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Abstract: Information geometry provides a correspondence between differential geometry and
statistics through the Fisher information matrix. In particular, given two models from the same
parametric family of distributions, one can define the distance between these models as the length
of the geodesic connecting them in a Riemannian manifold whose metric is given by the model’s
Fisher information matrix. One limitation that has hindered the adoption of this similarity measure
in practical applications is that the Fisher distance is typically difficult to compute in a robust
manner. We review such complications and provide a general form for the distance function for
one parameter model. We next focus on higher dimensional extreme value models including the
generalized Pareto and generalized extreme value distributions that will be used in financial risk
applications. Specifically, we first develop a technique to identify the nearest neighbors of a target
security in the sense that their best fit model distributions have minimal Fisher distance to the
target. Second, we develop a hierarchical clustering technique that utilizes the Fisher distance.
Specifically, we compare generalized extreme value distributions fit to block maxima of a set of equity
loss distributions and group together securities whose worst single day yearly loss distributions
exhibit similarities.

Keywords: information geometry; clustering; quantitative financial risk

1. Introduction

Quantifying the similarity between two probability distributions is a central component of a
variety of applications in the statistics, quantitative finance, and engineering literature. Such measures
are one of the main inputs into classification, clustering, and optimization algorithms. In [1], the author
compiles and categorizes a collection of sixty-five similarity measures and stresses that the identification
of a proper notion of similarity for the application at hand is crucial to its success. Financial
securities are often compared based on the values of statistics associated with their return distributions.
For example, the historical volatility of a stock is defined to be the standard deviation of its daily return
distribution and the 95% Value-at-Risk is the q = 0.05 quantile of this distribution. Our main aim will
be to extend beyond return distribution summary statistic based comparisons of financial securities by
utilizing their full return distributions when assessing their similarity. Specifically, we will consider
the Fisher information distance on a model space of distributions which in turn will be used in both
nearest neighbor and clustering applications that focus on the entire risk profiles of financial securities.

Grouping related probability distributions according to their similarity has been considered in a
number of clustering applications. In [2], the authors develop a Kullback-Leibler divergence based
clustering technique. More general Bergman divergences are used in [3] for clustering applications.
The authors of [4] develop several distribution based clustering techniques using the L1 norm between
distributions as a similarity measure. In [5–7], the authors explore information geometry based
clustering methods using the Fisher-Rao distance distributions as a similarity measure. The authors
also mention that the development of clustering algorithms based upon probability distributions is a
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relatively unexplored area. The promise of these techniques is that they take into account the entirety
of the distribution of the objects being clustered which may provide a more precise notion of similarity
than traditional measures that use distribution summary statistics for comparison. For example,
two distributions with equal means and variances can have significantly different probability density
functions. A distribution based similarity measure should be able to distinguish such differences
whereas a measure based on just the mean and variance statistics would conclude that these two
models are identical.

Clustering techniques applied to financial return data predominately rely upon single statistics
associated with these time series rather than a model for a full return distribution [8]. Specifically,
similarity measures are defined in terms of functions of the correlation between these series.
Each of [9–11], utilize correlation distance measures to develop hierarchical clustering algorithms in

order to explore the network structures in equity markets. These techniques take only the return time
series of a collection of stocks as input and are able to identify hierarchical sector structure solely from
this information. The authors of [12] utilize related clustering techniques to improve traditional index
tracking strategies. Commodity network properties are explored with analogous methods in [13].
Correlation based clustering methods are useful for extracting network and sector structures from
financial return data; however, they have limited utility when comparing the risk profiles of these
securities, which is a strength of distributional based similarity measures.

Our aim is to develop a similarity measure to compare the return distributions of financial time
series. Specifically, given end of day return data for a collection of equities, we will use maximum
likelihood estimation or related model fitting techniques to identify a single model from a parametric
family of distributions with data. Given the parameters of two such models, we consider the question
of defining a distance between the models, which is a function of these parameters. We use the Fisher
information distance which is constructed from the Fisher information metric of the distribution
family for this purpose. The main practical focus will be to group loss distributions by their risk
profiles; specifically, how similar are the left tails of the two distributions? With this in mind, we focus
on the generalized Pareto and generalized extreme value distributions from extreme value theory.
This distance function may be used as an input into a nearest neighbor or hierarchical clustering
method, both of which provide a risk based clustering of financial securities analogous to the previously
mentioned correlation methods.

The Fisher information metric and its associated distance are central concepts in the subject
of information geometry [14–17] which draws upon ideas from statistics, differential geometry,
and information theory to study the geometric structure of statistical models. The main connection
between a family of statistical models and differential geometry is the identification of the positive
definite symmetric Fisher information matrix with a Riemannian metric on the space of all such
distributions. The distance function associated with this metric is then taken to be a measure of
similarity between models. In addition, a characterization theorem due to Chentsov [18] states that
this is the unique metric one can place on a space of probability distributions that has certain desirable
statistical properties explained further below.

One of the main limitations of the Fisher distance, which has lead to its somewhat slow adoption
in practical applications, is the difficulty encountered in its computation. It is difficult to develop
robust methods to directly solve the geodesic equations since the form of these equations, and in
particular their singularity structure, is model dependent; we provide an example of this issue below.
An alternative technique is provided in [19,20], where the author developed a second order formula
using Riemann normal coordinates that locally approximate geodesic distances. This technique may be
merged with graph theoretic methods to develop a global geodesic distance approximation algorithm.
However, coordinate transformations to and from normal coordinates make this technique quite
complicated. We will utilize simple robust methods for computing geodesic distances in model
spaces of dimension two to four developed in [21]. Here, the authors construct a Hamiltonian Fast
Marching technique that solves an Eikonal equation for the distance function of a Riemannian manifold.
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This technique is robust and works well in many singular geometries and complex manifolds that
the authors feature. The method may be roughly viewed as a generalization of Dijkstra’s algorithm
applied to a discretized version of the Riemannian manifold. We have found that it is well suited
for the computation of geodesic distances for Fisher metric geometries, and we use it in the distance
computations described in the below higher dimensional applications.

We provide several novel contributions to the information geometry, clustering, and financial
risk literature. First, we develop a closed form expression for the Fisher information distance between
one-dimensional models. This may be used to measure the distance between members of a distribution
family that depends on a single parameter or higher dimensional models where all but a single
parameter is fixed. Next, we compute the components of the Fisher information matrix for the
generalized Pareto and generalized extreme value distributions. Both are well suited for modeling the
left tail of return distributions of financial securities as well as the distribution of the worst single day
loss over a yearly period [10,22–25]. In particular, modeling the left tail of the distribution is important
for identifying securities with similar risk metrics such as their Value-at-Risk and expected shortfall.
We finally provide nearest neighbor and hierarchical clustering applications that group together equity
return distributions based on the Fisher distance between them. This results in a new risk focused
clustering technique of financial securities.

This article is organized as follows. In Section 2, we review the relevant background in information
geometry as well as complications that arise in developing robust techniques to directly solve the
geodesic equations. In Section 3, we develop a closed form expression, up to quadrature, for the
Fisher information distance of one-dimensional models and provide several examples. In Section 4,
we examine difficulties involved in computing geodesic distances in higher dimensional models,
and compute the Fisher information matrix for univariate normal distributions, the generalized Pareto
distribution, and the generalized extreme value distribution. We also compare the Fisher distance to
the Kullback-Leibler divergence in the case of univariate Gaussian models. In Section 5, we utilize
these expressions in risk focused nearest neighbor and worst daily loss clustering applications for
equity securities. Finally, in Section 6, we conclude and summarize future directions to explore.

2. Information Geometry Background

Information geometry is a relatively new discipline which combines statistics and differential
geometry together in the study of statistical model Riemannian manifolds, c.f. [14–17,26]. Our main
aim is to utilize the Fisher information distance on such a manifold as a similarity measure between
probability distributions in subsequent applications. With this end in mind, we define the Fisher distance
by first considering a random variable with probability density function φ(x; θ) for x ∈ D ⊂ Rm with
parameters θ = (θ1, . . . , θn). Denote the set of all probability distributions for this model by

Sφ = {φ(x; θ)|θ ∈ Θ}, (1)

where here Θ ⊂ Rn is the set of admissible values of the parameters. We refer to an element of Sφ

by its model parameters. Given θ1, θ2 ∈ Θ, the Fisher distance is a function d(θ1, θ2) : Θ×Θ → R+

constructed from the log-likelihood of this model

lθ(x) ≡ ln φ(x; θ). (2)

The components of the Fisher information matrix Iij(θ) are defined as the expected value of the
negative Hessian matrix of the log likelihood of φ.

Iij(θ) = Eθ

[
∂lθ
∂θi

∂lθ
∂θj

]
=
∫

D

∂lθ
∂θi

∂lθ
∂θj

φ(x; θ)dx = −
∫

D

∂2lθ
∂θi∂θj

φ(x; θ)dx. (3)
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The Fisher information matrix is positive definite symmetric and also has many applications in
estimation and information theory, most notably the Cramér-Rao bounds [27,28] that enable one to
establish lower bounds on the variance of unbiased estimators of deterministic model parameters.

In order to construct a distance function from the Fisher information matrix, we identify Iij
with a Riemannian metric gij referred to as the Fisher information metric on the model space Sφ.
This identification was first made in [28] and is the cornerstone of the subject of information geometry.
Given the Riemannian manifold (g, Sφ), we may define a distance function in terms of the Fisher
information metric in the usual manner in Riemannian geometry. In particular, the distance between
two models θ1, θ2 ∈ Θ is given by the arc-length of the geodesic that connects these two points.
More specifically, the components of such a geodesic γ(t) = (γ1(t), . . . , γm(t)), with γ(0) = θ1 and
γ(1) = θ2 are determined by minimizing the length functional

L[γ] =
∫ 1

0

√
g(γ̇(t), γ̇(t))dt, (4)

over the space of all continuously differentiable curves γ : [0, 1] → Sφ that satisfy γ(0) = θ1 and
γ(0) = θ2. One can show that this is equivalent to solving the second order quasi-linear system of
geodesic equations boundary value problem

0 = ∇γ̇(γ̇) = γ̈i(t) +
n

∑
i,j=1

Γi
jkγ̇j(t)γ̇k(t), γ(0) = θ1, γ(1) = θ2, i = 1, . . . , n, (5)

where here the Christoffel symbols are defined by

Γi
jk =

1
2

n

∑
m=1

gim
(

∂gmj

∂xk +
∂gmk

∂xj −
∂gjk

∂xm

)
, (6)

assuming that γ is parameterized on the unit interval. Given a solution to these equations γ̂, we can
compute the distance between the two models by evaluating L[γ̂].

The main motivation for using the Fisher information distance as a similarity measure between
different models in the same family of distributions is due to a characterization theorem of
Chentsov [18]. As described in [14], Chentsov’s theorem roughly states that the Fisher information
metric equipped with any one of a special set of α-connections, which includes the Levi-Civita
connection, are the unique metric/connection combinations that are invariant under sufficient statistic
mappings of the model parameters; this includes all injective parameter mappings as well. This is a
statistically desirable property as model re-parameterization, for example, should not influence any
notion of distance between distinct models. There are several related characterization theorems for the
Fisher metric [16,29,30], which extend Chentsov’s initial work and establish this result in the setting
of continuous distributions. As a result, the Fisher information metric and its associated distance
function provide the most natural means of defining a distance between two distributions of the same
parametric family.

There are two major difficulties in using the Fisher information distance in applications. First,
it is often not possible to obtain simple closed form expressions for the values of Iij(θ). This results in
the geodesic equations taking a complex form which requires a numerical quadrature method to be
used inside a differential equation solver to calculate distances. Such methods are often intractable
and unstable. Second, solving the geodesic Equation (5) numerically can be quite challenging due to
singularities that arise in its coefficient functions. These issues are illustrated in the case of the Pareto
Power Law distribution ([10], p. 61):

φ(x; α) =
αxα

m
xα+1 where x ≥ xm, α > 0. (7)
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The Fisher information metric and inverse take a simple closed form:

I = g =

(
α/x2

m −1/xm

−1/xm 1/α2,

)
, g−1 =

(
x2

m
α(1−α)

αxm
1−α

αxm
1−α

α2

1−α

)
. (8)

and geodesic equations for this model are given by

α̈ +
1

α− 1

[
α− 2
2xm

α̇2 − α̇ẋm

α
+

xm

α2 ẋ2
m

]
= 0, ẍm +

1
α− 1

[
α2

2x2
m

α̇2 − αα̇ẋm

xm
+

ẋ2
m
α

]
= 0, (9)

which need to be solved numerically. One such method to solve these equations is the shooting point
method. Here given two models (α1, xm1) and (α2, xm2), the boundary value problem defined by
Equation (9) with initial conditions (α(0), xm(0)) = (α1, xm1) and terminal conditions (α(1), xm(1)) =
(α2, xm2) can be transformed into an initial value problem where the initial conditions are supplemented
with a choice of the derivative (ȧ(0), ẋm(0)) = v for a vector v in the tangent space of the initial point.
For a fixed v, one then integrates outward and computes the distance between the geodesic and the
target boundary point. The initial choice vector v is refined through a search over the tangent space
until this distance vanishes.

We have had some success using the shooting point method to solve these equations in specific
instances of initial and terminal points; however, producing a robust solution which works for any
boundary conditions can be quite challenging. In particular, note that there are two singularities in this
equation when xm(t) = 0 or α(t) = 1; these can cause the shooting point method to fail if the geodesic
being solved for passes nearby these points. We discuss alternative methods to approximate geodesic
distances in two or higher dimensions below, and now focus on the one-dimensional setting.

3. Distance Functions for One-Dimensional Models

In the case of one-dimensional models consisting of a single free parameter, we can determine the
Fisher distance exactly up to numerical quadrature. These models may be specified in terms of a single
parameter or result from a higher dimensional model that has had all but one parameter fixed. We first
consider the case of the exponential distribution before treating the generic one-dimensional model.

The probability density of the exponential distribution is defined by

φ(x; λ) = λe−λx, where λ > 0 (10)

for x ∈ [0, ∞). The single component of the Fisher metric gλλ is given by

gλλ = −E
(

∂2 ln φ

∂λ2

)
=

1
λ2 . (11)

One can compute the distance function for this model directly by solving the geodesic equation.
The inverse metric is given by gλλ = λ2 and the Christoffel symbol is Γλ

λλ = gλλ∂λgλλ/2 = −1/λ.
The geodesic equation for the model parameter λ(t) is

λ̈− 1
λ
(λ̇)2 = 0, (12)

which has solution λ(t) = c2ec1t. If we take λ(0) = λ1 and λ(1) = λ2, then solving for c1, c2,
we find that

c1 = ln(λ2/λ1), c2 = λ1, (13)



Entropy 2019, 21, 110 6 of 16

and the distance between these two models is given by

d(λ1, λ2) =

∣∣∣∣∫ 1

0

√
gλλλ̇2dt

∣∣∣∣ = ∣∣∣∣c1c2

∫ 1

0

ec1t

λ
dt
∣∣∣∣ = |c1| =

∣∣∣∣ln(λ2

λ1

)∣∣∣∣ . (14)

We follow a similar process to develop a generic formula for the Fisher distance on
one-dimensional model spaces. Consider a one-dimensional model φ(x; θ) whose Fisher information
matrix has a single component that takes the form I(θ) = u(θ)2 so that the information metric is
given by

g = u(θ)2dθ2, (15)

where here u : R→ R is assumed to be at least C1. The Christoffel symbol for this metric is given by

Γθ
θθ =

1
2

gθθ∂θ gθθ =
1

2u2 (2uu′) = ∂θ ln(u(θ)). (16)

For any fixed z ∈ R define

s(θ) =
∫ θ

z
u(y)dy. (17)

Then in the coordinate s, the metric takes the form

gθθ =

(
∂s
∂θ

)2
gss = u(θ)2gss → gss = 1, (18)

which is the Euclidean metric. Here s is an arc length coordinate, and the distance between two points
s1 and s2 is given by

d(s1, s2) = |s2 − s1| =
∣∣∣∣∫ z

θ2

u(y)dy−
∫ z

θ1

u(y)dy
∣∣∣∣ = ∣∣∣∣∫ θ1

θ2

u(y)dy
∣∣∣∣ = d(θ1, θ2). (19)

Thus one can compute the distance function for any one-dimensional model by integrating the
Fisher metric and evaluating the difference of the result at the model parameters. We now turn to
examining the additional complexities that are involved in the two or higher dimensional setting.

4. Higher Dimensional Examples

There are only a few models with two or more parameters for which there exist known closed
form expressions for their Fisher information distance. The most widely studied such example is the
multivariate Gaussian distribution and its exponential family extension [31,32]. We consider three
models below that will be used in subsequent applications, the two dimensional normal distribution,
generalized Pareto distribution with fixed location parameter and the three dimensional extreme
value distribution. We compute the Fisher information matrix for each of these models, and provide
discussions of how they have been utilized in the quantitative finance literature. Finally, we give a
description of the techniques that will be used to compute geodesic distances for these models.

4.1. Gaussian Distribution

We first consider one-dimensional Gaussian models previously examined from the information
geometry perspective in [32–34] with density function given by:

φ(x; µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, µ ∈ R, σ ∈ R+, (20)

defined for x ∈ R+. The Fisher information metric components for this model are given by

Iµµ =
1
σ2 , Iµσ = 0, Iσσ =

2
σ2 . (21)
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The model has the advantage that the geometry can be identified with a rescaled hyperbolic
metric which has a closed form solution for its distance function. Specifically, in the Poincare upper
half plane model of hyperbolic geometry, the geodesics are semicircles and vertical lines. The distance
function is given by [33],

d((µ1, σ1), (µ2, σ2)) =
√

2 ln

(
F + (µ1 − µ2)

2 + 2σ2
1 σ2

2
4σ1σ2

)
, (22)

F =
√
((µ1 − µ2)2 + 2(σ1 − σ2)2)

(
(µ1 − µ2)2 + 2σ2

1 σ2
2
)
. (23)

This model provides a benchmark for testing techniques to compute geodesic distances which
can be compared against the exact solution. In addition, we will compare differences in the Fisher
distance and the widely used Kullback-Leibler divergence extending the comparison given in [33] and
also for purposes of building intuition about the Fisher metric.

4.2. Generalized Pareto Distribution

The generalized Pareto distribution has been used to model power law phenomena in
economics [35] as well as in the development of tail-risk projection trading strategies in [36].
This distribution has also been used to model loss distributions of stock returns in [23] which was one
of the first applications of extreme value theory to the field. This model distribution is defined by:

φ(x; µ, σ, ξ) =
1
σ

(
1 + ξ

x− µ

σ

)−1−ξ−1

, x > µ, σ, ξ > 0. (24)

We compute the components of the Fisher information matrix to be

Iµµ =
(ξ + 1)2

σ2(2ξ + 1)
, Iσσ =

1
σ2(2ξ + 1)

, Iξξ =
2

2ξ2 + 3ξ + 1
, (25)

Iµσ = − ξ

σ2(2ξ + 1)
, Iµξ = − ξ

σ(2ξ2 + 3ξ + 1)
, Iσξ =

1
σ(2ξ2 + 3ξ + 1)

. (26)

The significance of the generalized Pareto distribution stems from the Pickands-Balkema-de Haan
theorem [37,38], which roughly states that the distribution of a random variable beyond a suitably
high threshold is well approximated by a generalized Pareto distribution, c.f. [39] for further details.

4.3. Generalized Extreme Value Distribution

The second prominent distribution that arises in extreme value theory is the generalized extreme
value (GEV) distribution. The functional form of this model is given by

φ(x; µ, σ, ξ) =
1
σ

f (x)ξ+1e− f (x), (27)

f (x) =
(

1 + ξ

(
x− µ

σ

))−1/ξ

, ξ 6= 0, f (x) = exp
(
− x− µ

σ

)
, ξ = 0, (28)

with domain x ∈ [µ− σ/ξ, ∞) for ξ > 0, x ∈ R for ξ = 0, and x ∈ (−∞, µ− σ/ξ] for ξ < 0.
The GEV family of distributions was designed to be a generalization of the Gumbel, Weibull,

and Fréchet limiting distributions of the Fisher-Tippet Theorem [40] for the block maxima of a sample
from a random variable. We will apply it to the loss distribution of financial return series. Specifically,
given a sequence of returns ri for i = 1, . . . , n, consider the negative returns ri < 0, and then
negate them to form a sample from the loss distribution denoted by r̃i. Let Mn = max(r̃1, . . . , r̃n).
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The application that we consider is based on a result of [40], which states that there exist location µn

and scale sequences σn, such that in the limit n→ ∞, we have xn = (Mn − µn)/σn → φ(x; µ, σ, ξ).
The Fisher information matrix for the GEV distribution was derived in [41]:

Iµµ =
p

σ2 , Iσσ =
1

σ2ξ2 (1− 2Γ(2 + ξ) + p), (29)

Iξξ =
1
ξ2

(
π2

6
+

(
1− γ +

1
ξ

)2
− 2q

ξ
+

p
ξ2

)
, Iµσ = − 1

σ2ξ
(p− Γ(2 + ξ)) , (30)

Iµξ = − 1
σξ

(
q− p

ξ

)
, Iσξ = − 1

σξ2

(
1− γ +

1− Γ(2 + ξ)

ξ
− q +

p
ξ

)
, (31)

p = (1 + ξ)2Γ(1 + 2ξ), q = Γ(2 + ξ)
(

ψ(1 + ξ) + ξ−1 + 1
)

. (32)

Before turning to applications that use these three distributions, we comment on the methods that
we use to determine the geodesic distance between two distributions in the same family.

4.4. Computing Geodesic Distances

Computing geodesic distances in two and higher dimensional models in a robust manner is
challenging due to complex forms that the geodesics equations may take. Recent advances in [21,42]
have overcame some of these issues by focusing on solving for the distance function first from which
minimal geodesic paths are extracted. Specifically, the author develops numerical schemes to solve
Eikonal equations for the distance function of a Riemannian manifold numerically on uniform grids.
He focuses on a type of Hamiltonian formulation of the length functional minimization definition of
geodesics. Then the fast marching algorithm, which is a generalization of Dijkstra’s minimal path
method, is used to solve these equations. These techniques work particularly well for complicated
geometries which exhibit a high degree of anisotropy. We utilize them below to compute distances
between GEV and generalized Pareto models.

5. Applications

We now proceed to consider three applications of the Fisher distance. First, we compare the
Kullback Leibler divergence to the Fisher distance in the case of the normal distribution model to
develop intuition for differences in these similarity measures. Second, we consider a nearest neighbor
clustering application where we initially fit generalized Pareto distributions to equity return time
series of members of the NASDAQ 100 index and consider their associated loss distributions. We then
consider a single stock, AAPL, and identify which securities are nearest AAPL in a Fisher distance sense;
thus finding the stocks whose risk profiles most closely resemble that of AAPL. Finally, we extend this
idea to a hierarchical clustering application. Instead of focusing on a single stock, we iteratively cluster
groups of stocks with a bottom-up hierarchical clustering algorithm that utilizes the Fisher distance as
a similarity measure between their pairwise loss distributions along with Ward’s linkage criteria for
measuring the distance between clusters of stocks. This results in a risk focused hierarchical grouping
of stocks.

5.1. Comparison between KL Divergence and Fisher Distance

We first examine differences between the Kullback Leibler (KL) divergence, which is widely used
as a similarity measure between probability distributions, and the Fisher information distance in the
case of a univariate normal distribution through an empirical example. A related comparison was
developed in [33] which we extend by considering an empirical example focused on equity returns
from NASDAQ 100 stocks. To construct the dataset for this example, we download daily historical
index components and end of day closing price data for the NASDAQ 100 index from Bloomberg
between 1 January 2010 and 31 December 2015 and select stocks that remained in the index over this
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entire timeframe. Data was downloaded with Bloomberg’s Python API package blpapi. We forward
fill missing data at the price level so that a stock whose price was filled for a single day will have
a corresponding zero daily return. We note that the price data is split and dividend adjusted by
Bloomberg and that, with a few exceptions, each time series is fully populated over the timeframe
being considered.

Our aim is to study differences between the Fisher distance and widely used KL divergence
similarity measure. It is known that these two distance measures agree to second order when measuring
the disparity between infinitesimally close distributions [43,44]; however, significant differences arise
on larger distance scales. Part of this comparison will examine how these distances differ when applied
to the maximum likelihood parameters of each stock in the NASDAQ100 dataset. In particular, we fit
the distribution to each of the return series using the unbiased MLE estimators for a normal distribution.

The general KL divergence for two probability distributions f , g is defined by

DKL( f ||g) =
∫
R

f (x) log
f (x)
g(x)

dx, (33)

which for a univariate Gaussian distribution can be calculated explicitly

DKL((µ1, σ1)||(µ2, σ2)) = ln
σ2

σ1
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1
2

. (34)

This is not a distance function as it is neither symmetric nor does it satisfy the triangle inequality.
However, it has been widely used as a similarity measure between distributions, in particular,
in information theory applications [45]. We first provide a graphical comparison in Figure 1 for
pairwise distances between all models in this NASDAQ 100 dataset as well as a visualization of the
distance functions to a standard normal distribution of both similarity measures.
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Figure 1. Comparison between pairwise KL-Divergence and Fisher information metric values for
NASDAQ 100 parameters and distance functions to aN (0, 1) distribution. Note that the KL divergence
concentrates a number of distance values near zero and also has several large outliers whereas the
Fisher distance distribution decreases roughly linearly for increasing distance.

Here, we compute all pairwise distances between the maximum likelihood model parameters
models of 107 stocks which remained in the index over the timeframe of consideration. In the left most
plot of Figure 1, we display histograms of pairwise distances for both similarity measures. The right
tail of the KL divergence histograms was truncated at an upper limit of 3.0; however, we note that the
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KL divergence has several outlier distances. In particular, 13 values greater than 10.0 with a maximum
value of 19.2 were observed. The pairwise Fisher distance histogram contains all data points, and by
comparison, the maximum value is 2.7. Next, note that the KL divergence histogram has roughly an
exponential decay whereas the Fisher distance histogram declines linearly. The KL divergence tends to
concentrate pairwise distances near zero values when compared with the Fisher distance; this provides
an indication that the Fisher distance may distinguish subtle differences in the return distributions
between the equity series more strongly than the KL divergence. In addition, the greater dispersion of
Fisher distances, in relation to those corresponding to the KL divergence, motivates its utilization in
clustering algorithms. Specifically, one would expect a more informative cluster structure using the
Fisher distance as opposed to having many data points tightly grouped together in the case of the KL
divergence.

In the right two plots of Figure 1, we display contour plots that measure the similarity between
all normal models in the domain and a standard N (0, 1) distribution, i.e., we plot level sets of the
function f (µ, σ) = d((0, 1), (µ, σ)) for each (µ, σ) in the domain of consideration. Here we can see
that the KL divergence initially concentrates around zero for models close to the standard Gaussian,
but rapidly expands for further away models which have increasingly large values in comparison
to the Fisher distance. In addition, the Fisher distance has slower growth and is more granular for
models near the standard Gaussian.

5.2. Generalized Pareto Nearest Neighbor Example

We now consider an application of identifying the nearest neighbors of a given stock based
on the Fisher distance between the loss distribution of the stock and the securities to which it is
being compared. We use the generalized Pareto distribution as a model for the loss distributions of
these stocks.

There are many ways to fit a generalized Pareto distribution to data, c.f. [46] for a comparison of
a subset of such methods. Maximum likelihood estimation is notoriously difficult as the likelihood
function is undefined for portions of the parameter domain. Multiple alternative fitting methods for
the generalized Pareto distribution have been developed [47–51] which are generally more stable and
robust when compared with typical estimation techniques such as the maximum likelihood estimation
or the method of moments. Although any of these fitting methods may be used in this application,
since our focus is model comparison and not estimation, we use a hybrid estimation procedure
developed in [45] based on minimizing the Anderson-Darling statistic of this model which is both
straightforward to implement and yields robust and intuitive results which we now briefly describe.

Given a sample xi from an equity loss distribution, we note that the maximum likelihood estimator
for the location parameter is µ̂ = min({x1, . . . , xn}). We first compute µ̂ for the loss distribution of
each stock, which is typically zero, and subtract means from the samples of every security. As this
parameter does not vary significantly over models, we will fix it for the remainder of this application
and fit and compare models with the two free parameters (σ, ξ). As in [45], define θ = ξ/σ, and fit this
model by defining a set of functions

gi(θ) = 1− (1− θx(i))
−n/ ∑n

j=1 ln(1−θxj), (35)

for i = 1, . . . , n where here x(i) denotes the i-th order statistic of the sample. Then we minimize

G(θ) = −n− 1
n

n

∑
i=1

(2i− 1) ln(gi(θ)) + (2n + 1− 2i) ln(1− gi(θ)), (36)

using a BFGS optimizer [52] setting the initializer at 10% of the maximum value of the sample. Denote
the minimum value by θ̂, which defines the two model parameter estimators

ξ̂ = − 1
n

n

∑
i=1

ln(1− θ̂xi), σ̂ =
ξ̂

θ̂
. (37)
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Overall, we have found this optimization problem to be more stable than threshold based fitting
methods and it also leads to intuitive fits. Specifically, in Figure 2, we display the best fit model
parameters and distributions alongside return histograms for the loss distribution of six randomly
selected stocks from our NASDAQ 100 sample.
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Figure 2. Generalized Pareto distributions fit using the hybrid method of [45] and empirical loss
distribution histograms.

We note that this fitting technique works well for both low volatility stocks such as PAYX as well
as those which consistently sustain larger losses like VRTX. Our next aim is to identify which stocks
are the shortest distance away from a fixed stock. We fix APPL for this example, and calculate the
geodesics that join the generalized Pareto models for each stock in the dataset to APPL and display the
geodesics in Figure 3 for fifty stocks in the sample.
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Figure 3. Geodesic paths between generalized Pareto distribution parameters of AAPL and 50 randomly
selected NASDAQ 100 securities.

First note that the Fisher geodesic paths which connect model parameters deviate significantly
from Euclidean geodesic lines. For models with ξ and σ values larger than those of AAPL, the geodesics
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have a strong arc which eventually reverts back and intersects the target model. If ξ is larger but σ is
similar, arclengths are much smaller and geodesics are approximately linear whereas lower values of σ

exhibit the same bullet style geodesics of large values. In addition, different share classes such as FOX
and FOXA have similar models and geodesics as expected since the return series of different share
classes are highly correlated. In addition, note that this technique links several comparable technology
stocks such as GOOGL and AMZN, which are more similar to AAPL than FB.

Given a geodesic path consisting of a sequence of parameter values (ξi, σi), for i = 0, . . . , n,
we approximate its arclength between models by first defining ∆ξi = ξi − ξi−1, ξ̄ = (ξi − ξi−1)/2 and
∆σi, σ̄i analogously. We compute explicit distances using a discrete analogue of Equation (4)

d((ξ0, σ0), (ξn, σn)) =
n

∑
i=1

√
gξξ(ξ̄i, σ̄i)∆ξ2

i + 2gξσ(ξ̄i, σ̄i)∆ξi∆σi + gξξ(ξ̄i, σ̄i)∆σ2
i , (38)

and gather results in Table 1 for the 20 nearest and furthest away stocks from AAPL.

Table 1. Ranked Distances from AAPL to the top and bottom 20 stocks.

Rank Stock Distance Rank Stock Distance Rank Stock Distance Rank Stock Distance

1 CHKP 0.012 11 KLAC 0.055 86 WYNN 0.397 96 MELI 0.533
2 XLNX 0.012 12 FOX 0.055 87 PAYX 0.425 97 KHC 0.540
3 MCHP 0.020 13 FOXA 0.056 88 AVGO 0.437 98 LILAK 0.544
4 QVCA 0.027 14 VIAB 0.060 89 FB 0.440 99 VRTX 0.579
5 ISRG 0.033 15 SBUX 0.061 90 NFLX 0.467 100 TSLA 0.612
6 LBTYA 0.037 16 TXN 0.063 91 EA 0.472 101 SWKS 0.612
7 CTSH 0.043 17 WBA 0.064 92 BMRN 0.487 102 AAL 0.672
8 ADI 0.048 18 JBHT 0.073 93 REGN 0.508 103 CTRP 0.678
9 MAT 0.048 19 ULTA 0.073 94 ALXN 0.514 104 LILA 0.727
10 CHTR 0.054 20 PCLN 0.077 95 BIDU 0.533 105 INCY 0.752

One example to note is that ADI and CHTR have similar Fisher distances; however, one can see
from Figure 3 that CHTR is considerably closer to AAPL in the Euclidean distance than ADI. In addition,
the geodesic to ADI is nearly linear whereas that to CHTR is curved. This example demonstrates the
potentially significant differences between the Fisher and Euclidean distance between model parameters.

Finally, in Figure 4, we plot the fitted generalized Pareto distributions to each of the NASDAQ
100 models being considered.

0.000 0.005 0.010 0.015 0.020 0.025 0.030
Daily Expected Loss

20

40

60

80

100

Figure 4. Generalized Pareto distribution fits for APPL (black), its 10 nearest neighbors (red), and the
remaining NASDAQ 100 stocks (blue).
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In black, we plot the best fit distribution to AAPL and in red the 10 nearest distributions to
AAPL with respect to the Fisher distance. The remainder of model distributions are displayed in
blue. This graph demonstrates that the Fisher distance groups stocks according to similarities in
their distribution functional forms which was the original design intention of identifying stocks with
common tail risk behavior.

5.3. Application to Clustering Based on Worst Annual Loss for S&P 500 Stocks

Next, we expand upon the nearest neighbor example by considering a clustering application
using the Fisher distance based on an example of estimating the worst daily loss over an annual period
provided in [23]. This application stems from the Fisher-Tippett-Gnedenko theorem [40,53] which
roughly states that for a set of independent identically distributed samples xi from a probability
distribution, the maximum Mm = max({x1, . . . , xn}) converges to a generalized extreme value
distribution modulo a shift and scale sequence. Our application uses the GEV distribution as a
model for the distribution of the maximum return of the loss distribution (worse single daily loss) for
a series of stock returns.

We expand the number of securities in this application by extracting the components of the S&P
500 as of 31 December 2016 and keep stocks that remained in the index over the prior 30 years since
1 January 1987. For each stock, we find its minimum daily return over the prior calendar year and
fit a three-dimensional GEV distribution with shift and scale parameters using maximum likelihood
estimation to each set of 30 maximum loss values. The result is a set of 272 GEV model parameters
which estimate the distribution of the maximum yearly loss for each stock.

Our aim will be to apply a hierarchical clustering method to these models in order to group stocks
by their worst annual losses. Specifically, we use an agglomerative clustering method which requires
two inputs. First, one must specify a notion of distance between two objects being clustered. In our
example, these objects correspond to the max loss distributions of distinct stocks and the distance
between them is given by the Fisher distance. Second, one must specify a notion of distance between
clusters consisting of multiple points called the linkage function. We use Ward’s linkage which is
designed to minimize the intra-cluster variance in each fusion step of the method [54,55].

This clustering technique consists of initially grouping together the two securities with the
smallest Fisher distance and then iteratively clustering the closest two security/cluster pairs until all
distributions have been grouped into a single cluster. One way of visualizing this clustering algorithm
is through the dendrogram of the clustering procedure, portions of which we display in Figure 5.

Figure 5. Portions of the dendrogram of a Fisher distance based hierarchical clustering of the best fit
GEV distributions for the block maximum of S&P 500 stocks.
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Several dendrogram subclusters contain stocks belonging to the same sector. For example, in the
upper left plot, the four stocks WMT, HRL, BMS, and ABT are part of the large right subcluster
which is itself a subcluster of the entire group. In addition, we find that some clusters are composed
of companies with similar businesses such as DE, SWK, and LEG which concentrate in the design
and manufacturing of engineered products and heavy machinery. Other clusters such as GE, ADP, T,
and GD in the upper right subplot contain securities from a mix of the aerospace, technology, industrial,
and telecommunications industries. This clustering procedure provides a new way to group similar
stocks according to their worst annual return.

6. Conclusions

In summary, we have reviewed relevant ideas in information geometry and discussed issues that
arise when computing geodesics for statistical models. We then derived a closed form expression
up to quadrature for the Fisher distance for one-dimensional models. Next, we compared the Fisher
distance and KL divergence in an equity return distribution application for the univariate normal
model. Finally, we developed two extreme value theory examples; a nearest neighbor comparison
using the generalized Pareto distribution, and a maximum daily loss over an annual period distribution
hierarchical clustering technique using the generalized extreme value distribution.

There are several further directions that may be pursued. First, it would be interesting to find and
develop applications that involve the Fisher distance outside of quantitative finance, specifically in the
areas of natural language and image processing. Second, the Fisher metric often cannot be represented
in terms of a closed form algebraic expression. In such situations, one can develop numerical methods
to compute geodesic distances given that the Fisher metric is only defined up to quadrature. Finally,
one can consider Fisher distance analogous to clustering, classification, and regression techniques that
take a distance function as input.

Conflicts of Interest: The author declares no conflict of interest.
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