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Abstract: In this paper, the problem of stability analysis for memristor-based complex-valued
neural networks (MCVNNs) with time-varying delays is investigated extensively. This paper
focuses on the exponential stability of the MCVNNs with time-varying delays. By means of the
Brouwer’s fixed-point theorem and M-matrix, the existence, uniqueness, and exponential stability
of the equilibrium point for MCVNNs are studied, and several sufficient conditions are obtained.
In particular, these results can be applied to general MCVNNs whether the activation functions
could be explicitly described by dividing into two parts of the real parts and imaginary parts
or not. Two numerical simulation examples are provided to illustrate the effectiveness of the
theoretical results.
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1. Introduction

In the past few decades, complex-valued neural networks (CVNNs) which extend the real-valued
neural network (RVNNs) have aroused widespread concern because of their extensive application in
various fields, such as engineering optimization, electromagnetic wave imaging, pattern recognition,
and so forth [1,2]. Some conclusions about CVNNs have been obtained in [3,4]. Since the physical
implementation of the nanoscale memristor in 2008 [5], memristor-based neural networks (MNNs)
have attracted a remarkable amount of attention [6–11], owing to their memory characteristics and
nanometer dimensions. Therefore, it is important to research the properties of MNNs which play
a significant role in the system design. There exist many research results concerning the existence,
uniqueness, and stability for the equilibrium of MNNs [12–15].

Figure Compared with real-valued neural networks, the complex-valued neural network (CVNN)
is a frame that processes information in the complex plane—namely, their input and output signals,
state variables, connection weights, and activation functions are all complex-valued [16]. In recent
years, the MCVNNs which replace the real-valued MNNs (RVMNNs) in the VLSI circuits have attracted
numerous researchers to study the properties of MCVNNs [17,18]. Nevertheless, it is complicated to
investigate the stability of MCVNNs, since the states and the connected weights are complex-valued.
In [17,18], the n-dimensional MCVNNs were converted into 2n-dimensional RVMNNs, and some
sufficient conditions have been derived aiming to guarantee the existence, uniqueness, and exponential
stability of the equilibrium. Nevertheless, not every activation functions could be explicitly described
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by dividing into two parts, i.e., the real part and the imaginary one. There are a few results to be
applied to general MCVNNs where activation functions cannot explicitly separate the real parts and
imaginary parts.

Figure Undoubtedly, due to the limited switching speed of the amplifier and the transmission
delay during communication between neurons, time delays are inevitably encountered in the neural
network, and the presence of time delays may cause instability or oscillation to the neural network.
Therefore, it is meaningful to discuss the dynamics of neural networks with time delays [11,19,20].

Motivated by the above analysis, the exponential stability problem of MCVNNs with time-varying
delays is investigated in this paper. Novel MCVNNs with time-varying delays is first presented.
wiht the adoption of Brouwer’s fixed-point theorem, some sufficient conditions of the existence and
uniqueness of the equilibrium point are achieved. Then, based on the properties of the M-matrix,
a sufficient condition is obtained to guarantee the exponential stability for the MCVNNs with time
delays. Among these sufficient conditions, the condition of the activation functions is relaxed, not to be
divided into real parts and imaginary parts, but only to meet the Lipschitz condition. Therefore,
the obtained method in this paper is more general than that in [17,18].

The rest of the paper is outlined as follows: in Section 2, the preliminaries, including some lemmas
and necessary definitions, are stated, and the model of the MCVNNs is described; in Section 3, some
sufficient conditions are achieved about the existence and the uniqueness of the equilibrium point,
and several criteria are obtained to guarantee the exponential stability for the MCVNNs with time
delays, while two examples are presented in Section 4.

Notation: The solutions of all the systems are considered in the sense of Filippov [21].
Let C and R be the sets of complex numbers and real numbers, respectively. Cn, Rn and Rn

+ denote
the n-dimensional complex, and the real and positive real vector space. z = a + ib indicates a
complex number, and z̄ = a + i(−b) denotes the conjugate number of z, where a, b ∈ R, i =

√
−1,

|z| =
√

a2 + b2. If z = (z1, ..., zn)T ∈ Cn, then [|z|] = (|z1|, |z2|, ..., |zn|)T ∈ Rn.

2. Preliminaries

In this section, we will construct a class of memristor-based complex-valued neural networks,
which is described as follows:

dzp(t)
dt

= −dpzp(t) +
n

∑
q=1

apq(zp(t)) fq(zq(t)) +
n

∑
q=1

bpq(zq(t− τq(t)))gq(zq(t− τq(t))) + Jp, (1)

where p = 1, 2, ..., n, zp(t) = xp(t) + iyp(t) ∈ C, dp > 0 denotes the neuron self-inhibitions,
τq(t) (q = 1, ..., n) are the transmission delays that satisfy 0 ≤ τq(t) ≤ τmax, where τmax indicates
the upper bound of the delays.

Then, (1) could be rewritten equivalently in the matrix form being illustrated as follows:

dZ(t)
dt

= −ΛZ(t) +A(Z(t))F (Z(t)) + B(Z(t))G(Z(t− τ(t))) + J , (2)

where Z(t) = (z1(t), ..., zn(t))T ∈ Cn represents the state vector; Λ = diag{d1, ..., dn};
fq(·) and gq(·) indicate the complex-valued activation functions respectively; F (Z(t)) =

( f1(z1(t)), f2(z2(t)), ..., fn(zn(t)))T and G(Z(t − τ(t))) = (g1(z1(t − τ1(t))), ..., gn(zn(t − τn(t))))T ;
A(Z(t)) = [apq(zq(t))]n×n and B(Z(t)) = [bpq(zq(t))]n×n; J = [J1, ..., Jn]T ∈ Cn denotes an external
input vector.

Remark 1. When both the activation functions, fq and gq, are real functions which can be defined by fq(s) =
gq(s) = (|s + 1| − |s − 1|)/2, MCVNN (1) becomes the one studied in [22]; if τpq = 0, MCVNN (1) is
degenerated, the model is investigated in [18]; when the connection weight matrices A and B are independent of
the feedback states, MCVNN (1) is reduced to CVNNs with delays investigated in [23,24]. Therefore, the model
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in this paper is more general than than those proposed in previous literature, and all the results in the following
are applicable to those special cases.

According to the properties of the memristor, the complex-valued connection weights apq(zq(t))
and bpq(zq(t)) could be described as follows:

apq(zq(t)) = signpq
Mpq

Cp
=

{
âpq, |zq(t)| ≤ 1
ǎpq, |zq(t)| > 1

(3)

bpq(zq(t)) = signpq
Npq

Cp
=

{
b̂pq, |zq(t)| ≤ 1
b̌pq, |zq(t)| > 1

(4)

where Mpq and Npq represent the memductances of memristors Gpq and Hpq, respectively,
Gpq stands for the memristor between the activation function fq(zq(t)) and zq(t), Hpq denotes the
memristor between gq(zq(t− τq(t))) and zq(t), Cp represents the capacitor, and signpq represents the
sign function, which is provided as

signpq =

{
1, p 6= q,
−1, p = q,

(5)

where the complex-valued constants âpq, ǎpq, b̂pq, b̌pq are the switching jumps.
Next, we will introduce some useful definitions and assumptions.

Definition 1. Let E ⊂ Cn, x 7→ F(x) be a set-valued map from E ↪→ Cn, if there exists a nonempty
set F(x) ⊂ Cn for any point x ∈ E ⊂ Cn. A nonempty set-valued map F is upper-semi-continuous at
x0 ∈ E ⊆ Cn, if, for any open set N containing F(x0), there exists a neighborhood M of x0 such that
F(M) ⊂ N. F(x) is called a closed (convex, compact) image if for all x ∈ E.

Definition 2. For dx
dt = f (t, x), x ∈ Cn, where f (t, x) is discontinuous in x and the set-valued map of f (t, x)

is defined as:
F(t, x) =

⋂
δ>0

⋂
µ(N)=0

co[ f (B(x, δ)\N)], (6)

where B(x, δ) = {y : |y− x| ≤ δ} is the ball with a center x and radius δ; and the intersection is applied to all
sets N of measure zero and all δ > 0; while µ(N) denotes the Lebesgue measure of set N. A Filippov solution of
the Cauchy problem with initial condition x(0) = x0 is absolutely continuous on any subinterval t ∈ [t1, t2] of
[0, T], which satisfies x(0) = x0 and the differential inclusion:

dx
dt
∈ F(t, x), for a.a. t ∈ [0, T]. (7)

In this paper, apq(zp(t)) and bpq(zq(t − τq(t))) are dependent on the states, and they are
discontinuous. Therefore, the solutions of all systems are intended in Filippov’s sense.

Under Definition 1, (1) could be rewritten as follows:

dzp(t)
dt

∈ −dpzp(t) +
n

∑
q=1

co{âpq, ǎpq} fq(zq(t)) +
n

∑
q=1

co{b̂pq, b̌pq}gq(zq(t− τq(t))) + Jp, (8)

or equivalently, for all p, q ∈ {1, 2, ..., n}, t ≥ 0, there exit measurable functions ãpq(t) ∈ co{âpq, ǎpq}
and b̃pq(t) ∈ co{b̂pq, b̌pq} such that

dzp(t)
dt

= −dpzp(t) +
n

∑
q=1

ãpq(t) fq(zq(t)) +
n

∑
q=1

b̃pq(t)gq(zq(t− τq(t))) + Jp, (9)
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Then, (9) could be transformed into the matrix format, which is provided as follows

dZ(t)
dt

= −ΛZ(t) + Ã(t)F (Z(t)) + B̃(t)G(Z(t− τ(t))) + J , (10)

where Ã(t) = [ãpq(t)]n×n ∈ Cn×n and B̃(t) = [b̃pq(t)]n×n ∈ Cn×n.
Before giving our main results, an assumption should be given.

Assumption 1. For q = 1, ..., n, the Lipschitz continuity condition of the activation functions fq(·) and gq(·)
should be satisfied in the complex field—that is, there exist constants l f

q > 0 and lg
q > 0, such that, for any

z1, z2 ∈ C, we have

| fq(z1)− fq(z2)| ≤ l f
q |z1 − z2|, |gq(z1)− gq(z2)| ≤ lg

q |z1 − z2| (11)

where l f
q and lg

q denote Lipschitz constants, respectively.

Remark 2. In [18,25,26], it is necessary to ensure that the activation functions can be explicitly expressed by
separating into real and imaginary parts, which is provided as

fq(z(t)) = f R
q (x(t), y(t)) + i f I

q (x(t), y(t)) (12)

where f R
q (·, ·) : R2 → R and f I

q (·, ·) : R2 → R denote the real and imaginary parts of fq(·), respectively.

In addition, it is always required that
∂ f R

j
∂xj

,
∂ f R

j
∂yj

,
∂ f I

j
∂xj

, and
∂ f I

j
∂yj

are existent, continuous, and bounded, aiming to
guarantee the stability of the system considered in [27]. In fact, these necessary conditions are conservative, since
not every activation function could be explicitly separated into real parts and imaginary parts. In this paper,
fq(·) and gq(·) are only necessary in order to satisfy Assumption 1. Moreover, if the conditions in [18,25,26],
the activation functions fq(·) and gq(·) could satisfy the Assumption 1. Hence, the obtained results seem to be
more general and less conservative than those which appeared in [17,18,25–27].

Definition 3. For any given initial time t0 ∈ R, the complex-valued function Z(t) ∈ C[[t0 − τ,+∞),Cn] is
designated a solution of (10) through (t0, φ), if Z(t) satisfies the initial condition

Z(t0 + s) = φ(s), s ∈ [−τ, 0], (13)

for t ≥ t0, denoted by Z(t, t0, φ) (or Z for short). Particularly, a point Z(t)∗ ∈ Cn is named an equilibrium
point of (10), if Z(t) = Z∗ is the solution of (10).

Lemma 1. [24]: Let P = (pij)n×n with pij ≥ 0 for i 6= j and Q = (qij)n×n ≥ 0. Suppose −(P + Q) be an
M-matrix. For any time b ∈ (t0,+∞), let u(t) = (u1(t), ..., un(t))T ∈ C([t0, b),Rn

+) satisfies the following
delay differential inequality for any initial condition u(s) ∈ C([t0 − τ, t0],Rn

+):

D+u(t) ≤ Pu(t) + Q[|u(t)|]τ (14)

where t ≥ t0, [|u(t)|]τ = (|u1(t)|τ , ..., |un(t)|τ)T , |up(t)|τ = sup−τ≤s≤0 |up(t + s)| for p = 1, 2, ..., n.
Then, u(t) ≤ ξe−λ(t−t0), t ≥ t0, as long as u(s) ≤ ξe−λ(s−t0), t0 − τ ≤ s ≤ t0, where ξ = (ξ1, ..., ξn)T is a
positive real vector, and λ > 0 is decided by the inequality: (λI + P + Qeλτ)ξ < 0.

Definition 4. [24] The equilibrium point z∗ of (8) is said to be exponentially stable when there are constants
λ > 0 and M ≥ 1, such that for all t ≥ t0 the inequality |Z(t)−Z∗| ≤ M|φ(s)−Z∗|e−λ(t−t0) is satisfied.
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3. Main Results

In the following, we will firstly propose several sufficient conditions to ensure that (1) has a
unique equilibrium point, and then corresponding proof is provided, aiming to ensure that the unique
equilibrium point is global exponentially stable.

Theorem 1. Suppose Assumption 1 is satisfied and Λ − ΦL f − ΨLg is an M-matrix, there is a unique
equilibrium point Z∗ for (1), where Φ = (wpq)n×n with wpq = supt≥0(|ãpq(t)|) and Ψ = (vpq)n×n with

vpq = supt≥0(|b̃pq(t)|), L f = diag{l f
1 , ..., l f

n} and Lg = diag{lg
1 , ..., lg

n}.

Proof. Firstly, we will try to illustrate that (10) has an equilibrium point Z∗—that is, we should prove
Z∗ is a solution of the following equation

−ΛZ + Ã(t)F (Z) + B̃(t)G(Z) + J = 0. (15)

Consider the following operator according to the differential Equation (9)

Hp(z) = d−1
p (

n

∑
q=1

ãpq fq(zq) +
n

∑
q=1

b̃pqgq(zq) + Jp). (16)

Then, (16) could be transformed into the following matrix format:

H(Z) = Λ−1(ÃF (Z) + B̃G(Z) + J ), (17)

where z ∈ Cn, H(Z) = (H1(z), ..., Hn(z))T , F (Z) = ( f1(z1), ..., fn(zn))T and G(Z) =

(g1(z1), ..., gn(zn))T .
wiht the adoption of Assumption 1, one has

|Hp(z)| ≤ d−1
p (

n

∑
q=1
|ãpq|| fq(zq)|+

n

∑
q=1
|b̃pq||gq(zq)|+ |Jp|)

= d−1
p (

n

∑
q=1
|ãpq|| fq(zq)− fq(0) + fq(0)|+

n

∑
q=1
|b̃pq||gq(zq)− gq(0) + gq(0)|+ |Jp|)

≤ d−1
p (

n

∑
q=1
|ãpq|(| fq(zq)− fq(0)|+ | fq(0)|) +

n

∑
q=1
|b̃pq|(|gq(zq)− gq(0)|+ |gq(0)|) + |Jp|)

≤ d−1
p (

n

∑
q=1

wpq(| fq(zq)− fq(0)|) +
n

∑
q=1

vpq(|gq(zq)− gq(0)|) + | J̃p|)

≤ d−1
p (

n

∑
q=1

wpql f
q |zq|+

n

∑
q=1

vpqlg
q |zq|+ | J̃p|)

(18)

where | J̃p| =
n

∑
q=1

wpq| fq(0)|+
n

∑
q=1

vpq|gq(0)|+ |Jp|. Then, one can get

[|H(Z)|] ≤ Λ−1((ΦL f + ΨLg)[|Z|] + [|J̃ |]), (19)

where [|H(z)|] = (|H1(z)|, ..., |H1(z)|)T , [|Z|] = (|z1|, ..., |zn|)T and [|J̃ |] = (| J̃1|, ..., | J̃n|)T .
Since Λ−ΦL f −ΨLg is an M-matrix, there is a positive vector ξ ∈ Rn such that

[|J̃ |] ≤ (Λ−ΦL f −ΨLg)ξ,

yielding
Λ−1[|J̃ |] ≤ (I −Λ−1(ΦL f + ΨLg))ξ,

or
Λ−1((ΦL f + ΨLg))ξ + [|J̃ |]) ≤ ξ.
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Consider B = {Z ∈ Cn|[|Z|] ≤ ξ}. Therefore, for any Z ∈ B, one has [|H(Z)|] ≤ ξ. That is,
the continuous operatorHmaps convex and compact set B into B. According to Brouwer’s fixed-point
theorem, H has a fixed point z∗ ∈ B, and z∗ is also the equilibrium point of (10).

Next, we will prove the equilibrium point Z∗ ∈ B of (10) is unique. By means of apagoge, if it is
not true, there exists another equilibrium point Z∗∗ ∈ B with Z∗ 6= Z∗∗. Then,

Z∗ = Λ−1(ÃF (Z∗) + B̃G(Z∗) + J ), z∗∗ = Λ−1(ÃF (Z∗∗) + B̃G(Z∗∗) + J )

As a result, one has |Z∗ − Z∗∗| ≤ Λ−1(ΦL f + ΨLg)|Z∗ − Z∗∗|. When Z∗ 6= Z∗∗, we have
[|Z∗ −Z∗∗|] > 0. Then, one has ρ(Λ−1(ΦL f + ΨLg)) ≥ 1. On the other hand, Λ − ΦL f − ΨLg

is an M-matrix, which implies that ρ(Λ−1(ΦL f + ΨLg)) ≤ 1. This contradiction indicates that
Z∗ = Z∗∗—that is, there exists a unique equilibrium point for (10).

Theorem 2. Suppose Assumption 1 holds. If the condition in Theorem 1 is satisfied, the unique equilibrium
point Z∗ is global exponentially stable.

Proof. Under Assumption 1, there exists a unique equilibrium point for (10) if the condition in
Theorem 1 is satisfied. Suppose Z∗ is the unique equilibrium point of (10). Then, using the translation
Z̃(t) = Z(t)−Z∗, we can transfer the equilibrium point to the origin. Hence, we obtain

dZ̃(t)
dt

= −ΛZ̃(t) + Ã(t)F̃ (Z̃(t)) + B̃(t)G̃(Z̃(t− τ(t))), t ≥ 0 (20)

where Z̃(t) = (z̃1(t), ..., z̃n(t))T , F̃ (Z̃(t)) = F (Z̃(t) + Z∗) − F (Z∗) and G̃(Z̃(t − τ(t))) =
G(Z̃(t− τ(t)) +Z∗)− G(Z∗).

By using (19), we can have

d
dt
[|Z̃(t)|]2 = 2Re(Z̃H(t) ˙̃Z(t))

= 2Re(Z̃H(t)(−ΛZ̃(t) + Ã(t)F̃ (Z̃(t)) + B̃(t)G̃(Z̃(t− τ(t)))))
= −2Re(Z̃H(t)ΛZ̃(t)) + 2Re(Z̃H(t)Ã(t)F̃ (Z̃(t))) + 2Re(Z̃H(t)B̃(t)G̃(Z̃(t− τ(t)))))

(21)

where [|Z̃(t)|] = (|z̃1(t)|, ..., |z̃n(t)|)T and [|Z̃(t)|]2 = (|z̃1(t)|2, ..., |z̃n(t)|2)T .
Because Λ is a real diagonal matrix Λ = diag{d1, ..., dn}, one has

Re(Z̃H(t)ΛZ̃(t)) =
n

∑
p=1

dp ¯̃zp(t)z̃p(t) = [|Z̃(t)|]TΛ[|Z̃(t)|], (22)

where ¯̃zp(t) is the conjugator of z̃p(t).
According to Assumption 1, we could get

Re(Z̃H(t)Ã(t)F̃ (z̃(t))) = Re(
n

∑
p=1

n

∑
q=1

ãpq(t) ¯̃zp(t) f̃q(z̃q(t))) ≤
n

∑
p=1

n

∑
q=1
|ãpq(t)|| ¯̃zp(t)|| f̃q(z̃q(t))|

≤
n

∑
p=1

n

∑
q=1
|wpq(t)|l f

q |z̃p(t)||z̃q(t)| = [|Z̃(t)|]TΦL f [|Z̃(t)|]
(23)
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Similar with (23), we have

Re(Z̃H(t)B̃(t)G̃(Z̃(t− τ(t)))) = Re(
n

∑
p=1

n

∑
q=1

b̃pq(t) ¯̃zp(t)g̃q(z̃q(t− τ(t))))

≤
n

∑
p=1

n

∑
q=1
|b̃pq(t)|| ¯̃zp(t)||g̃q(z̃q(t− τ(t)))|

≤
n

∑
p=1

n

∑
q=1
|vpq(t)|lg

q |z̃p(t)||z̃q(t− τ(t))|

= [|Z̃(t)|]TΨLg[|Z̃(t− τ(t))|]

(24)

Combining (21), (22), and (23) into (20) and noticing that
d
dt
[|Z̃(t)|]2 = 2[|Z̃(t)|]T d

dt
[|Z̃(t)|],

one gets

2[|Z̃(t)|]T d
dt
[|Z̃(t)|] ≤ −2[|Z̃(t)|]T(Λ[|Z̃(t)|]−ΦL f [|Z̃(t)|]−ΨLg[|Z̃(t− τ(t))|]), t ≥ 0 (25)

that is,
d
dt
[|Z̃(t)|] ≤ −(Λ[|Z̃(t)|]−ΦL f [|Z̃(t)|]−ΨLg[|Z̃(t− τ(t))|]), t ≥ 0 (26)

Since Λ−ΦL f −ΨLg is an M-matrix, there exists a vector ξ such that (Λ−ΦL f −ΨLg)ξ > 0.
For any given initial condition φ̃(s) = φ(s)−Z∗, s ∈ [−τ, 0], by Lemma 1, we could obtain

[|Z̃(t)|] ≤ Θ[|φ̃(s)|τ ]e−λ(t−t0), t ≥ t0 (27)

where Θ = max{1, max1≤k≤n{ξk}
min1≤k≤n{|φ̃k |τ}

}, λ is decided by the inequality (λI − Λ + ΦL f + ΨLgeλτ)ξ < 0.
This leads to the result

|Z̃(t)| ≤ Θ[|φ̃(s)|τ ]e−λ(t−t0), t ≥ t0 (28)

The proof completes.

Figure In this section, some sufficient conditions are achieved about the existence and uniqueness
of the equilibrium point, and several criteria are obtained to guarantee the exponential stability for the
MCVNNs with time delays. These results obtained can be applied to more general MCVNNs whether
the activation functions are explicitly described by either dividing the real parts and imaginary parts,
or not.

4. Examples

In this section, two examples are given to demonstrate the validity of the obtained results.

Example 1. Consider a two-order MCVNN, as follows:

dzp(t)
dt

= −dpzp(t) +
2

∑
q=1

apq(zp(t)) fq(zq(t)) +
2

∑
q=1

bpq(zq(t− τq(t)))gq(zq(t− τq(t))) + Jp, p = 1, 2, (29)

where zp(t) = xp(t) + iyp(t), d1 = 5, d2 = 6, J1 = 1.5 − 2.5i, J2 = −1 − 0.5i and the time delays
τq(t) = et

1+et ,

a11(z1(t)) =

{
−1.8 + 2i, |z1(t)| ≤ 1,
−1.5 + 2i, |z1(t)| > 1,

a12(z1(t)) =

{
2.8 + 1.2i, |z1(t)| ≤ 1,
2.5 + i, |z1(t)| > 1,

a21(z2(t)) =

{
1 + i, |z1(t)| ≤ 1,
0.8 + i, |z1(t)| > 1,

a22(z2(t)) =

{
−1 + i, |z1(t)| ≤ 1,
−0.8 + i, |z1(t)| > 1,
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b11(z1(t− τ1(t))) =

{
−3.5 + i, |z1(t− τ1(t))| ≤ 1,
−3.2 + i, |z1(t− τ1(t))| > 1,

b12(z1(t− τ1(t))) =

{
−0.5 + i, |z1(t− τ1(t))| ≤ 1,
−0.1 + i, |z1(t− τ1(t))| > 1,

b21(x2(t− τ2(t))) =

{
0.1 + i, |z2(t− τ2(t))| ≤ 1,
0.2 + i, |z2(t− τ2(t))| > 1,

b22(z2(t− τ2(t))) =

{
−3.6 + i, |z2(t− τ2(t))| ≤ 1,
−3.2 + i, |z2(t− τ2(t))| > 1.

Therefore, one can get

Φ =

( √
7.24

√
9.28√

2
√

2

)
Ψ =

( √
13.25

√
1.25√

1.04
√

13.96

)
(30)

Assume the activation functions of (29) as follows:

fq(zq) = 0.5|yq|+ 0.5i|xq|, gq(zq) =
1− e−yq

1 + e−yq
+ i

1
1 + e−xq

, q = 1, 2.

Then, through simple calculation, one can get the activation functions which satisfy Assumption 1. That is,
for any zq = xq + iyq, z̃q = x̃q + iỹq ∈ C, one can have

| fq(zq)− fq(z̃q)| = 0.5|(|yq| − |ỹq|) + i(|xq| − |x̃q|)|
= 0.5

√
(|xq| − |x̃q|)2 + (|yq| − |ỹq|)2

≤ 0.5
√
(xq − x̃q)2 + (yq − ỹq)2 = 0.5|zq − z̃q|

(31)

|gq(zq)− gq(z̃q)| = |(1− e−yq

1 + e−yq
− 1− e−ỹq

1 + e−ỹq
) + i(

1
1 + e−xq

− 1
1 + e−x̃q

)|

=

√
(

1− e−yq

1 + e−yq
− 1− e−ỹq

1 + e−ỹq
)2 + (

1
1 + e−xq

− 1
1 + e−x̃q

)2

≤
√

0.0625(xq − x̃q)2 + 0.25(yq − ỹq)2 ≤ 0.5|zq − z̃q|

(32)

Then, one has L f = Lg = diag(0.5, 0.5).

We have that

Λ−ΦL f −ΨLg =

(
1.8346 −2.0822
−1.2170 3.4247

)
(33)

is an M matrix, then the conditions of Theorem 1 are satisfied. Let the initial values of (29) be
z1(s) =, z2(s) = for s ∈ [−1, 0]. Figures 1 and 2 show that the equilibrium point of (29) is existent,
unique, and exponentially stable.
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Figure 1. Curves of z1 and z2.
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Figure 2. Curves of the real and imaginary parts of z1 and z2.

Example 2. Consider the MCVNNs with d1 = 4, d2 = 5, J1 = 1.2 − 1.5i, J2 = −0.1 − 2.5i and the
time-varying delays τq(t) = 2 + 0.5sin(t),

a11 (z1 (t)) =

{
−1.2 + 0.2i, |z1(t) | ≤ 1,
−1.0 + 0.2i, |z1(t) | > 1,

a12 (z1 (t)) =

{
1.8 + 1.2i, |z1(t) | ≤ 1,

1.5 + i, |z1(t) | > 1,

a21 (z2 (t)) =

{
1 + i, |z2(t) | ≤ 1,

0.8 + i, |z2(t) | > 1,
a22 (z2 (t)) =

{
−1.2 + i, |z2(t) | ≤ 1,
−1.8 + i, |z2(t) | > 1,

b11(z1(t− τ1(t))) =

{
−1.5 + 1.5i, |z1(t− τ1(t))| ≤ 1,
−1.2 + 1.2i, |z1(t− τ1(t))| > 1,

b12(z1(t− τ1(t))) =

{
−0.5 + 2i, |z1(t− τ1(t))| ≤ 1,
−0.3 + 1.8i, |z1(t− τ1(t))| > 1,

b21(z2(t− τ2(t))) =

{
0.1 + i, |z2(t− τ2(t))| ≤ 1,
0.2 + i, |z2(t− τ2(t))| > 1,

b22(z2(t− τ2(t))) =

{
−2.6 + i, |z2(t− τ2(t))| ≤ 1,
−2.2 + i, |z2(t− τ2(t))| > 1.
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Therefore, one can get

Φ =

( √
1.48

√
4.68√

2
√

4.68

)
Ψ =

( √
4.5

√
4.25√

1.04
√

7.76

)
(34)

Assume the activation functions of (29) are as follows:

fq(zq) = 0.5z̄q, gq(zq) =
1− e

− z̄q
1+|zq |

1 + e
− z̄q

1+|zq |

, q = 1, 2.

Similarly, one has L f = Lg = diag(0.5, 0.5).
We have that

Λ−ΦL f −ΨLg =

(
2.3311 −2.1124
−1.2170 2.5255

)
(35)

is an M matrix, then the conditions of Theorem 1 are satisfied and the CVMRNN system (29) is global
exponentially stable. Numerical simulations are shown in Figures 3 and 4.
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Figure 3. Curves of z1 and z2.
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Figure 4. Curves of the real and imaginary parts of z1 and z2.

Remark 3. Examples 1 and 2 show that the constraints on the activation functions are more relaxed.
In Example 1, fq(·) and gq(·) only need to satisfy the Lipschitz condition, and the partial derivative of fq(·) and

gq(·) need not be existent, bounded, and continuous, unlike in [3,27]—that is,
∂ f R

j
∂xj

,
∂ f R

j
∂yj

,
∂ f I

j
∂xj

,
∂ f I

j
∂yj

need not be

existent, bounded, and continuous. In Example 2, fq(·) and gq(·) need not be explicitly described by dividing
their real and imaginary parts, unlike in [3,17,18,25–30].
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5. Conclusions

In this paper, the existence, uniqueness, and exponential stability of the equilibrium point for a
class of MCVNNs with time delays were investigated. Several sufficient conditions were obtained
by means of the M-matrix theorem and Brouwer’s fixed-point theorem. These results obtained can
be applied to general MCVNNs where the activation functions are explicitly described by either
dividing the real parts and imaginary parts or not. Two numerical examples were provided, while our
corresponding analysis demonstrates that the theoretic results obtained are viable for the design and
application of MCVNNs with time delays.
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