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Abstract: In view of the importance of quantum non-locality in cryptography, quantum computation,
and communication complexity, it is crucial to decide whether a given correlation exhibits non-locality
or not. As proved by Pitowski, this problem is NP-complete, and is thus computationally
intractable unless NP is equal to P. In this paper, we first prove that the Euclidean distance of
given correlations from the local polytope can be computed in polynomial time with arbitrary fixed
error, granted the access to a certain oracle; namely, given a fixed error, we derive two upper bounds
on the running time. The first bound is linear in the number of measurements. The second bound
scales with the number of measurements to the sixth power. The former holds only for a very
high number of measurements, and is never observed in the performed numerical tests. We, then,
introduce a simple algorithm for simulating the oracle. In all of the considered numerical tests, the
simulation of the oracle contributes with a multiplicative factor to the overall running time and,
thus, does not affect the sixth-power law of the oracle-assisted algorithm.
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1. Introduction

Non-local correlations, displayed by certain entangled quantum systems, mark a clear
departure from the classical framework made up of well-defined, locally interacting quantities [1].
Besides their importance in foundation of quantum theory, non-local correlations have gained interest
as information-processing resources in cryptography [2–8], randomness amplification [9,10], quantum
computation, and communication complexity [11]. In view of their importance, a relevant problem—
hereafter called the non-locality problem—is to find a criterion for deciding if observed correlations are
actually non-local. Such a criterion is, for example, provided by the Bell inequalities [12]. However,
a result by Pitowski [12] suggests that the problem of discriminating between local and non-local
correlations is generally intractable. Pitowski proved that deciding membership to the correlation
polytope is NP-complete, and is therefore intractable unless NP is equal to P. This result also implies that
the opposite problem, deciding whether given correlations are outside the polytope, is not even in NP,
unless NP=co-NP—which is believed to be false.

In this paper, we present an algorithm whose numerical tests suggest a polynomial running
time for all the considered quantum-correlation problems. More precisely, the algorithm computes
the distance from the local polytope. First, we prove that the time cost of computing the distance with
an arbitrary fixed error grows polynomially in the size of the problem input (number of measurements
and outcomes), granted the access to a certain oracle. Namely, given a fixed error, we derive two upper
bounds on the running time. The first bound is linear in the number of measurements. The second
bound scales with the number of measurements to the sixth power. The former holds only for
a very high number of measurements, and is never observed in the performed numerical tests.
Thus, the problem of computing the distance is reduced to determining an efficient simulation
of the oracle. Then, we introduce a simple algorithm that simulates the oracle. The algorithm
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is probabilistic and provides the right answer in a subset of randomized inputs. Thus, to have
a correct answer with sufficiently high probability, the simulation of the oracle has to be performed
with a suitably high number of initial random inputs. In the numerical tests, the number of random
initial trials has pragmatically been chosen such that the simulation of the oracle contributes to the
overall running time with a multiplicative factor and, thus, does not affect the sixth-power law of
the oracle-assisted algorithm. In all of the performed numerical tests, the overall algorithm always
computes the distance within the desired accuracy. The scaling of the running time observed in the tests
is compatible with the sixth-power law, derived theoretically.

Similar results have independently been published in [13], almost simultaneously to a first
version of this paper [14]. The algorithm in [13] is a modification of Gilbert’s algorithm for minimizing
quadratic forms in a convex set. In its original form, the algorithm uses the following strategy for
generating a sequence of points, which converge to the minimizer: Given a point Pn of the sequence,
a procedure of linear optimization generates another point Qn, such that the next point Pn+1 of the
sequence is computed as a convex combination of Pn and Qn. If the convex set is a polytope, the points
Q1, . . . turn out to be vertices of the polytope. The modified algorithm, introduced in [13], keeps
track of the previous vertices Qn−m, Qn−m+1, . . . , Qn, m being some fixed parameter, and computes
the next point Pn+1 as convex combination of these points and Pn. In our algorithm, we compute
Pn+1 as a convex combination of a suitable set of previously computed vertices, without using the
point Pn (Section 5). This difference does not result in substantial computational differences. However,
our approach has the advantage of keeping track of the minimal number of vertices required for a
convex representation of the optimizer. In particular, in the case of local correlations, the algorithm
immediately gives a minimal convex representation of them. This representation provides a certificate,
which another party can use for directly proving locality. As another minor difference, our algorithm
actually computes the distance from what we will call the local cone. This allows us to eliminate
a normalization constraint from the optimization problem.

The paper is organized as follows. In Section 2, we introduce our general scenario. For the sake
of simplicity, we will discuss only the two-party case, but the results can be extended to the general
case of many parties. After introducing the local polytope in Section 3, we formulate the non-locality
problem as a minimization problem; namely, the problem of computing the distance from the local
polytope (Section 4). In Section 5, the algorithm is introduced. The convergence and the computational
cost are then discussed in Section 6. After introducing the algorithm for solving the oracle, we finally
discuss the numerical results in Section 7.

2. Nonsignaling Box

In a Bell scenario, two quantum systems are prepared in an entangled state and delivered to two
spatially separate parties; say, Alice and Bob. These parties each perform a measurement on their
system and get an outcome. In general, Alice and Bob are allowed to choose among their respective
sets of possible measurements. We assume that the sets are finite, but arbitrarily large. Let us denote
the measurements performed by Alice and Bob by the indices a ∈ {1, . . . , A} and b ∈ {1, . . . , B},
respectively. After the measurements, Alice gets an outcome r ∈ R and Bob an outcome s ∈ S ,
whereR and S are two sets with cardinality R and S, respectively. The overall scenario is described by
the joint conditional probability P(r, s|a, b) of getting (r, s), given (a, b). Since the parties are spatially
separate, causality and relativity imply that this distribution satisfies the nonsignaling conditions

P(r|a, b) = P(r|a, b̄) ∀r, a, b, b̄, and

P(s|a, b) = P(s|ā, b) ∀s, b, a, ā,
(1)

where P(r|a, b) ≡ ∑s P(r, s|a, b) and P(s|a, b) ≡ ∑r P(r, s|a, b) are the marginal conditional probabilities
of r and s, respectively. In the following discussion, we consider a more general scenario than quantum
correlations, and we just assume that P(r, s|a, b) satisfies the nonsignaling conditions. The abstract
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machine producing the correlated variables r and s from the inputs a and b will be called the
nonsignaling box (briefly, NS-box).

3. Local Polytope

The correlations between the outcomes r and s, associated with the measurements a and b, are
local if and only if the conditional probability P(r, s|a, b) can be written in the form

P(r, s|a, b) = ∑
x

PA(r|a, x)PB(s|b, x)PS(x), (2)

where PA, PB, and PS are suitable probability distributions. It is always possible to write the conditional
probabilities PA and PB as convex combination of local deterministic processes, that is,

PA(r|a, x) = ∑r PA
det(r|r, a)ρA(r|x), and

PB(s|b, x) = ∑s PB
det(s|s, b)ρB(s|x),

(3)

where r ≡ (r1, . . . , rA), s ≡ (s1, . . . , sB), PA
det(r|r, a) = δra ,r, and PB

det(s|s, b) = δsb ,s. Using this
decomposition, Equation (2) takes the form of a convex combination of local deterministic distributions.
That is,

P(r, s|a, b) = ∑
r,s

PA
det(r|r, a)PB

det(s|s, b)PAB(r, s)

= ∑
r,s

δr,ra δs,sb PAB(r, s) (4)

= ∑
r,ra=r

∑
s,sb=s

PAB(r, s),

where PAB(r, s) ≡ ∑x ρA(r|x)ρB(s|x)PS(x) and δi,j is the Kronecker delta. Equation (5) is known as Fine’s
theorem [15]. Thus, a local distribution can always be written as convex combination of local deterministic
distributions. Clearly, the converse is also true and a convex combination of local deterministic
distributions is local. Therefore, the set of local distributions is a polytope, called a local polytope.
As the deterministic probability distributions PA

det(r|r, a)PB
det(s|s, b) are not convex combinations of other

distributions, they all define the vertices of the local polytope. Thus, there are RASB vertices, each one
specified by the sequences r and s. Let us denote the map from (r, s) to the associated vertex by ~V. That is,
~V maps the sequences to a deterministic local distribution,

~V(r, s) ≡ Pdet : (r, s, a, b) 7→ δr,ra δs,sb . (5)

Since the elements of the local polytope are normalized distributions and satisfy the nonsignaling
conditions (1), the RSAB parameters defining P(r, s|a, b) are not independent and the polytope lives
in a lower-dimensional subspace. The dimension of this subspace and, more generally, of the subspace
of NS-boxes, is equal to [16]

dNS ≡ AB(R− 1)(S− 1) + A(R− 1) + B(S− 1). (6)

By the Minkowski–Weyl theorem, the local polytope can be represented as the intersection of
finitely many half-spaces. A half-space is defined by an inequality

∑
r,s,a,b

P(r, s|a, b)B(r, s; a, b) ≤ L. (7)

In the case of the local polytope, these inequalities are called Bell inequalities. Given the coefficients
B(r, s; a, b), we can choose L such that the inequality is as restrictive as possible. This is attained
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by imposing that at least one vertex of the local polytope is at the boundary of the half-space;
that is, by taking

L = max
r,s ∑

a,b
B(ra, sb; a, b). (8)

The oracle, which is central in this work, and introduced later in Section 4, returns the value L
from the coefficients B(r, s; a, b).

A minimal representation of a polytope is given by the set of facets of the polytope.
A half-space ∑r,s,a,b P(r, s|a, b)B(r, s; a, b) ≤ L specifies a facet if the associated hyperplane
∑r,s,a,b P(r, s|a, b)B(r, s; a, b) = L intersects the boundary of the polytope in a set with dimension
equal to the dimension of the polytope minus one. A distribution P(r, s|a, b) is local if and only
if every facet inequality is not violated. Deciding whether some inequality is violated is generally
believed to be intractable, due to a result by Pitowski [12], but to test the membership of a distribution
to the local polytope can be done in polynomial time, once the vertices—of which the distribution is a
convex combination—are known. Thus, deciding membership to the local polytope is an NP problem.
Furthermore, the problem is NP-complete [12].

4. Distance from the Local Polytope

The non-locality problem can be reduced to a convex optimization problem, such as the computation
of the nonlocal capacity, introduced in [17], and the distance from the local polytope, which can be reduced
to a linear program if the L1 norm is employed [18]. Here, we define the distance of a distribution P(r, s|a, b)
from the local polytope as the Euclidean distance between P(r, s|a, b) and the closest local distribution.
As mentioned in Section 3 ( see Equation (5)), and stated by Fine’s theorem [15], a conditional distribution
ρ(r, s|a, b) is local if and only if there is a non-negative function χ(r, s) such that

ρ(r, s|a, b) = ∑
r,ra=r

∑
s,sb=s

χ(r, s). (9)

That is, a conditional distribution ρ(r, s|a, b) is local if it is the marginal of a multivariate probability
distribution χ of the outcomes of all the possible measurements, provided that χ does not depend
on the measurements a and b.

The distributions P(r, s|a, b) and ρ(r, s|a, b) can be represented as vectors in a RSAB-dimensional
space. Let us denote them by ~P and ~ρ, respectively. Given a positive-definite matrix M̂ defining
the metrics in the vector space, the computation of the distance from the local polytope is equivalent
to the minimization of a functional of the form

F[χ] =
1
2

(
~P−~ρ

)T
M̂
(
~P−~ρ

)
(10)

with respect to χ, under the constraints that χ is non-negative and normalized. Namely, the distance
is the square root of the minimum of 2F. Hereafter, we choose the metrics so that the functional
takes the form

F[χ] ≡ 1
2 ∑

r,s,a,b
[P(r, s|a, b)− ρ(r, s|a, b)]2 W(a, b), (11)

where W(a, b) is some probability distribution. The normalization ∑a,b W(a, b) = 1 guarantees that
the distance does not diverge in the limit of infinite measurements performed on a given entangled
state. In particular, we will consider the case with

W(a, b) ≡ 1
AB

. (12)

Another choice would be to take the distribution W(a, b) maximizing the functional,
so that the computation of the distance would be a minimax problem. This case has some interesting
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advantages, but is more sophisticated and will not be considered here. Since we are interested
in a quantity that is equal to zero if and only if P(r, s|a, b) is local, we can simplify the problem
of computing the distance by dropping the normalization constraint on χ. Indeed, if the distance
is equal to zero, ρ, and thus χ, are necessarily normalized. Conversely, if the distance is different from
zero for every normalized local distribution, it is so also for every unnormalized local distribution.
Thus, the discrimination between local and non-local correlation is equivalent to the following
minimization problem.

Problem 1.
minχ F[χ]

subject to the constraints
χ(r, s) ≥ 0.

Let us denote the solution of this problem and the corresponding optimal value by χmin and Fmin,
respectively. The associated (unnormalized) local distribution is denoted by ρmin(r, s|a, b). The square
root of 2Fmin is the minimal distance of P(r, s|a, b) from the cone defined as the union of all the lines
connecting the zero distribution ρ(r, s|a, b) = 0 and an arbitrary point of the local polytope. Let us call
this set the local cone. Hereafter, we will consider the problem of computing the distance from the local
cone, but the results can be easily extended to the case of the local polytope, so that we will use “local
cone” and “local polytope” as synonyms in the following discussion. Note that there are generally
infinite minimizers χmin, since χ lives in a RASB-dimensional space, whereas the functional F depends
on χ through ρ(r, s|a, b), which lives in a (dNS + 1)-dimensional space. In other words, since the local
polytope has RASB vertices, but the dimension of the polytope is dNS, a (normalized) distribution ρ

has generally infinite representations as convex combination of the vertices, unless ρ is on a face whose
dimension plus 1 is equal to the number of vertices defining the face.

At first glance, the computational complexity of this problem seems intrinsically exponential,
as the number of real variables defining χ is equal to RASB. However, the dimension of the local polytope
is dNS and grows polynomially in the number of measurements and outcomes. Thus, by Carathéodory’s
theorem, a (normalized) local distribution can always be represented as the convex combination
of a number of vertices smaller than dNS + 2. This implies that there is a minimizer χmin of F whose
support contains a number of elements not greater than dNS + 1. Therefore, the minimizer can be
represented by a number of variables growing polynomially in the input size. The main problem is to
find a small set of vertices that are suitable for representing the closest local distribution ρmin(r, s|a, b).
In the following, we will show that the computation of the distance from the local cone with an arbitrary
fixed accuracy has polynomial complexity, granted the access to the following oracle.

Oracle Max: Given a function g(r, s; a, b), the oracle returns the sequences r and s maximizing
the function

G(r, s) ≡∑
a,b

g(ra, sb; a, b)W(a, b) (13)

and the corresponding maximal value.
Thus, Problem 1 is reduced to determining an efficient simulation of the oracle. Let us consider

the case of binary outcomes, with r and s taking values±1 (R = S = 2). The function G(r, s) takes the form

G(r, s) = ∑
a,b

Jabrasb + ∑
a

Aara + ∑
b

Bbsb + G0, (14)

whose minimization falls into the class of spin-glass problems, which are notoriously computationally
hard to handle. This suggests that the oracle is generally an intractable problem. Nonetheless, the oracle
has a particular structure that can make the problem easier to be solved, in some instances. This will be
discussed later, in Sections 6.3 and 7. There, we will show that the oracle can be simulated efficiently
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in many relevant cases, by using a simple block-maximization strategy. Assuming for the moment that
we have access to the oracle, let us introduce the algorithm solving Problem 1.

5. Computing the Distance

The distance from the local polytope can be computed efficiently, once we have a set Ω of vertices
that is small enough and suitable for representing the closest distribution ρmin(r, s|a, b). The algorithm
introduced in this paper solves Problem 1 by iteratively generating a sequence of sets Ω. At each
step, the minimal distance is first computed over the convex hull of the given vertices. Then, the
oracle is consulted. If the set does not contain the right vertices, the oracle returns a strictly positive
maximal value and a vertex, which is added to the set Ω (after possibly removing vertices with zero
weight). The optimization Problem 1 is solved once the oracle returns zero, which guarantees that all
the optimality conditions of the problem are satisfied. Before discussing the algorithm, let us derive
these conditions.

5.1. Necessary and Sufficient Conditions for Optimality

Problem 1 is a convex optimization problem whose constraints satisfy Slater’s condition, requiring
the existence of an interior point of the feasible region. This is the case, as a positive χ strictly satisfies
all the inequality constraints. Thus, the four Karush–Kuhn–Tucker (KKT) conditions are necessary
and sufficient conditions for optimality. Let us briefly summarize these conditions. Given an objective
function F(~x) of the variables ~x and equality constraints Gk=1,...,nc(~x) = 0, it is well known that
the function F is stationary at ~x if the gradient of the Lagrangian L(~x) ≡ F(~x)−∑nc

k=1 ηkGk(~x) is equal
to zero, for some value of the Lagrange multipliers ηk. This is the first KKT condition. The second
condition is the feasibility of the constraints; that is, the stationary point ~x must satisfy the constraints
Gk(~x) = 0. These two conditions are necessary and sufficient, as there are only equality constraints.
If there are also inequalities, two additional conditions on the associated Lagrange multipliers are
required. Given inequality constraints Hk(~x) ≥ 0, with associated Lagrange multipliers λk, the
third condition is the non-negativity of the multipliers; that is, λk ≥ 0. This condition says that the
constraint acts only in one direction, like a floor acts on objects through an upward force, but not with
a downward force. The last condition states that the Lagrange multiplier λk can differ from zero only
if the constraint is active; that is, if Hk(~x) = 0. This is like stating that a floor acts on a body only if
they are touching (contact force). This condition can concisely be written as λk Hk(~x) = 0.

Let us characterize the optimal solution of Problem 1 through the four KKT conditions.

• First KKT condition (stationarity condition): The gradient of the Lagrangian is equal to zero.
The Lagrangian of Problem 1 is

L = F[χ]−∑
r,s

λ(r, s)χ(r, s), (15)

where λ(r, s) are the Lagrange multipliers associated with the inequality constraints.
• Second KKT condition (feasibility of the constraints): The function χ is non-negative, χ(r, s) ≥ 0.
• Third condition (dual feasibility): The Lagrange multipliers λ are non-negative; that is,

λ(r, s) ≥ 0. (16)

• Fourth condition (complementary slackness): If χ(r, s) 6= 0, then the multiplier λ(r, s) is equal
to zero; that is,

λ(r, s)χ(r, s) = 0. (17)

The stationarity condition on the gradient of the Lagrangian gives the equality

∑
a,b

W(a, b) [P(ra, sb|a, b)− ρ(ra, sb|a, b)] + λ(r, s) = 0. (18)



Entropy 2019, 21, 104 7 of 22

Eliminating λ, this equality and the dual feasibility yield the inequality

∑
a,b

W(a, b) [P(ra, sb|a, b)− ρ(ra, sb|a, b)] ≤ 0. (19)

From Equation (18), we have that the complementary slackness is equivalent to the
following condition,

χ(r, s) 6= 0⇒
∑a,b W(a, b) [P(ra, sb|a, b)− ρ(ra, sb|a, b)] = 0;

(20)

that is, the left-hand side of the last inequality is equal to zero if (r, s) is in the support of χ.
The slackness condition (20), the primal constraint and Equation (19) provide necessary and sufficient
conditions for optimality. Let us introduce the function

g(r, s; a, b) ≡ P(r, s|a, b)− ρ(r, s|a, b), (21)

which is the opposite of the gradient of F with respect to ρ, up to the factor W(a, b).
Summarizing, the conditions are

∑a,b W(a, b)g(ra, sb; a, b) ≤ 0, (22)

χ(r, s) 6= 0⇒ ∑a,b W(a, b)g(ra, sb; a, b) = 0, (23)

χ(r, s) ≥ 0. (24)

The second condition can be rewritten in the more concise form

∑
r,s,a,b

ρ(r, s|a, b)g(r, s|a, b)W(a, b) = 0. (25)

Indeed, using Equations (22) and (24), it is easy to show that condition (23) is satisfied if and
only if

∑
r,s

χ(r, s)∑
a,b

W(a, b)g(ra, sb; a, b) = 0,

which gives equality (25), by definition of ρ (Equation (9)).
Condition (22) can be checked, by consulting the oracle with g(r, s; a, b) as the query. If the oracle

returns a non-positive maximal value, then the condition is satisfied. Actually, at the optimal point,
the returned value turns out to be equal to zero, as implied by the other optimality conditions.

Similar optimality conditions hold if we force χ to be equal to zero outside some set Ω.
Let us introduce the following minimization problem.

Problem 2.
minχ F[χ]

subject to the constraints
χ(r, s) ≥ 0,

χ(r, s) = 0 ∀(r, s) /∈ Ω.

The optimal value of this problem gives an upper bound on the optimal value of Problem 1.
The two problems are equivalent if the support of a minimizer χmin of Problem 1 is in Ω. The necessary
and sufficient conditions for optimality of Problem 2 are the same as of Problem 1, with the only
difference that condition (22) has to hold only in the set Ω. That is, the condition is replaced
by the weaker condition

(r, s) ∈ Ω⇒∑
a,b

W(a, b)g(ra, sb; a, b) ≤ 0. (26)
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Thus, an optimizer of Problem 2 is solution of Problem 1 if the value returned by the oracle with
query g = P− ρ is equal to zero.

Hereafter, the minimizer and the minimal value of Problem 2 will be denoted by χmin
Ω and Fmin

Ω ,
respectively. The associated optimal local distribution ρ(r, s|a, b), defined by Equation (9), will be
denoted by ρmin

Ω (r, s|a, b).

5.2. Overview of the Algorithm

Problem 1 can be solved iteratively by finding the solution of Problem 2 over a sequence of sets Ω.
The sets are built according to the answer of the oracle, which is consulted at each step of the iteration.
The procedure stops when a desired accuracy is reached or Ω contains the support of a minimizer
χmin, and the solution of Problem 2 is also the solution of Problem 1. Let us outline the algorithm.
Suppose that we choose the initial Ω as a set of sequences (r, s) associated to n0 linearly independent
vertices (n0 being possibly equal to 1). Let us denote this set by Ω0. We solve Problem 2 with Ω = Ω0

and get the optimal value Fmin
0 ≡ Fmin

Ω0
with minimizer χmin

0 ≡ χmin
Ω0

. Let us denote the corresponding
(unnormalized) local distribution by ρmin

0 ≡ ρmin
Ω0

. That is,

ρmin
0 (r, s|a, b) ≡ ∑

r,ra=r
∑

s,sb=s
χmin

0 (r, s). (27)

Since the cardinality of Ω0 is not greater than dNS + 1 and the problem is a convex
quadratic optimization problem, the corresponding computational complexity is polynomial.
Generally, a numerical algorithm provides an optimizer, up to some arbitrarily small but finite error.
In Section 5.5, we will provide a bound on the accuracy required for the solution of Problem 2. For now,
let us assume that Problem 2 is solved exactly. If the support of χmin is in Ω0, Fmin

0 is equal to the
optimal value of Problem 1, and we have computed the distance from the local polytope. We can
verify if this is the case by checking the first optimality condition (22), as the conditions (23) and (24)
are trivially satisfied by the optimizer of Problem 2 for every (r, s). The check is made by consulting
the oracle with the function P(r, s|a, b)− ρmin

0 (r, s|a, b) as the query. If the oracle returns a maximal
value equal to zero, then we have the solution of Problem 1. Note that if the optimal value of Problem 2
is equal to zero, then also the optimal value of the main problem is equal to zero and the conditional
distribution P(r, s|a, b) is local. In this case, we have no need of consulting the oracle.

If the optimal value of Problem 2 is different from zero and the oracle returns a maximal
value strictly positive, then the minimizer of Problem 2 satisfies all the optimality conditions of
Problem 1, except Equation (22) for some (r, s) /∈ Ω. The next step is to add the pair of sequences
(r, s) returned by the oracle to the set Ω and solve Problem 2 with the new set. Let us denote the
new set and the corresponding optimal value by Ω1 and Fmin

1 ≡ Fmin
Ω1

, respectively. Once we have
solved Problem 2 with Ω = Ω1, we consult again the oracle to check if we have obtained the solution
of Problem 1. If we have not, we add the pair of sequences (r, s) given by the oracle to the set Ω
and we solve Problem 2 with the new set, say Ω2. We continue until we get the solution of Problem 1
or its optimal value up to some desired accuracy. This procedure generates a sequence of sets Ωn=1,2,...

and values Fmin
n=1,2,.... The latter sequence is strictly decreasing, that is, Fmin

n+1 < Fmin
n until Ωn contains

the support of χmin and the oracle returns zero as maximal value. Let us show that. Suppose that χmin
n

is the optimizer of Problem 2 with Ω = Ωn and (r′, s′) is the new element in the set Ωn+1. Let us denote
by ρmin

n (r, s|a, b) the local distribution associated with χmin
n , that is,

ρmin
n (r, s|a, b) ≡ ∑

r,ra=r
∑

s,sb=s
χmin

n (r, s). (28)
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The optimal value Fmin
n+1 of Problem 2 is bounded from above by the value taken by the function

F[χ] for every feasible χ, in particular, for

χ(r, s; α) = χmin
n (r, s) + αδr,r′δs,s′ , (29)

with α positive. Let us set α equal to the value minimizing F; that is,

α ≡ αn = ∑
ab

W(a, b)[P(r′a, s′b|a, b)− ρmin
n (r′a, s′b|a, b)], (30)

which is equal to the value returned by the oracle. It is strictly positive, as the oracle returned
a positive value—provided that Ωn does not contain the support of χmin. Hence, χ(r, s; αn) is a feasible
point and, thus, the corresponding value taken by F,

F|α=αn
= Fmin

n − 1
2

α2
n, (31)

is an upper bound on Fmin
n+1. Hence,

Fmin
n+1 ≤ Fmin

n − 1
2

α2
n, (32)

that is, Fmin
n+1 is strictly smaller than Fmin

n .
This procedure generates a sequence Fmin

n that converges to the optimal value of Problem 1,
as shown in Section 6. For any given accuracy, the computational cost of the procedure is polynomial,
provided that we have access to the oracle.

To avoid growth of the cardinality of Ω beyond dNS + 1 during the iteration and, thus,
the introduction of redundant vertices, we have to be sure that the sets Ω0, Ω1, . . . contain points
(r, s) associated to linearly independent vertices ~V(r, s) of the local polytope. This is guaranteed by
the following procedure of cleaning up. First, after the computation of χmin

n at step n, we remove
the elements in Ωn where χmin

n (r, s) is equal to zero (this can be checked even if the exact χmin
n is not

known, as discussed later in Section 5.6). Let us denote the resulting set by Ωclean
n . Then, the set Ωn+1

is built by adding the point given by the oracle to the set Ωclean
n . Let us denote by V the set of vertices

associated to the elements in the support of χmin
n . The cleaning up ensures that the optimizer ρmin

n
is in the interior of the convex hull of V , up to a normalization constant, and the new vertex returned by
the oracle is linearly independent of the ones in V . Indeed, we have seen that the introduction of such
a vertex allows us to lower the optimal value of Problem 2. This would not be possible if the added
vertex was linearly dependent on the vertices in V , as the (normalized) optimizer ρmin

n of Problem 2
is in the interior of the convex hull of V .

This is formalized in Lemma 1.

Lemma 1. Let (r′, s′) be a sequence such that

∑
a,b

g(r′a, s′b; a, b)W(a, b) 6= 0. (33)

If Ω is a set such that
(r, s) = Ω⇒∑

a,b
g(ra, sb; a, b)W(a, b) = 0, (34)

then the vertex ~V(r′, s′) is linearly independent of the vertices associated to the sequences in Ω.
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Proof. The proof is by contradiction. Suppose that the vector ~V(r′, s′) is linearly dependent with
the vectors ~V(r, s) with (r, s) ∈ Ω, then there is a real function t(r, s) such that

~V(r′, s′) = ∑
(r,s)∈Ω

t(r, s)~V(r, s). (35)

By definition of ~V, this equation implies that ∑r,s t(r, s)δr,ra δs,sb = δr,r′a δs,s′b
. From this equation

and Equation (34), we have

∑
r,s

δr,r′a δs,s′b ∑
a,b

g(r, s; a, b)W(a, b) = 0. (36)

Summing over r and s, we get a contradiction with Equation (33).

This lemma and the optimality conditions (22) and (23) imply that the sets Ω0, Ω1, . . . , built
through the previously discussed procedure of cleaning up, always contain points associated to
independent vertices and, thus, never contain more than dNS + 1 elements. Indeed, the set Ωclean

n
contains points (r, s) where the minimizer χmin

n is different from zero, for which

∑
a,b

[
P(ra, sb|a, b)− ρmin

n (ra, sb|a, b)
]

W(a, b) = 0,

as implied by condition (23). Furthermore, given the sequence (r′, s′) returned by the oracle,
condition (22) implies that

∑
a,b

[
P(r′a, s′b|a, b)− ρmin

n (r′a, s′b|a, b)
]

W(a, b) > 0

until the set Ωn contains the support of χmin and the iteration generating the sequence of sets Ω
is terminated.

The procedure of cleaning up is not strictly necessary for having a polynomial running time,
but it can speed up the algorithm. Furthermore, the procedure guarantees that the distribution
ρ(r, s|a, b) approaching the minimizer during the iterative computation is always represented
as the convex combination of a minimal number of vertices. Thus, we have a minimal representation
of the distribution at each stage of the iteration.

5.3. The Algorithm

In short, the algorithm for computing the distance from the local polytope with given accuracy
is as follows.

Algorithm 1. Input: P(r, s|a, b)

1. Set (r′, s′) equal to the sequences given by the oracle with P(r, s|a, b) as query.
2. Set Ω = {(r′, s′)}.
3. Compute the optimizers χ(r, s) and ρ(r, s|a, b) of Problem 2. The associated F provides an upper bound of

the optimal value Fmin.
4. Consult the oracle with g(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b) as query. Set (r′, s′) and α are equal to

the sequences returned by the oracle and the associated maximal value, respectively. That is,

(r′, s′) = argmax
(r,s)

∑
a,b

g(ra, sb; a, b)W(a, b),

α = ∑
a,b

g(r′a, s′b|a, b)W(a, b),

5. Compute a lower bound on the Fmin from ρ and α (see following discussion and Section 6.1). The difference
between the upper and lower bounds provides an upper bound on the reached accuracy.
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6. If a given accuracy is reached, stop.
7. Remove from Ω the points where χ is zero and add (r′, s′).
8. Go back to Step 3.

The algorithm stops at Step 6 when a desired accuracy is reached. To estimate the accuracy,
we need to compute a lower bound on the optimal value Fmin. To guarantee that the algorithm
eventually stops, the lower bound has to converge to the optimal value as the algorithm approaches
the solution of Problem 1. We also need a stopping criterion for the numerical routine solving
the optimization problem in Step 3. Let us first discuss the stopping criterion for Algorithm 1.

5.4. Stopping Criterion for Algorithm 1

The lower bound on Fmin, denoted by F(−), is computed by using the dual form of Problem 1.
As shown in Section 6.1, any local distribution ρ induces the lower bound

F(−) =
1
2 ∑

rsab

{
P2(r, s|a, b)−

[
ρ(r, s|a, b) + α

]
2
}

W(a, b), (37)

where α is the maximal value returned by the oracle with g(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b) as query.
An upper bound on Fmin is obviously

F(+) = F[χ]. (38)

In the limit of ρ equal to the local distribution minimizing F, the lower bound is equal to the optimal
value Fmin. This can be shown by using the optimality conditions. Indeed, conditions (22) and (25)
imply the limits

lim
χ→χmin

α = 0, (39)

lim
χ→χmin

∑
r,s,a,b

ρ(r, s|a, b)g(r, s; a, b)W(a, b) = 0, (40)

which imply F(−) → Fmin as χ approaches the minimizer. This is made even more evident, by computing
the difference between the upper bound and the lower bound. Indeed, given the local distribution
ρ(r, s|a, b) computed at Step 3 and the corresponding α returned by the oracle at Step 4, the difference is

F(+) − F(−) ≡ ∆F = RS
2 α2+

∑rsab ρ(r, s|a, b) [α− g(r, s; a, b)]W(a, b),
(41)

which evidently goes to zero as χ goes to χmin. Thus, the upper bound ∆F on the accuracy computed
in Step 5 goes to zero as ρ(r, s|a, b) approaches the solution. This guarantees that the algorithm stops
sooner or later at Step 6, provided that χ converges to the solution. If Problem 2 is solved exactly
at Step 3, then the distribution ρ(r, s|a, b) satisfies condition (25), and the upper bound on the reached
accuracy takes the form

F(+) − F(−) =
RS
2

α2 + α ∑
rsab

ρ(r, s|a, b)W(a, b). (42)

Even if Condition (25) is not satisfied, we can suitably normalize χ(r, s) so that the condition
is satisfied.

In the following, we assume that this condition is satisfied.

5.5. Stopping Criterion for Problem 2 (Optimization at Step 3 of Algorithm 1)

In Algorithm 1, Step 3 is completed when the solution of Problem 2 with a given set Ω is found.
Optimization algorithms iteratively find a solution ρmin

Ω (r, s|a, b) up to some accuracy. We can stop
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when the error is of the order of the machine precision. Here, we will discuss a more effective stopping
criterion. This criterion should preserve the two main features previously described:

• The sequence Fmin
0 , Fmin

1 , . . . of the exact optimal values of Problem 2, with Ω = Ω0, Ω1, . . . ,
is monotonically decreasing.

• The sets Ω0, Ω1, . . . contain points associated with linearly independent vertices of the local
polytope, implying that the cardinality of Ωn is never greater than dNS + 1.

To guarantee that the first feature is preserved, it is sufficient to compute a lower bound on Fmin
Ω

from a given χ so that the bound approaches Fmin
Ω as χ approaches the optimizer χmin

Ω . If the lower
bound with the set Ω = Ωn is greater than the upper bound Fn − α2

n/2 on Fmin
n+1 (see Equation (31)),

then Fmin
n+1 < Fmin

n . Denoting by F(−)
Ω the lower bound on the optimal value Fmin

Ω , the monotonicity of
the sequence Fmin

0 , Fmin
1 , . . . is implied by the inequality

Fn −
1
2

α2
n ≤ F(−)

Ωn
. (43)

As shown later, by using dual theory, a lower bound on Fmin
Ω is

F(−)
Ω =

1
2 ∑

rsab

{
P2(r, s|a, b)−

[
ρ(r, s|a, b) + β

]
2
}

W(a, b), (44)

where
β ≡ max

(r,s)∈Ω
∑
ab

W(a, b)[P(ra, sb|a, b)− ρ(ra, sb|a, b)], (45)

and ρ(r, s|a, b) is an unnormalized local distribution, associated to a function χ(r, s) with support in Ω.
This bound becomes equal to Fmin

Ω in the limit of ρ equal to the minimizer of Problem 2. Equation (43)
gives the condition

α2 > RSβ2+

2 ∑rsab [β− g(r, s; a, b)] ρ(r, s|a, b)W(a, b),
(46)

where g(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b) and ρ(r, s|a, b) is the local distribution computed in Step 3.
If this condition is satisfied by the numerical solution found in Step 3, then the series Fmin

0 , Fmin
1 , . . .

is monotonically decreasing. As we will see, to prove that the series converges to the minimizer of
Problem 1, we need the stronger condition

γα2 ≥ RSβ2+

2 ∑rsab [β− g(r, s; a, b)] ρ(r, s|a, b)W(a, b),
(47)

where γ is any fixed real number in the interval (0, 1). A possible choice is γ = 1/2. If this inequality
is satisfied in each iteration of Algorithm 1, the sequence Fmin

0 , Fmin
1 , . . . satisfies the inequality

Fmin
n+1 ≤ Fmin

n − 1− γ

2
α2

n, (48)

which turns out to be equal to Equation (32) in the limit γ→ 0. The right-hand side of Equation (47)
goes to zero as ρ approaches the optimizer, as implied by the optimality conditions of Problem 2.
Thus, if the set Ω does not contain all the points where χmin is different from zero, then the inequality
is surely satisfied at some point of the iteration solving Problem 2, as α tends to a strictly positive
number. When the inequality is satisfied, the minimization at Step 3 of Algorithm 1 is terminated.
If Ω is the support of χmin, the inequality will never be satisfied and the minimization at Step 3 will
terminate when the desired accuracy on Fmin is reached.
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5.6. Cleaning Up (Step 7)

As previously said, we should also guarantee that the sets Ωn contain only points associated with
linearly independent vertices. This is granted if the procedure in Step 7 of Algorithm 1 successfully
removes the points where the exact minimizer χmin

n is equal to zero. How can we find the support
of the minimizer from the approximate numerical solution computed in Step 3? Using dual theory,
it is possible to prove the following.

Theorem 1. Let χ(r, s) be a non-negative function with support in Ω and ρ(r, s|a, b) be the associated
unnormalized local distribution. Then, the inequality

∑a,b ρmin
Ω (ra, sb|a, b)W(a, b) ≥ ∑a,b ρ(ra, sb|a, b)W(a, b)

−
[
2
(

F(+) − F(−)
Ω

)]1/2 (49)

holds.

A direct consequence of this theorem and the slackness condition (23) for optimality is the following.

Corollary 1. Let χ(r, s) be a non-negative function with support in Ω and ρ(r, s|a, b) the associated
unnormalized local distribution. If the inequality

∑ab g(ra, sb; a, b) ≤
{

RSβ2+

2 ∑rsab [β− g(r, s; a, b)] ρ(r, s|a, b)W(a, b)}1/2 (50)

holds, with g(r, s|a, b) = P(r, s|a, b)− ρ(r, s|a, b), then χmin
Ω (r, s) is equal to zero.

Condition (50) is sufficient for having χmin
Ω (r, s) equal to zero, but it is not necessary. A necessary

condition can be derived by computing the lowest eigenvalue of the Hessian of the objective function
F[χ]. Both the necessary and sufficient conditions allow us to determine the support of the minimizer
χmin

Ω once the distribution χ is enough close to χmin
Ω . Thus, the minimization in Step 3 should not

stop until each sequence (r, s) satisfies the sufficient condition or does not satisfy the necessary
condition, otherwise the cleaning up could miss some points where the minimizer is equal to zero.
However, numerical experiments show that the use of these conditions is not necessary, and the number
of elements in the sets Ωn is generally bounded by dNS + 1, provided that Problem 2 is solved
by the algorithm described in the following section.

5.7. Solving Problem 2

There are standard methods for solving Problem 2, and numerical libraries are available.
The interior point method [19] provides a quadratic convergence to the solution, meaning
that the number of digits of accuracy is almost doubled at each iteration step, once χ is sufficiently
close to the minimizer. The algorithm uses the Newton method and needs to solve a set of linear
equations. Since this can be computationally demanding in terms of memory, we have implemented
the solver by using the conjugate gradient method, which does not use the Hessian. Furthermore,
if the Hessian turns out to have a small condition number, the conjugate gradient method can be much
more efficient than the Newton method, especially if we do not need to solve Problem 2 with high
accuracy. This is the case in the initial stage of the computation, when the set Ω is growing and does
not contain all the points of the support of χmin.

The conjugate gradient method iteratively performs a one-dimensional minimization, along
directions that are conjugate with respect to the Hessian of the objective function [19]. The directions
are computed iteratively, by setting the first direction equal to the gradient of the objective function.
The conjugate gradient method is generally used with unconstrained problems, whereas Problem 2
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has the inequality constraints χ(r, s) ≥ 0. To adapt the method to our problem, we perform the
one-dimensional minimization in the region where χ is non-negative. Whenever an inactive constraint
becomes active, or vice versa, we set the search direction equal to the gradient and restart the generation
of the directions from that point. Once the procedure terminates, the algorithm provides a list of
active constraints with χn(r, s) = 0. Numerical simulations show that this list is generally complete,
and corresponds to the points where the minimizer χmin

n is equal to zero.
In general, the slackness condition (25) is not satisfied by the numerical solution. However,

as previously pointed out, we can suitably normalize χn so that this condition is satisfied by ρn(r, s|a, b).
Thus, we will assume that the equality

∑
r,s,a,b

ρn(r, s|a, b)gn(r, s; a, b)W(a, b) = 0 (51)

holds with gn = P− ρn. This also implies that

αn = α|ρ=ρn
≥ 0 and

βn = β|ρ=ρn
≥ 0.

(52)

6. Convergence Analysis and Computational Cost

Here, we provide a convergence analysis and show that the error on the distance from the local
polytope is bounded above by a function decaying at least as fast as 1/n, where n is the number of
iterations. The convergence of this function to zero is sublinear, but its derivation relies on a very rough
estimate of a lower bound on the optimal value χmin. Actually, the iteration converges to the solution
in a finite number of steps (up to the accuracy of the solver of Problem 2). Indeed, since the number
of vertices is finite, also the number of their sets Ω is finite. Thus, the sequence Ωn converges
to the support of the optimizer χmin in a finite number of steps, as the accuracy goes to zero.

We expect that this finite number of steps is of the order of the dimension dNS of the local polytope.
Interestingly, the computed bound on the number of required iterations for given error does not depend
on the number of measurements. Using this bound, we show that the computational cost for any given
error on the distance grows polynomially with the size of the problem input; that is, with A, B, R,
and S, provided that the oracle can be simulated in polynomial time.

To prove the convergence, we need to introduce the dual form of Problem 1 (see Ref. [19]
for an introduction to dual theory). The dual form of a minimization problem (primal problem)
is a maximization problem, whose maximum is always smaller than or equal to the primal minimum,
the difference being called the duality gap. However, if the constraints of the primal problem
satisfy some mild conditions, such as Slater’s conditions [19], then the duality gap is equal to zero.
As previously said, this is the case of Problem 1.

The dual form is particularly useful for evaluating lower bounds on the optimal value of the primal
problem. Indeed, the value taken by the dual objective function in a feasible point of the dual constraints
provides such a bound. After introducing the dual form of Problem 1, we derive the lower bound F(−)

on Fmin, given by Equation (37). Then, we use this bound and Equation (48) to prove the convergence.

6.1. Dual Problem

The dual problem of Problem 1 is a maximization problem over the space of values taken
by the Lagrange multipliers λ(r, s) subject to the dual constraints λ(r, s) ≥ 0. The dual objective
function is given by the minimum of the Lagrangian L, defined by Equation (15), with respect to χ.
The dual constraint is the non-negativity of the Lagrange multipliers, that is,

λ(r, s) ≥ 0. (53)
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As this minimum cannot be derived analytically, a standard strategy for getting an explicit
form of the dual objective function is to enlarge the space of primal variables and, correspondingly,
to increase the number of primal constraints. The minimum is then evaluated over the enlarged
space. In our case, it is convenient to introduce Equation (9) and ρ(r, s|a, b) as additional constraints
and variables, respectively. Thus, F is made independent of χ and expressed as a function of ρ. The new
optimization problem, which is equivalent to Problem 1, has Lagrangian

L = F[ρ]−∑
r,s

λ(r, s)χ(r, s) + ∑
rsab

W(a, b)× η(r, s, a, b)

[
ρ(r, s|a, b)−∑

r,s
δr,ra δs,sb χ(r, s)

]
, (54)

where η(r, s, a, b) are the Lagrange multipliers associated with the added constraints. To find
the minimum of the Lagrangian, we set its derivative, with respect to the primal variables χ and ρ,
equal to zero. We get the equations

∑a,b W(a, b)η(ra, sb, a, b) = −λ(r, s) (55)

ρ(r, s|a, b) = P(r, s|a, b)− η(r, s, a, b). (56)

The first equation does not depend on the primal variables and sets a constraint on the dual
variables. If this constraint is not satisfied, the dual objective function is equal to −∞. Thus,
its maximum is in the region where Equation (55) is satisfied. Let us add it to the dual constraint (53).
The second stationarity condition, Equation (56), gives the optimal ρ. By replacing it in the Lagrangian,
we get the dual objective function

Fdual = ∑
r,s,a,b

W(a, b)η(r, s, a, b)×
[

P(r, s|a, b)− η(r, s, a, b)
2

]
. (57)

Eliminating λ, which does not appear in the objective function, the dual constraints (53) and (55)
give the inequality

∑
a,b

W(a, b)η(ra, sb; a, b) ≤ 0. (58)

Thus, Problem 1 is equivalent to the following.

Problem 3 (dual problem of Problem 1).

maxη Fdual [η]

subject to the constraints
∑a,b W(a, b)η(ra, sb; a, b) ≤ 0.

The value taken by Fdual at a feasible point provides a lower bound on Fmin. Given any function
η̄(r, s; a, b), a feasible point is

η f (r, s; a, b) ≡ η̄(r, s; a, b)−max
r,s ∑

ā,b̄

W(ā, b̄)η̄(rā, sb̄; ā, b̄). (59)

Indeed,
∑a,b η f (ra, sb; a, b)W(a, b) = ∑a,b η̄(ra, sb; a, b)

−maxr′ ,s′ ∑a,b η̄(r′a, s′b; a, b)W(a, b) ≤ 0.
(60)

The lower bound turns out to be the optimal value Fmin, if the distribution ρ(r, s|a, b) given by
Equation (56) in terms of η = η f is solution of the primal Problem 1. This suggests the transformation

η̄(r, s; a, b) = P(r, s|a, b)− ρ(r, s|a, b), (61)
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where ρ(r, s|a, b) is some local distribution up to a normalization constant (in fact, ρ can be any real
function). Every local distribution induces a lower bound on the optimal value Fmin. This lower bound
turns out to be an accurate approximation of Fmin if ρ is close enough to the optimal local distribution.
Using the last equation and Equation (59), we get the lower bound (37) from Fdual .

The dual problem of Problem 2 is similar to Problem 3, but the constraints have to hold for
sequences (r, s) in Ω.

Problem 4 (dual problem of Problem 2).

maxη Fdual [η]

subject to the constraints
(r, s) ∈ Ω⇒ ∑a,b W(a, b)η(ra, sb; a, b) ≤ 0.

This dual problem induces the lower bound Fmin
Ω on the optimal value of Problem 2 (Equation (44)).

6.2. Convergence and Polynomial Cost

Let ρn(r, s|a, b) be the local distribution computed in Step 3 of Algorithm 1. From the lower
bound (37), we have

Fmin ≥ Fn −
RS
2

α2
n + ∑

r,s,a,b
W(a, b)ρn(r, s|a, b) [gn(r, s; a, b)− αn] , (62)

where αn is given by Equation (30), and gn = P − ρn. The part of the summation linear in gn

is equal to zero, by Equation (51). The remaining part, linear in αn, is bounded from below by
−αn[1 + (RS)1/2] (αn is positive). This can be shown by minimizing it under the constraint (51).
Thus, we have that

Fmin ≥ Fn −
RS
2

α2
n − [1 + (RS)1/2]αn. (63)

As αn is not greater than 1, the factor α2
n in the right-hand side of the inequality can be replaced

by αn, so that we have

αn ≥ 2
Fn − Fmin

RS + 2 + 2(RS)1/2 , (64)

which gives, with Equation (48), the following

Fmin
n − Fmin

n+1 ≥ 2(1− γ)

(
Fn − Fmin

RS + 2 + 2(RS)1/2

)2

. (65)

This inequality implies that

Fmin
n − Fmin ≤ (RS + 2 + 2(RS)1/2)2

2(1− γ)n
. (66)

This can be proved by induction. It is easy to prove that inequality holds for n = n0 > 1, if it holds
for n = n0 − 1. Let us prove that it holds for n = 1. It is sufficient to prove that Fmin

1 − Fmin ≤ 1/2.
Using the identity

∑
r,s,a,b

W(a, b)ρmin
1 (r, s|a, b)×

[
P(r, s|a, b)− ρmin

1 (r, s|a, b)
]
= 0, (67)

we have
Fmin

1 − Fmin ≤ Fmin
1 =

∑r,s,a,b W(a, b) [
P(r,s|a,b)−ρmin

1 (r,s|a,b)]
2

2

= ∑r,s,a,b W(a, b) P2(r,s|a,b)−(ρmin
1 )2(r,s|a,b)

2

≤ ∑r,s,a,b W(a, b) P2(r,s|a,b)
2 ≤ 1

2 .

(68)
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Thus, the error decreases at least as fast as 1/n. Although the convergence of the upper bound
is sublinear, we derived this inequality by using Equation (63), which provides a quite loose bound
on the optimal value χmin. Nonetheless, the constraint set by Equation (66) on the accuracy is strong
enough to imply the polynomial convergence of the algorithm, provided that the oracle can be
simulated in polynomial time. Indeed, the inequality implies that the number of steps required to reach
a given accuracy does not grow faster than (RS)2. Since the computational cost of completing each
step is polynomial, the overall algorithm has polynomial cost. More precisely, each step is completed
by solving a quadratic minimization problem. If we do not rely on the specific structure of the
quadratic problem, its computational cost does not grow faster than max{n3

1, n2
1n2, D} [19], where n1,

n2, and D are the number of variables, the number of constraints, and the cost of evaluating the first
and second derivatives of the objective and constraint functions. The numbers n1 and n2 are equal,
and D is equal to n2

1(A + B). As the number of vertices in the set Ωn is not greater than the number of
iterations (say, n̄), we have that n1 ≤ n̄. Furthermore, the number of vertices cannot be greater than
dNS. Thus, the number of variables is, in the worst case,

n1 = min{n̄, ABRS}. (69)

As implied by Equation (66), about (RS)2/ε iterations are sufficient for reaching an error not
greater than ε. Let us set n̄ = (RS)2/ε. Denoting the computational cost of Algorithm 1 with accuracy
ε by Cε, we have that

Cε ≤ Kn̄ max{n3
1, n2

1(A + B)} = K
(RS)2

ε
n2

1 max{n1, A + B}, (70)

where K is some constant. Let us consider the two limiting cases with ε(A + B) ≥ (RS)2 (high number
of measurements) and εABRS ≤ (RS)2 (high accuracy).

In the first case, we have that A + B ≥ n̄, which also implies that n1 = n̄ (there are at least 2
measurements per party). We have

ε(A + B) ≥ (RS)2 =⇒ Cε ≤ K
(RS)6

ε3 (A + B) ≡ B0 (71)

Thus, given a fixed error, the computational cost is asymptotically linear in the number of
measurements. For ε = 10−2 and R = S = 2, this bound holds for a number of measurements per
party greater than 800. If A = B = 800, the computation ends in few hours in the worst case by using
available personal computers, provided that the bound B0 is saturated in the most pessimistic scenario.

In the second case, we have that ABRS ≤ n̄ and n1 = ABRS. Thus,

εAB ≤ RS =⇒ Cε ≤ K
(RS)2

ε
(ABRS)3 ≡ B1. (72)

Thus, for a fixed error ε and AB smaller than RS/ε, the bound on the computational cost
scales as the third power of the product AB; that is, the sixth power of the number of measurments,
provided that A = B. This scaling is in good agreement with the numerical tests, as discussed later.
However the tests indicate that the scaling 1/ε and, thus, the sublinear convergence is too pessimistic.
For example, for ε = 10−3, A = B ≤ 40, and R = S = 2, the bound gives a running time of the order
of months, whereas the running time in the tests turns out to be less than one hour.

6.3. Simulation of the Oracle

We have shown that the cost of computing the distance from the local polytope grows
polynomially, provided that we have access to the oracle. But what is the computational complexity of
the oracle? In the case of measurements with two outcomes, we have seen that the solution of the oracle
is equivalent to finding the minimal energy of a particular class of Ising spin glasses. These problems are



Entropy 2019, 21, 104 18 of 22

known to be NP-hard. However, the oracle has a particular structure that can make many physically
relevant instances numerically tractable. For example, the couplings of the Ising spin model are
constrained by the nonsignaling conditions on P(r, s|a, b) and the optimality conditions (22)–(24).
Furthermore, the Hamiltonian (14) is characterized by two classes of spins, described by the variables
rk and sk, respectively, and each element in one class is coupled only to elements in the other class.
This particular structure suggests the following block-maximization algorithm for solving the oracle.

Algorithm 2. Input: g(r, s; a, b)

1. Generate a random sequence r.
2. Maximize ∑a,b g(ra, sb; a, b)W(a, b) with respect to the sequence s (see later discussion).
3. Maximize ∑a,b g(ra, sb; a, b)W(a, b) with respect to the sequence r.
4. Repeat from Step 2 until the block-maximizations stop making progress.

Numerical tests show that this algorithm, when used for computing the distance from the local
polytope, stops after a few iterations. Furthermore, only a few trials of the initial random sequence r
are required for convergence of Algorithm 1. We also note that the probability of a successful simulation
of the oracle increases when χ is close to the optimal solution χmin, suggesting that the optimality
conditions (22)–(24) play some role in the computational complexity of the oracle. Pragmatically, we
have chosen the number of trials equal to dNS, such that the computational cost of simulating the oracle
contributes to the overall running time with a constant multiplicative factor and, thus, the sixth-power
law of the oracle-assisted algorithm is not affected.

Before discussing the numerical results, let us explain how the maximization on blocks
is performed. Let us consider the maximization with respect to r, as the optimization with respect to s
has an identical procedure. We have

maxr ∑a,b W(a, b)g(ra, sb; a, b) =

∑a maxr ∑b g(r, sb; a, b)W(a, b) ≡
∑a maxr g̃(r, s; a).

(73)

Thus, the maximum is found by maximizing the function g̃(r, s; a), with respect to the discrete
variable r for every a. Taking into account the sum over b required for generating g̃, the computational
cost of the block-maximization is proportional to RAB. Thus, it does not grow more than linearly with
respect to the size of the problem input; that is, RSAB.

7. Numerical Tests

In the previous sections, we introduced an algorithm that computes the distance from the local
polytope in polynomial time, provided that we have access to oracle Max. Surprisingly, in every
simulation performed on entangled qubits, the algorithm implementing the oracle successfully finds
the solution in polynomial time. More precisely, the algorithm finds a sequence (r, s) sufficiently close
to the maximum to guarantee convergence of Algorithm 1 to the solution of Problem 1. Interestingly, the
probability of a successful simulation of the oracle increases as χ approaches the solution. This suggests
that the optimality conditions (22)–(24) play a fundamental role in the computational complexity of
the oracle. To check that the algorithm successfully finds the optimizer χmin up to the desired accuracy,
we have solved the oracle with a brute-force search at the end of the computation, whenever this was
possible in a reasonable time. All of the checks show that the solution is found within the desired
accuracy.

In the tests, we considered the case of maximally entangled states, Werner states, and pure
non-maximally entangled states. The numerical data are compatible with a running time scaling
as the sixth power of the number of measurements. This is in accordance with the theoretical analysis,
given in Section 6.2. Furthermore, the simulations show that the sublinear convergence of the upper
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bound B1 on the error is very loose, and the convergence turns out to be much faster. Let us discuss
the case of entangled qubits in a pure quantum state.

7.1. Maximally Entangled State

In Figure 1, we report the time required for computing the distance from the local polytope
as a function of the number of measurements, M, in log-log scale. The distance has been evaluated with
accuracy equal to 10−3, 10−4, and 10−5 (red, blue, and green points, respectively). We have considered
the case of planar measurements on the Bloch sphere. For the sake of comparison, we have also plotted
the functions 10−6M6 and 10−9M6 (dashed lines). The data are compatible with the theoretical power
law derived previously. They also show that the sublinear convergence of B1, derived in Section 6.2,
is too pessimistic and the algorithm actually shows better performances. In particular, the bound B1

says that the running time is not greater than years for A = B = 40 and ε = 10−5, whereas the observed
running time is actually less than one hour. Other simulations have been performed with random
measurements. We generated a set of measurements corresponding to random vectors on the Bloch
sphere, by considering both the planar and non-planar case. Then, we computed the distance from
the local polytope for a different number of measurements. We always observed that the running
time scales with the same sixth power law. For a number of measurements below 28, we have solved
the oracle with a brute-force search at the end of the computation, and we have always found that
Algorithm 1 successfully converged to the solution within the desired accuracy.

5 · 100 101 4 · 101

10−5

10−3

10−1

101

103

Number of measurements

ti
m

e
(s

)

Figure 1. Time required for computing the distance from the local polytope for a maximally entangled
state as a function of the number of measurements (log-log scale) with accuracy equal to 10−3, 10−4,
and 10−5 (red, blue, and green points, respectively).

7.2. Non-Maximally Entangled State

In the case of the non-maximally entangled state

|ψ〉 = |00〉+ γ|11〉√
1 + γ2

, (74)

with γ ∈ [0, 1], we have considered planar measurements orthogonal to the Bloch vector ~vz ≡ (0, 0, 1)
(such that the marginal distributions are unbiased), as well as planar measurements lying in the plane
containing ~vz (biased marginal distributions).

In Figure 2, we report the distance from the local polytope as a function of γ with 10 measurements.
The distance changes slightly for higher numbers of measurements. In the unbiased case, the distance
goes to zero for γ equal to about 0.4, whereas the correlations become local for γ = 0 in the biased case.
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Figure 2. Distance from the local polytope as a function of γ in the unbiased case (red stars) and biased
case (blue triangles).

In Figures 3 and 4, the running time as a function of the number of measurements is reported for
the unbiased and biased cases, respectively. The power law is, again, in accordance with the theoretical
analysis. As done for the maximally entangled case, we have checked the convergence to the solution
by solving the oracle with a brute force search for a number of measurements up to 28.
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Figure 3. Time required for computing the distance from the local polytope as a function of the number
of measurements (log-log scale) in the unbiased case, for γ = 0.8 (red stars) and γ = 0.6 (blue triangles).
The green lines are the functions 10−6 M6 and 10−8 M6. The accuracy is 10−5.
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Figure 4. The same as Figure 3 in the biased case, for γ = 0.8 (red stars), γ = 0.6 (blue triangles),
and γ = 0.4 (green circles).

8. Conclusions

In conclusion, we have presented an algorithm that computes the distance of a given non-signaling
box to the local polytope. The running time, with given arbitrary accuracy, scaled polynomially,
granted the access to an oracle determining the optimal locality bound of a Bell inequality. We also
proposed an algorithm for simulating the oracle. In all of the numerical tests, the overall algorithm
successfully computed the distance with the desired accuracy and a scaling of the running time,
in agreement with the bound theoretically derived for the oracle-assisted algorithm. Our algorithm
opens the way to tackle many unsolved problems in quantum theory, such as the non-locality of
Werner states. Since the non-locality problem is NP-hard, our work and its further refinements could
provide alternative algorithms to solve some instances of computationally hard problems.
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