed-load 
thickness in an open channel based on the Tsallis entropy theory, as an addition to existing 
deterministic models. However, it could point out that Equation (12) contains fewer physical 
properties than existing deterministic models. For example, in the study of non-cohesive sediment 
transport, the impact among solid particles near the bed, which generates impact shear stress, and 
the dynamic viscosity of the mixture play a role in determining bed load transport [1,2]. In the Cheng 
[1] model and Ghoshal and Pal [2] model, the impact coefficient ai and relative viscosity of the mixture 
μr have been adopted to characterize the impacts of impact shear stress and the viscosity of the 
mixture, respectively. However, the present Tsallis entropy-based expression (Equation (12)) does 
not incorporate these parameters. 

Finally, it needs to acknowledge that the laboratory data sets regarding the bed-load thickness 
might have considerate uncertainty, possibly because there could be measurement uncertainty in 
tracking the saltation process of the particles on the bed during the experiment, as shown in collected 

Figure 4. Variation in the dimensionless thickness of the bed-load layer with respect to the
non-dimensional shear stress, with various particle diameter values (s = 1.78).

Equation (12) could predict the bed-load thickness in the open channel with high accuracy,
as shown by Figure 2, as long as the values of δmin, δmax and δm are known. The mathematical form of
this expression is simpler than the existing deterministic models (for example the Cheng [1] model
and Ghoshal and Pal [2] model). Equation (12) provides a new expression for estimating the bed-load
thickness in an open channel based on the Tsallis entropy theory, as an addition to existing deterministic
models. However, it could point out that Equation (12) contains fewer physical properties than existing
deterministic models. For example, in the study of non-cohesive sediment transport, the impact among
solid particles near the bed, which generates impact shear stress, and the dynamic viscosity of the
mixture play a role in determining bed load transport [1,2]. In the Cheng [1] model and Ghoshal and
Pal [2] model, the impact coefficient ai and relative viscosity of the mixture µr have been adopted to
characterize the impacts of impact shear stress and the viscosity of the mixture, respectively. However,
the present Tsallis entropy-based expression (Equation (12)) does not incorporate these parameters.

Finally, it needs to acknowledge that the laboratory data sets regarding the bed-load thickness
might have considerate uncertainty, possibly because there could be measurement uncertainty in
tracking the saltation process of the particles on the bed during the experiment, as shown in collected
experimental data sets [29–34]. The uncertainty in the experimental data might originate from two
sources. The first could be the difficulty in tracking the particle movement near the bed, possibly due to
the interference of particle crowding. The second might be the measurement error by the photographic
technique. It also needs to acknowledge that the proposed entropy-based model has adopted the
collected data sets when estimating the relevant coefficients of the model, similar to other works of
applying entropy into some hydraulic engineering problem by some researchers [15–21]. Seeking a
possible link between the estimated Lagrange multipliers and the boundary condition of flow structure
(and/or physical property parameter of the particle) could be worthy of further investigation in future
study in order to allow the model to be easily and universally used when physical property of the
sediment and flow characteristic are only required.

4. Conclusions

This study aimed to find an expression for the thickness of the bed-load layer in an open channel.
Some concluding remarks are as follows:

(1) A mathematical expression that could predict the bed-load thickness in open channel was derived
by adopting the Tsallis entropy theory, coupled with the maximum entropy principle.
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(2) The derived expression by the Tsallis entropy could agree with the collected six laboratory data
sets fairly well.

(3) The derived expression by the Tsallis entropy was compared with other deterministic models
for six collected laboratory data sets. The expression shows better prediction accuracy for
experimental data than other deterministic models.

(4) The derived Tsallis entropy-based expression has a comparable prediction ability for experimental
data to the Shannon entropy based expression, considering the uncertainty associated with the
experimental data.

(5) Based on the Tsallis entropy based expression in this study, either an increase in mass density of
the particle or in particle diameter leads to a reduction in the thickness of the bed-load layer in
an open channel, in accordance with previous studies and our understanding of the dynamic
mechanisms of the bed-load transport in the channel.
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