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Abstract: In the study, an equiatomic CoCrNiCuZn high-entropy alloy (HEA) was prepared by
mechanical alloying (MA) and the phases, microstructures, and thermal properties of the alloy
powder were explored. The results suggest that a solid solution with body-centered cubic (BCC)
phase and a crystalline size of 10 nm formed after 60 h of milling. Subsequently, the alloy powder
was consolidated by spark plasma sintering (SPS) at different temperatures (600 ◦C, 700 ◦C, 800 ◦C,
and 900 ◦C). Two kinds of face-centered cubic (FCC) phases co-existed in the as-sintered samples.
Besides, Vickers hardness and compressive strength of the consolidated alloy sintered at 900 ◦C were
respectively 615 HV and 2121 MPa, indicating excellent mechanical properties.

Keywords: high-entropy alloy; spark plasma sintering; mechanical alloying; mechanical
property; microstructure

1. Introduction

Conventional alloy is generally composed of one or two main elements and a small amount of other
elements, to enhance its mechanical properties, such as steel and NiAl intermetallics [1,2]. The emergence
of high-entropy alloys (HEAs) [3] has broken this traditional notion. A HEA is loosely defined as alloy
composed of more than five principal elements with an equimolar ratio (5–35 at.%). High-entropy
alloy has high entropy effect, lattice distortion effect, sluggish cooperative diffusion effect, and cocktail
effect. It often has simple solid-solutions or amorphous structure [4]. Well-designed HEAs have good
mechanical properties including high hardness, high strength, good corrosion, and wear resistance [5].

HEAs can be prepared by various routes, such as vacuum arc-melting and casting [6,7]. However,
these routes are not suitable for HEA systems which contain elements with very different melting
points. For example, the melting temperature of Cr is 1000 ◦C above the atmospheric boiling point of Zn,
so some systems such as CoCrNiCuZn high-entropy alloy cannot be synthesized by arc-melting route.
Besides, arc-melting is not suitable for industrial manufacturing and final products have some limitations
in shape and size [8]. Mechanical alloying (MA) is a convenient route to synthesize nanocrystalline HEAs
materials. MA can reduce the preparation cost of nanocrystalline materials [9,10]. In addition, HEAs can
be easily consolidated from the as-milled powders with spark plasma sintering (SPS) technique [11–13].

In this study, we synthesized the CoCrNiCuZn high-entropy alloy by MA and SPS. The phases,
microstructures and mechanical properties of the consolidated alloys were also explored.

2. Experimental

Metal powders (Co, Cr, Ni, Cu, and Zn with a purity of more than 99.5 wt.% and a particle
size of ~45 µm) were mixed according to the equiatomic composition and milled in a planetary
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ball-miller (300 rpm for 60 h, argon atmosphere) with stainless steel vials and balls as milling media
(a ball-to-powder mass ratio of 20:1). N-heptane was used as the processing controlling agent (PCA) to
avoid cold welding and oxidation. The MA process was monitored with an interval of 6 h. After 60 h
of ball milling, the powder was consolidated by SPS (Dr. Sinter-3.20 MKII, Sumitomo, Osaka, Japan) at
different temperatures (600 ◦C, 700 ◦C, 800 ◦C, and 900 ◦C) under 30 MPa with dwell time of 10 min in
argon atmosphere.

The phases of ball milled (QM-BP, Nanjing Nanda Instrument Plant, Nanjing, China) alloys
were characterized by X-ray diffractometer (XRD, Rigaku Ultima III, Tokyo, Japan) with a Cu Kα

radiation to investigate the crystal structure. The microstructure was analyzed by a scanning electron
microscope (SEM, Hitachi 3400, Tokyo, Japan) and a transmission electron microscope (TEM, JEOL
JEM-2010HT, Tokyo, Japan). The thermal analysis of as-milled powder was conducted by a differential
scanning calorimeter (DSC, NETZSCH 449C, Selb, Germany) heating the alloy to 1500 ◦C (5 ◦C/min)
in flowing argon atmosphere. According to the Archimedes principle, the density of HEA was
determined. The hardness of sectioned and polished specimens was determined by vickers hardness
tester (Wolpert-430SV, Aachen, Germany). The compressive properties at room temperature were
determined by a MTS810 testing machine (MTS 810, MTS Systems Corporation, Eden Prairie, MN, USA)
with a loading rate of 1 mm/min. The dimensions of sample is 2 mm × 2 mm × 5 mm. The fracture
surface was analyzed by SEM. A thin foil of sintered material obtained by mechanical thinning and
ion milling was analyzed by TEM. At least 5 measurements were performed to calculate the means of
vickers hardness and compressive strength.

3. Results and Discussion

3.1. Mechanical Alloying of CoCrNiCuZn HEAs

3.1.1. X-Ray Analysis

The XRD patterns of the CoCrNiCuZn high-entropy alloy (Figure 1) indicated that a major peak
formed after 30-h milling. The diffraction patterns of all alloying elements can be observed in the
XRD patterns of primitive blending powder. After 6-h MA, the diffraction peaks of the principle
elements were still observed, but the intensity was dramatically decreased. With the increase in milling
time to 18 h, some peaks were significantly broadened and some peaks were invisible. After 30-h
milling, only 3 peaks of a BCC structure ((1 1 0), (2 0 0), (2 1 1)) could be identified, indicating the
formation of a simple solid solution. The BCC solid-solution had a lattice parameter of 2.8831 Å.
After 60 h MA, the XRD patterns showed no obvious change. In the milling process, the decreased
intensity, broadened or disappeared peak might be caused by high lattice strain, refined crystallite size,
and decreased crystallinity [14,15].

The crystallite size (CS) and lattice strain (LS) of CoCrNiCuZn HEA obtained after milling for
different time were calculated by Scherrer’s formula after eliminating the interferences of instruments
and strain [16,17]. The CS of the BCC phase was significantly refined to 19 nm after 18-h MA and then
decreased to 13 nm after 30-h milling (Table 1). Further increasing of milling time had no significant
influence on the crystallite size. The equilibrium between crystalline refinement and cold welding of
BCC phase might be reached after 30-h milling. The lattice strain of milled powders increased with
milling time and reached 0.70% after 60 h milling [18].
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Figure 1. The change of XRD patterns of CoCrNiCuZn high-entropy alloy (HEA) powder obtained
after milling for different time (from 0 h to 60 h).

Table 1. Crystallite size (CS), lattice strain (LS), lattice parameter (LP) of CoCrNiCuZn HEA obtained
after milling for different time (0 h to 60 h).

Milling Time (h) CS (nm) LS (%)

0 – –
6 22 0.64
18 19 0.65
30 13 0.67
60 13 0.70

3.1.2. Microstructure and Composition

Figure 2 shows the microstructure of CoCrNiCuZn HEA powder obtained after ball milling for
different time (0 h, 6 h, 18 h, 30 h, and 60 h). The non-milled powder has a different particle size.
Through the MA process, milled HEA powder agglomerated into an elliptical shape with the size
of ~3 µm and the elliptical particles evolved into ~1 µm thick sheets. The nanocrystalline nature of
CoCrNiCuZn HEA obtained after 60 h MA was characterized by the selected area electron diffraction
(SAED) pattern and TEM bright field image (Figure 3). The crystal size measured from bright field TEM
image was approximately 10 nm, which was consistent with the calculation results by the Scherrer’s
formula. The existence of nanoscaled crystallite indicated that the microsized alloy particles in SEM
images were the aggregates of nanosized grains.

The rings in the SAED pattern (Figure 3) indicated that the nanocrystalline HEA powder after 60 h
milling only consisted of a BCC phase. The result was consistent with XRD analysis results. The results
confirmed that the CoCrNiCuZn high-entropy alloy with a structure of simple BCC solid solution had
been successfully fabricated by mechanical alloying.

Zhang and Guo proposed the criteria for the formation of solid solution and phase stability of HEA
prepared by casting [19–23]. According to the results, the as-calculated values of ∆Smix (J·K−1 mol−1),
∆Hmix (kJ·mol−1), and δ for CoCrNiCuZn HEA were respectively 1.61R, 0.96 and 4.4%, which were
consistent with the formation criteria of HEAs. Table 2 shows mixing enthalpies of atomic pairs in
the CoCrNiCuZn alloy system [24,25]. The main advantage of MA is the extension of solid solubility.
Therefore, the simple solid solution is more likely formed in the as-milled HEA than that in the
as-cast HEA. The calculated values of ∆Smix, ∆Hmix and δ for CoCrNiCuZn HEA indicated that the
simple solid solution should be formed in the MA process.
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Figure 3. TEM image and selected area electron diffraction (SAED) pattern of CoCrNiCuZn HEA
powder obtained after 60 h milling.

Table 2. Enthalpies (kJ·mol−1) between every two elements in CoCrNiCuZn HEA.

Elements Co Cr Ni Cu Zn

Co 0 −4 0 6 −5
Cr - 0 −7 12 5
Ni - - 0 4 −9
Cu - - - 0 1
Zn - - - - 0

3.1.3. Thermal Analysis

Figure 4 shows the DSC results of the CoCrNiCuZn high-entropy alloy powder obtained after
60 h milling. The first endothermic peak at around 100 ◦C is related to the energy absorption of the
PCA evaporation [15]. Then the evaporated matter was eliminated by the flowing argon during testing.
In the temperature range of 200~400 ◦C, the curve was relatively stable. When the temperature was
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above 600 ◦C, an endothermic line is observed, indicating that phase changes started at around this
temperature. Two endothermic peaks at 1244.8 ◦C and 1321.8 ◦C were considered as the melting points
of different phases [26], proving that there were two phases after the phase change occurred.
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3.2. Consolidation by SPS

3.2.1. X-Ray Analysis

Figure 5 shows the XRD patterns of the HEA powder after 60 h ball milling and the samples
sintered at 600 ◦C, 700 ◦C, 800 ◦C, and 900 ◦C, respectively. Two FCC phases were formed at 900 ◦C
and respectively recorded as FCC1 and FCC2. This is consistent with thermal analysis results.
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Figure 5. XRD patterns of CoCrNiCuZn HEA powder after 60 h ball milling and CoCrNiCuZn HEA
samples fabricated by SPS at different sintering temperatures (600–1000 ◦C).

The above results indicated that both the as-milled CoCrNiCuZn powders and the as-sintered
CoCrNiCuZn samples mainly had simple solid solution structures. This phenomenon can be explained
by the Gibbs free energy of mixing defined as:



Entropy 2019, 21, 122 6 of 9

Gmix = Hmix − TSmix, (1)

where Hmix is the mixing entropy; Gmix is the Gibbs free energy of the mixture; Smix is the mixing
entropy and T is absolute temperature. The entropies of solid solution phases were much higher than
those of the intermetallics. The increase in the mixing entropy largely decreased Gibbs free energy.
Therefore, especially at high temperatures, the solid solution phases were preferentially formed rather
than intermetallics and other complex phases [27].

3.2.2. Microstructure

The densities of alloys sintered at 600 ◦C, 700 ◦C, 800 ◦C, and 900 ◦C are respectively 5.26 g/cm3,
6.26 g/cm3, 7.84 g/cm3, and 7.89 g/cm3 measured by Archimedes principle. Figure 6 shows TEM
bright field image and corresponding SAED patterns of CoCrNiCuZn HEA obtained after SPS at
900 ◦C. In the TEM image, two different morphologies were observed. Corresponding SAED patterns
in Figure 6b,c indicated that the larger particles had a FCC1 structure, whereas the smaller ones had
an FCC2 structure. The result was consistent with the XRD results.
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Figure 6. TEM image and SAED patterns of the CoCrNiCuZn HEA bulk obtained after SPS at 900 ◦C:
(a) TEM bright field image of bulk CoCrNiCuZn HEA after SPS, (b) and (c) corresponding SAED
patterns respectively indicate Region A with a FCC1 phase and Region B with an FCC2 phase.

Figure 7 shows the corresponding fractographic feature of the alloys sintered at 700 ◦C, 800 ◦C,
and 900 ◦C, respectively. Section structure and stepped structure can be respectively observed in
Figure 7a,b. The bulk alloys sintered at 900 ◦C showed a significant plasticity trend because the FCC
phase exhibited a higher plasticity than BCC phase [15].
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3.2.3. Mechanical Properties

Figure 8 shows the room-temperature compressive properties of the CoCrNiCuZn HEA
consolidated at different temperatures. The strength increases with increasing of sintering temperature.
The compressive strength of the sample sintered at 900 ◦C reached 2121 MPa, which was higher than that
of most previously reported HEAs [6,27]. The Vickers hardness of HEA bulk sintered at 900 ◦C reached
615 HV, which was also superior to most commercial hard facing alloys [28]. The high compressive
strength and high hardness are ascribed to the ultrafine grains (as shown in Figure 6a) and solid
solution strengthening.
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Figure 8. Compressive strain–stress curves at room temperature of CoCrNiCuZn HEA samples
fabricated by SPS at different sintering temperatures (600 ◦C–900 ◦C).

4. Conclusions

The equiatomic CoCrNiCuZn HEA powder was successfully synthesized by MA. After 30-h ball
milling, a BCC phase structure with a grain size of 10 nm was formed. The thermal analysis curve
proved that the BCC phase structure gradually converted into FCC phase at above 600 ◦C. The XRD
and TEM results demonstrated that the high-entropy alloy obtained after sintering had two FCC phases.
The sample sintered at 900 ◦C had a Vickers hardness of 615 HV and a compressive strength of 2121 MPa.
The combination of mechanical properties is superior to most of reported HEA systems and commercial
hard facing alloys.
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